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The (tree-graph) generalized Veneziano amplitudes are shown to be boundary values of a new class of
generalized hypergeometric functions having the property that they are Radon transforms of products of

lineay forms.

1. INTRODUCTION

The Veneziano model has attracted considerable
interest.1-12 We address ourselves here to the
question of the functional structure of the general-
ized Veneziano amplitudes.

As is well known, the original Veneziano amplitude
for a four-body process was written down as a
beta function:
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Furthermore, Bialas and Pokorski® pointed out that
the five-particle amplitude as generalized by Bar-
dakci and Ruegg? is a special case of the general-
ized hypergeometric function 3F, (a,b,c;d,e;w) at
w=1:
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The question immediately arises as to what the
corresponding statements for the higher amplitudes
are. We wish to make the following observations:

{(a) The N-particle Veneziano amplitudes4~6,9-11
VN = 6, evidently do not belong to any familiar
class of generalized hypergeometric functions.
Thus a naive extrapolation that Vg might be related
to some function like pFy(a,...ap;bq,...,b5;w)

at w = 1 is obviously false. (b) Radon structure:
The class of generalized Veneziano amplitudes
4-6,9-11 corresponding to the so-called tree graphs
may be regarded as the boundary values of a new
class of generalized hypergeometric functions in
several variables. This class of functions satisfies
the criterionthat they are Radon transforms of pro-
ducts of linear forms.13 On the other hand, this
simply property apparently breaks down when one
considers the generalized amplitudes (for N > 4)
corresponding to the nonplanar graphs, such as
those discussed by Virasorol4 and Mandelstam.15

2. GENERALIZED VENEZIANO AMPLITUDES
AS BOUNDARY VALUES OF A CLASS OF
GENERALIZED HYPERGEOMETRIC FUNC~
TIONS

We define a class of generalized hypergeometric
functions F®™(a;,b,,c,;;w,;) of 3n(n — 1) variables
w;; as follows:
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These functions justify the name of generalized
hypergeometric functions in the sense of Gel'fand,13
namely, they are Radon transforms of products

of linear forms in an (z + 1)-dimensional space.
Obviously, one can write
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is a linear form in x with coefficients £*. The
w's enter through the £'s.
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Special cases of F™ are easily recognizable, for

example,
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As far as the author is aware, F® for n > 3 does
not seem to correspond to any known function in
the mathematical literature.

y— (ay + cy9);w12).

It can be easily verified that by simple change of
variables, the (» + 3)-point generalized Venezi-
ano function4-6,9-11 ean be brought to the form
of Eq. (4) with all w;; = 1,namely,
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where the parameters [analogs of the a;; in Eq.

(3)] entering in V,. 3 are combinations of the a's,
b's,and c¢'s.

To be precise, the suggested change of variables for

V,. 3 consists of letting
13

xk=lI}1ul,, k=1,2,...,n,

(9)

where the u's are the usual integration variables
476,911 gyccessively associated with the internal
lines of a multiperipheral graph. This prescription

C. T. WU

can be easily checked with the aid of Chan's
explicit formulas4-6 for » = 3 and n = 4, or with
the form written down by Bardakci and Ruegg??.

In a following paper,we shall study the structure
of the generalized Veneziano amplitudes from the
point of view of group representations.
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An attempt is made to generalize a result of Vilenkin that the beta function (being adopted as Veneziano
formula for four-particle processes) appears as the kernel (in the integral) of the irreducible represen-
tation (in the Mellin-transformed space) of the group of 2 X 2 unimodular triangular matrices. It is shown
that with a modified multiplier in the Gel’fand-Naimark prescription for the representation of the group of
(n + 1) X (n + 1) unimodular triangular matrices,the (tree-graph) generalized Veneziano amplitude for

(n + 3)-particle processes is recovered by a limiting procedure.

1. INTRODUCTION

In a previous paper,l we discussed the functional
structure of the (n + 3)-point (tree-graph) Vene-
ziano amplitudes viewed as the boundary values
of a new class of generalized hypergeometric
functions having the property that they are the
Radon transforms of products of linear forms in
an (n + 1)-dimensional space.

In this paper,we shall investigate possible group
theoretic content of the generalized Veneziano
amplitudes.

Many special functions have acquired a new level
of respectability as well as a deeper vaison d'etre
when it can be shown that a given function

occurs naturally in the representation theory of
certain groups, even though this connection is in
general not one to one. While it is by now more
or less a standard textbook exercise2~5 in going
from the representations of known groups to known
functions,® the converse route (namely, given the
function, finding the group) is obviously much
more hazardous. Nevertheless,we venture to

point out that, in the mathematical literature, cer-
tain results exist for the connection between the
representations of the group SL(2,R) and the
Gauss hypergeometric function ,F,(a,b;c;x) and,
in particular, the special case of triangular mat-
rices of SL(2,R) yields the beta function as the
kernel.?

The apparent interest in the Veneziano model8
perhaps justifies an attempt to generalize the
Vilenkin result for the beta function.

A straightforward application of the Gel’fand—
Naimark scheme? for the irreducible representa-
tions of (z + 1) X (n + 1) unimodular triangular
matrices will yield in general a class ?f functions
different from the class of functions F*’ discussed
in Paper I. The differences generally are twofold.
(i) In one aspect, the multiplier in the Gel’fand-
Naimark scheme, which consists of the products
of n principal minors!® A, ..., (#=2,...,

n + 1), is found to be insufficient in generating all
the desired tree-graph links in the Veneziano
formula. One can remedy this if one modifies the



2036 ALFRED
where the parameters [analogs of the a;; in Eq.

(3)] entering in V,. 3 are combinations of the a's,
b's,and c¢'s.

To be precise, the suggested change of variables for

V,. 3 consists of letting
13

xk=lI}1ul,, k=1,2,...,n,

(9)

where the u's are the usual integration variables
476,911 gyccessively associated with the internal
lines of a multiperipheral graph. This prescription

C. T. WU

can be easily checked with the aid of Chan's
explicit formulas4-6 for » = 3 and n = 4, or with
the form written down by Bardakci and Ruegg??.

In a following paper,we shall study the structure
of the generalized Veneziano amplitudes from the
point of view of group representations.

ACKNOWLEDGEMENT

This work owes its origin to the author's unavoid-
able exposure to the Veneziano disease during his
stay at CERN in 1969.

»

Work supported in part by the U.S. Office of Naval Research,
under Contract No.NONR-1224(59).

G. Veneziano, Nuovo Cimento 57A, 190 (1968).

K.Bardakei and H.Ruegg, Phys. Letters 28B, 242 (1968).

M, A.Virasoro, Phys. Letters 22,37 (1969).

H.-M. Chan, Phys. Letters 28B, 425 (1969).

H.-M.Chan and S. T. Tsou, CERN Preprint TH 969, 1968
(unpublished).

H.-M. Chan and S.T. Tsou, Phys. Letters 28B, 485 (1969).

J. L. Hopkinson and E. Plahte, Phys, Letters 28B, 489 (1969).
A, Bialas and S. Pokorski, Nucl. Phys. B10, 399 (1969).

C.L. Goebel and B, Sakita, Phys. Rev, Letters 22,259 (1969).

[ L g

0o,

10 7. Koba and H. B, Nielson, Nucl. Phys. B12, 517 (1969).

11 K, Bardakci and H, Ruegg, Phys.Rev.181,1884 (1969).

12 See, e.g.,H.-M. Chan, 'The Generalized Veneziano Model'
review paper presented at the Royal Society Meeting on
Duality Reggeons and Resonances in Elementary Particle
Processes, 1969, CERN Preprint TH 1057, 1969.

13 1, M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin, Generalized
Functions, (Academic, New York, 1966), Vol. V.

14 M, A, Virasoro, Phys. Rev. 177, 2309 (1969).

15 §, Mandelstam, Phys, Rev. 183, 1374 (1969); Phys.Rev.D 1,
1720 (1970).

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 12, NUMBER 10

OCTOBER 1971

Structure of the Generalized Veneziano Amplitudes.* 1l. Possible Group Theoretic Content

Alfred C.T. Wu
Department of Physics, University of Michigan, Ann Arbor, Michigan
(Received 31 August 1970)

An attempt is made to generalize a result of Vilenkin that the beta function (being adopted as Veneziano
formula for four-particle processes) appears as the kernel (in the integral) of the irreducible represen-
tation (in the Mellin-transformed space) of the group of 2 X 2 unimodular triangular matrices. It is shown
that with a modified multiplier in the Gel’fand-Naimark prescription for the representation of the group of
(n + 1) X (n + 1) unimodular triangular matrices,the (tree-graph) generalized Veneziano amplitude for

(n + 3)-particle processes is recovered by a limiting procedure.

1. INTRODUCTION

In a previous paper,l we discussed the functional
structure of the (n + 3)-point (tree-graph) Vene-
ziano amplitudes viewed as the boundary values
of a new class of generalized hypergeometric
functions having the property that they are the
Radon transforms of products of linear forms in
an (n + 1)-dimensional space.

In this paper,we shall investigate possible group
theoretic content of the generalized Veneziano
amplitudes.

Many special functions have acquired a new level
of respectability as well as a deeper vaison d'etre
when it can be shown that a given function

occurs naturally in the representation theory of
certain groups, even though this connection is in
general not one to one. While it is by now more
or less a standard textbook exercise2~5 in going
from the representations of known groups to known
functions,® the converse route (namely, given the
function, finding the group) is obviously much
more hazardous. Nevertheless,we venture to

point out that, in the mathematical literature, cer-
tain results exist for the connection between the
representations of the group SL(2,R) and the
Gauss hypergeometric function ,F,(a,b;c;x) and,
in particular, the special case of triangular mat-
rices of SL(2,R) yields the beta function as the
kernel.?

The apparent interest in the Veneziano model8
perhaps justifies an attempt to generalize the
Vilenkin result for the beta function.

A straightforward application of the Gel’fand—
Naimark scheme? for the irreducible representa-
tions of (z + 1) X (n + 1) unimodular triangular
matrices will yield in general a class ?f functions
different from the class of functions F*’ discussed
in Paper I. The differences generally are twofold.
(i) In one aspect, the multiplier in the Gel’fand-
Naimark scheme, which consists of the products
of n principal minors!® A, ..., (#=2,...,

n + 1), is found to be insufficient in generating all
the desired tree-graph links in the Veneziano
formula. One can remedy this if one modifies the



ON THE GENERALIZED VENEZIANO AMPLITUDES. II

multiplier by a product of 3(n — 1)(n — 2) uniquely
defined cofactors. As an example,the case n = 4
will call for factors of A,;, 45,,and A, 4, in addi-
tion to those A, 4,5, 8445, 445, 2and Ay inherent in
the Gel’fand-Naimark scheme. (ii) On the other
hand, the group of (n + 1) X (# + 1) unimodular
triangular matrices for n > 2 are actually richer
than necessary for generating the Veneziano
functions. To specialize,we only need the non-

serve the group property,we cannot arbitrarily
set those unwanted elements directly equal to zero
since this special subset of triangular matrices

is not closed under group multiplication. So, one
can only approach the desired result by letting
some parameters vanish in the limit sense.

Under these two provisos, the tree-graph
generalized Veneziano functions are recovered
from representations of (n + 1) X (z + 1) uni-
modular triangular matrices.

For the sake of readability, the essential steps
in the establishment? of the connection between
the beta function and the representation of the

2 X 2 unimodular triangular matrices are sum-
marized in Sec.2. This will serve as a prototype
upon which our generalization will be based. We
hope that by going over this simplest case, our
generalization to the higher-rank case will not
be obscured by the mounting algebraic complexi-
ties. To keep the notation straight, we devoted
Sec. 3 to setting up the Gel’fand—-Naimark machi-
nery for the representations of (n + 1) X (z + 1)
unimodular matrices. A modified multiplier will
be defined and the representation operator will
be carried into the Mellin-transformed space.

A limiting procedure will be stated to get to the
generalized Veneziano function,

2. BETA FUNCTION AND GROUP OF 2 X 2
UNIMODULAR TRIANGULAR MATRICES

The essential steps in the derivation are as
follows:7
A. Irreducible Representation of SL(2, R)

Step 1: The representation is to be realized
in the space of (infinitely differentiable, square-
integrable) homogeneous functions of degree p.
A signature factor €(x) is included. On account
of homogeneity, we have, for

_(gu g12>
g—g21 822/’

T f(2) = 18132 + &35 P[elg 22 + 855)]™

&£112 1821
£12%2 t8&33)°

(1)

where €(x) is a short-hand notation for x/ {x].
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Note that the representation is unitary for pure
imaginary p.

Step 2: (a) Carry the representation intc
the Mellin-transformed space. It will be con-
venient to separate out the support properties
over the positive and negative half-spaces:

o~ o -1
Tgf*(s) = j_oo dzzi 'g]_zz +g22|P

m (8117 Y &,

X [elg102 +820)] f|——), 2

[elgy2 22)] (glzz +g22> (2)
where

Fus) = [ dz 27 (), (3)

2z = 6(z)z°, [8(z) is the usual step function],
(4a)
2 = 6(— 2)(— 2)°. (4b)

(b) Re-expressing f(x) in terms of £.(f) by making
an inverse Mellin transform and interchanging the
order of integration which can be justified, we get,
by writing in the matrix form,

7, (fj(s)) _ j.cfrtoo ot (K++ K+_>(j~j(t-) G
f-(s) T\ E N\

where the kernel is given by

1 (= -1
Kﬁ:t(s’t;p,m;g) '—:m -/—oo dZZi

-t
8118 t &2
x( lgy 22 +g22'p[€(g122+g22)]m-
8122 T &322/ (6)

Step 3: lIdentification: For the case of 2 X 2
Hermitian or unitary matrices, the kernel is
readily recognized as the Gauss hypergeometric
function ,F,.

B. The Special Case of Triangular Matrices

In this case, the kernel is reduced to the beta
function, Take

()

K., (s, t;0;8) = (@ni)™1 [ ” dzzsrL(1 + az)pt

= (@mi))"latsp(s —t,—p —s). (8)

3. REPRESENTATIONS OF (r + 1) X (n + 1) UNI-
MODULAR TRIANGULAR MATRICES

We now generalize the discussion of Sec. 2 to the
case of general 7.

Step 1: The representation will be realized
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in the space of (infinitely differentiable, square-
integrable) functions f(z,;) such that

T f(z2;;) = a@)f(gij ), (9)

where T, is the representation operator corres-
ponding to the group element g. The set of
variables z;;,¢ > j, in general are zx(n + 1) in
number and are cast in the form of a triangular
matrix with z,; = 1 along the diagonal:

: O
2y, 1

239 1

* . (10)

241 erlm 1

The matrix g in (9) is defined as
g =zg. (11)

The variables z; ; on the right-hand side of (9)
are given as follows:

&; Sim "7 Sian
vy Eprm "7 Snimv
~ —1 .
2 =8| - . -], (12)
gn+]_j gn+1,i+1 e gn+1’n+l
where
i Eim * &is
gi*li 1 "7 s
Bipaes = ¢ . s (13)
Esi s " Bsys
i.e.,A;,,...s is a short-hand notation for the

prmc1pa1 mmor of matrix g starting from the
(ii)th element and ending with the (ss)th element.10

For the multiplier a(g) in (9), we choose the
following expression:

-~ n ]*’1 Pi; "‘ij
a@) =1 H2|Aii+1...j+1| e e g

im0 i-
= (14)

with the understanding that
Anﬂ 7+l = gn*l n+l * (15)

The block of terms with 7 = # corresponds to the
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multiplier of Gel’fand—Naimark,? while the pre-
sence of the remainder factors from j = 2 to

j = n— 1 may be interpreted as due to the process
of cyclic completion.

Step 2: With nearly the same procedure as
carried out in Sec.2,we cast now the representa-
tion in the Mellin-transformed space. For the
eventual purpose we have in mind, we shall only
consider the special case by setting

2..=0 if

y i > +1, (16)

Thus there are altogether = variables z,, ;.
We get the analog of Eq.(2):

)= j_:jﬁ dz
i=1

n
X o YSemgTL eey oo
0 (20,0107 a@)f (2 ).

Tgf* s e (Si+]_.i i+ §
(17)
Expressing f in terms of the f gives

Tef....

)
X Z; KE:*)

(8310) = fc ::f H Alpry

(tt) S t,g)f (18)

f+1 J)’
where

(n)
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L2 A

271’1) i=1

Ny )2 @)

1

||I

S541 4-
dzi+1.i I;;I(zi"’l.i)tt 1,i

X

(19)

Step 3: Identification: To specialize, we take g
to be triangular:
gy =0 for i>j, g;=1 (20)

Our main proposition will be the following:

Lemma: In the 1im}t of vanishing g,; for
j > i+ 1,the kernel K.”’ ., given by (19) reduces
to the (z + 3)-point Venez1ano function of the
form!
1 n
V,.5 = const f'b'f ifil dx;

n

X I (25 (1 —x,)°%] T (x; —x,) 4. (21)
k i<j

Proof: We shall make the technical assumption
that the limit g,; = 0 for j > i + 1 can be taken
inside the mtegral (19). When that is the case, the
matrix g of (11) takes the form of (22), where a
superscript 0 denotes the limit when appropriate:
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1 (> 1
Zy, 1

All the minors A;?_ ... of £0 can be evaluated in a
straightforward manner. The essential step in-
volved is showing that, by appropriate change of
variables, all the factors in (21) are recovered
from (19).

We find the following sequence of variable trans-
formations convenient: (i) First scale z,,; ; by
g #p,1.6.,1et

Zigi=Z2umi&ipy L=100m (23)
(ii) Let
2l =0;/(1—0v), =1, n (24)
The range for v, is obviously(0, ). (iii) Let
x4 =1 ~vz(1—vl),
x5 =1—0,,
X3 =%XyU3,
x4 = %3[1 —va (1 —vy)]7h,
e 20
Xm=%3834 8%, w1/ %56, .mus
5<m < n (25)

oo
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1 813
1
. . (22)
'gnn+1

i

We note in passing that the inverse transformations
from x to v can all be expressed in terms of the an-
harmonic ratio of four points:

vy, = R(xl: 1;x2, °°);

v, = R(xzy 0,1, OO);

Uz = R(x3;x2; 0, »),

vy = R(x4,x2,x3, 0),
for S5sms<sn

vm:R(xm’xZ’xm-l’xm—Z) ?

(26)
where

() (5 8
(&, — &) (B, — &)

is the so-called anharmonic ratio of four points.11

R(£,,85,83,84)

27)

It is then a simple matter to verify that the set

of factors in (19) is mapped into the set of factors
in (21). The coefficients a's, b's, ¢'s in (21) are
expressible as linear combination of the s's, I's
and p's in (19).
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The quantal problem of a particle interacting in one dimension with an external time-dependent quad-
ratic potential and a constant inverse square potential is exactly solved. The solutions are found both
in the Schriddinger representation, by using a generating function or a time-dependent raising operator,
and in the Heisenberg picture. They depend only on the solution of the classical harmonic oscillator.
The generalizations to the n-dimensional problem and to the problem of N particles in one dimension,
interacting pairwise via a quadratic time-dependent potential and a constant inverse square potential,

are finally sketched.

1., INTRODUCTION

It is well known that the time-dependent Schro-
dinger equation only in few cases can be exactly
solved, so that usually approximation methods are
needed. An exact solution can then provide, as
well as a possible model for physical phenomena,

a significiant test for these approximation methods.

The harmonic oscillator with variable frequency is
one of these exactly solvable problems largely
studied for its great physical interest and its rela-
tive simplicity.1™3,

In this paper we consider a perturbed harmonic
oscillator with a time-dependent frequency that

is the one-dimensional problem of a particle inter-
acting with an external quadratic time-~dependent
potential and a constant inversely guadratic poten-
tial, We give the explicit solutions of the time-de-
pendent Schrddinger equation that at £ = 0 repro-
duce the eigenfunctions of the stationary problem
(i.e., the case of a constant strength of the force).
So the general solution is found. It is shown that
it depends only on the solution of the classical im-
perturbed oscillator.

In Sec.2 the problem is solved by introducing a time
dependent generating function. In Sec.3 a raising
operator is found for the stationary problem, and
its generalization to the time~dependent case is
given, In Sec. 4 the Heisenberg representation is
studied. Finally in Sec. 5 the previous results are
used to sketch the solutions of the n-dimensional
problem and of the more complicated problem of
N particles in one dimension interacting pairwise
via the sum of a time-dependent quadratic poten-
tial and a constant inversely quadratic potential.

2. SOLUTION VIA THE GENERATING
FUNCTION METHOD

Let the Hamiltonian of the system be

H(t) = P2 /2m + 3mw2(H)x2 + g/x2, (2.1)

where w(t) is a regular function of the time and g
is a constant g > — #%2/8m to prevent collapse.4

The time-dependent Schrddinger equation is

(hz 92

.. 0
TR A Uis %)w(x, 1) =il g3 Wi, b).

x
(2.2)

We shall confine ourselves in the sector x = 0; in
fact, the singular nature of the g/x2 term forbids
any transition between the sectors x > 0 and x < 0,
so that the solution can be extended to the x < 0
region without any further condition of continuity.

We want to find the solutions ¥, (x, #) of Eq.(2.2)
which reproduce at { = 0 solutions of the station-
ary Schridinger equation [w(0) = w,]:

+ Imw2x? + fg)é(x) =Ed(x). (2.3)

72 32
~ 2m oxZ
The solutions of Eq. (2. 3) are®

4mw0 1/4 r\(n + 1) 1./2 mwo (2a+1)/4
&%) = | —— 02
n Tla+n+1) |3

_ mwy a(mwox2>
X exp< —'—277: x> Ln —-—ﬁ ) (2. 4)
E,=hwy2n +a+ 1), (2.5)
where
a =101+ 8mg/n2) 2, (2. 6)

We introduce the generating function

< (T(a + n + i)\t/2 n
G(Z,x, t) = nz=o <—£r—(n—_*—_—1%> \I‘n(x, t)Z y (2. 7)

where z is a subsidiary variable.
G(z,x, t) satisfies Eq. (2. 2) with initial conditions
[from Eq. (2. 4)]

4mw0>1/4 (mwo )(2a+1)/4
) n

G(z,x,0) =(
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mw, (z + 1)) —(a+1)
- x2____ — 2.8
Xexp( 5 =) (1—2) (2. 8)
We make the ansatz
G(z,%, ) = Aaz, he* L2 explpz, 2], (2.9)
where
A = (22 (muwy/m) 2, (2.10)

Inserting Eq.(2.9) in (2. 2) and in (2, 8), we obtain

3z, t) .2 po _im m‘*’o‘”l
20 Mg w2n), plz,0) =g 7
(2.11)
@_Lattﬂ =i 2 (a + Va(z, (2, 1),
a(z,0) = (1 — z)" @D, (2.12)

If we define n(¢) = | n(¢) | exp[iy(¢)] as the solution
of the classical equation of motion

fi(f) + w2(On() =0, n(0) =1, 7(0) =
from Eqs (2.11) and (2. 12) we obtain

afz, 1) = [n(t)] Y exp[2iv(t) (a + 1)]
{1 -z exp[2iy(t)]} 47,

— iwg,(2.13)

(2.14)

B(t) = im (ﬂ%% — 2ip(){1 — z eXp[Zi'y(t)]}“l). (2.15)
Thus

G(Z,x, t) =Ax(2a+1/2)[ (t)]-(a+1)(1 _ s)—(a +1)
X exp(zm 7 t()tx + 2ip(t) (@ + 1)

+ ')'/(t)xz) exp (- 2 o2 (2.16)

_Ss
s—1p

We have thereby obtained an expression of
G(z, x, t) formally similar to Eq. (2. 8); hence from
Eq. (2.7) we have

I'in +1)

bbb = [2<mﬁw0> Mr(a Fn ot 1)] ) [T

K @ar /2 expl:ziy(t)(a +n+1)

where s = z exp[2iy(f)].

X 5x2 (2‘—;%- + y'(t)> JLZ <~ ’”Tx?«;(t)) . (2.17)
Using the relation [n(f)|2y(t) = — w,, one can

verify that the solutions ¥, (x,t) of Eq. (2.17) re-
duce, for g = 0, to the solutions of the time-depen-
dent harmonic oscillator ¥,,.,(x,?) given in Ref. 2.
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3. RAISING OPERATOR

The linearity of the energy spectrum of the sta-
tionary case suggests the existence of a raising
operator A*, obeying the equation

[H(0), AY] = (AE)A*Y, [H(0),A] =— (AE)A. (3.1)
A solution of this equation is given by
At = gtat + g/hw0x27 (3.2)

where at is the raising operator of the harmonic
oscillator:

+ = z'(Zmﬁwo)'l/Z (- 4 5% + mwox). (3.3)

The corresponding variation in energy is given by
AE = 2hw,. 3.4)

The energy spectrum is lower bounded, and so we
must find the eigenfunctions ¥, (x) of the stationary
problem for which the equation

AY,(x) =0

holds.

The corresponding eigenvalues are easily found by
the relation

(A (x), A (%))
= (Y (x), ATAYy (1))

(3.5)

(e[ (f-3) 40
E2
XY (X)): L3 _._Zfi +_§_28_Wi=0
K p2w2 Foy 4 g2 ’
0 (3.6)

from which the ground-state energy results:

E,=Nwy[l + 3(1 + 8gm/A2)1/2], (3.7
where only the upper sign is allowed, as we can
see at glance from Eq. (3. 7).

Once Y, (x) is determined, the whole set of eigen-
functions can be built up by means of the operator
At

To solve now the time-dependent problem, we seek,
in analogy with the method of Ref.3 concerning the
pure harmonic oscillator, a time~-dependent opera-

tor A*(x,d/9x,¢t) characterized by the following
properties:

(a) Operating on a solution ¥(x, t) of the time-
dependent Schridinger equation, it gives another
solution ¥ (x,t) of the same equation.

(b) At ¢ = 0 it reduces to the operator A* defined
by Eq. (3. 2).

It is easily proved that .Z*(x, 3/9x,t) must satisfy
the equation3
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BA

[H(), A*] = in °4-, (3.8)

with the initial conditions
A’+G€ i_ 0) _A+
) s - .
The operator obtained by the following ansatz,

+ Ez(t)x>2 + Ex32(t)’

satisfies Eqs. (3.8) and (3.9),if E; (t), E,(f),and
E;(t) are solutions of the simple equations

(3.9)

At = (El(t) - (3.10)

E, () + w2()E,() = 0,
E,(t) = —i(m/)E, (),
Ey(f) = — (2m/h2)gE, (1)2.

E;(0) = — ifi/2mwy)1/2,
E,(0) = i(mw,/2)1/2,
(3.11)

The time dependence of any given initial state can
be obtained once we know the solution y;(x, £},
which for { = 0 reduces to the ground-state eigen-
function. It can be observed that

A( V35 >%(x £) =0 (3.12)

holds, which is an ordinary differential equation in
the variable x with time-dependent coefficients.
The solution Y (x,{) is then found by solving Eq.
(3.12), and a complete set of solutions of Eq. (2. 2)
can be obtained by multiple applications of the
time-dependent raising operator A*(x,3/dx,t).

4. HEISENBERG REPRESENTATION

In the Heisenberg representation we are interested
at the time evolution of the operators # {t) and P(t);
it is convenient to study first the evolution of three
operators B(t), C(t),and D(t) characterized by the
initial conditions

Boy=L2 4+ &
B(0) = 5 + oL (4.1)
) = x2, (4.2)
D) =xp +px. (4.3)
Starting from the Heisenberg equations
mJ) [#¢), BO),
—ih ——U = (A1), C0), (4.9)

i %tif) = [B¢), D),

we obtain the system of differential linear equa-
tions:

P. CAMIZ,

ET AL.

@__w_zlgﬁt @_ QQ)
dat 2 ®, dt  — wm ° (4. 5)
g—tﬁ(z) =4B(t) - 2mw2()C().

We make the ansatz that B(t), C(f), and D(!) can be
expressed as a linear combination (w1th time-de-
pendent coefficients) of the operators B(0), C(0),
D(0); comparing then separately in Eq. (4. 5) the
coefficients of the three operators B(0), €(0), and
D(O) we obtain a set of nine ordinary linear differ-
ential equations, which give a link between the nine
coefficients. In conclusion we can write the solu-
tions of Eq. (4. 5) in the form

B() =(1/w3) /2 (OB(0) + $m3(t)C(0)
+ (1/wg) Im [£3(1)]D(0),

C(t) = 2/wim)
+ (2/mwg) Im[/3(1)1D(0),

Dty = (4/wd) f, ()1 (1)B(O)
+ 2mf 5 (1)f, (VC(0) + (4/wg) Im[f4(t)f5(H1D(0)

2(1)B(0) + r3()C(0) (4.6)

where the f (f)s satisfy the classical oscillator
equation

7,0 + w20, =0, @.7
with the initial conditions
[0 =0, f,0 =1, F30)=1, f,(0)=w,
f300) =0,  £(0) = }iwg. (4.8)

Now it is a trivial matter to express x(¢) and 5 (/)
in terms of B(t) and D(¢):

p@) = [D@t) —in)[2x

and this achieves our task.

R2(t) = C(1), )1 (4.9)

5. GENERALIZATIONS

(a) Let us consider a particle moving in a potential

Vir) = tmw2@)rl2 + g/lrl2 (5.1)
in an #-dimensional space. By expanding the wave-
function in terms of hyperspherical harmonics, the
problem is immediately reduced to the angular
equation of a free particle and to a radial equation
of the form of (2. 2), where the effective coupling
constant is now the sum of g plus 1/2m times the
eigenvalue of the squared total hyperangular
momentum.

(b) Letus consider Nidentical particles inonedimen-
sion interacting pairwise via an inverse square
potential and a quadratic time-dependent potential:

V= tmw2@t) (x; —x)2 + glx, —x,)"2. (5.2)

iy
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The stationary problem has been studied by Calo-
gero,8 who gave the whole set of eigenvalues and
the characterization of the eigenfunctions. Intro-
ducing the mean square radius 7,

i-1

(;

y2 = (5.3)

Mz

1 2
j\— —Xj) ]

-
g._n

=2 j=

we separate the problem into an angular part inde-
pendent on w(f) and a radial part of the form of
Eq. (2. 2), where the effective coupling constant, as
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in the previous case, depends on the eigenvalues of
an operator acting only on the *angular” variables.

The problems (a) and (b) can then be solved by
using the generating function method.

The raising operator method can be, in principle,
applied to both problems, but the stationary prob-
lems are not yet solved by this method, owing to
their intrinsic complications. The research for the
complete algebra of the raising operators in case
(b), in particular, for the three-body probiem

is in progress.,
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We give precise conditions sufficient to guarantee that an infinite system will act as a thermal reservoir
for any of its finite parts. In particular we show that these conditions are satisfied for the X-Y model.
Further results on the ergodic behavior and general relaxation properties of the systems considered are
also obtained directly from the C*-algebraic methods used in the main body of the paper.

1. HEURISTIC STATEMENT OF THE PROBLEM

A physical system is ordinarily defined by the
attribution of a Hamiltonian H(Q2) to every finite
piece Z(R) of it; here © denotes the spatial exten-
sion of Z(02).

Given Z(R), we cut out of it a piece Z(Q ) and de-
note by Z(Q\,) the remaining part of Z(Q). One
would presume, according to the phenomenological
laws of thermodynamics, that if Q is very large
compared to Q,,then Z(Q\Q ) serves as a thermal
resevvotr for Z(Q ) The traditional approach of
statistical mechamcs suggests that the mechanical
description of this situation will be mathematically
simpler (and thus more efficient) if the limit of
large systems is taken. To this effect, we shall
first suppose that Z(Q,) is of finite extent and that
Z(R) is of infinite extent in all directions around
§2,. We shall then discuss briefly the thermodyna-
mical consequences of letting & ; become very
large.

To formulate more specifically the problem to
which we want to address ourselves, we consider
an initial situation where (i) the system Z(Q,), cut
off from the rest of £(R),is in the canonical equili-
brium state cpg 285 corresponding to H(R,) and the
natural temperature B, and (ii) the system Z(Q)
extends over the entlre physical space and Z(2\Q,),
cut off from Z(Q,), is in the state ¢, , obtained as
the thermodynamical limit (as becomes infinite)
of the states ¢,ng 5, which are defined as the
canonical equilibrium states computed from
H@QN\Q,) for the natural temperature 8 =3,. One
would then expect that this state of the composite
system “relaxes” to the state ¢ s«g,p Obtained as
the thermodynamical limit of the canonical equili-
brium states ¢ ;, ; computed from H(Q’), these
Hamiltonians taking into account the interactions
between Z(2,) and Z(Q\2).

On a more modest level, one would at least expect
that the time average (as well as the space average)
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between Z(2,) and Z(Q\2).

On a more modest level, one would at least expect
that the time average (as well as the space average)
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of the initial state described above is equal to
¢S#R B

If, furthermore, 2 is taken to be large enough, one
would expect that, well inside Q, the system Z(Q,)
would, in the same sense as above, approach i/s
own thermal equilibrium for the natural tempera-
ture S.

These expected properties are clearly of an ergo-
dic character. Pathological cases where they
would not be satisfied are likely to occur as well.
The question to which we want to address our-
selves is rather whether one can prove explicitly
(i.e., without uncontrollable approximations or un-
warranted statistical assumptions) that there are
mechanical models that do exhibit these proper-
ties.

We shall present such a proof. Some related ergo-
dic properties will be proven as well, along the
principal line of argument. We shall then touch
upon the question of an actual (i.e.,pointwise in
time) relaxation to equilibrium. The latter prob-
lem is that of ultimate physical interest. Some re-
sults are already known in this connection.1:2 How-
ever, information on the latter type of problem is
usually obtained through detailed computations
which are restricted to the models analyzed (e.g.,
one makes use of the precise behavior of the exci-
tation spectrum as the thermodynamical limit is
taken). In contrast,the results presented in this
paper are obtained by methods of a more general
character, and as such, stand a better chance to ex-
tend further than the details specific to the models
treated.

2. THE X-Y MODEL

We consider a one-dimensional lattice-spin sys-
tem. To every site i in Z is attached a spin-3
particle o;, and hence a copy &, of the C*-algebra
of the 2 x 2 matrices. The observables attached
to each finite region Qin Zare therefore the Her-

mitian elements of the C*-algebra 39:1@9 @,, and

the C*-algebra of quasilocal observables on the
infinite lattice is the C*inductive limit:

G=QU GQ.

cz

To every interval [a,b] = {i€ Zla <i < b} of Z we

attribute the Hamiltonian

Ho .=— = + E
{a.8) El (A +80jo5y + (1 —8) 005y,
a=.

the time evolution o, , (¢) defined by
@y 5 () [A] = exp(— iH, 5 )A exp(iH |, ()
forall A€ Q ),

and the canonical equilibrium state ¢, , defined
by

(¢[a,b] jA) = Tr[exP(_ BH[a,b])A]/Tr[exP(_ BH{,, b])]
for all A ¢ a[a’b] .

G. G. EMC H,

C. RADIN

From the fact that the interaction from which the
Hamiltonian H, ,) is built is of finite range, we
know3,4 that a time evolution and a Gibbs state can
be naturally defined for the infinite system des-
cribed by @. Specifically there exists a one-para-
meter, strongly continuous group of automorphisms
a(t) of @ and a state ¢ on @ such that, for every
finite R in Zand A € @ ,

odim e [A] - ag, 0 (4]l = o,

lim © I<¢;A>—<¢[a,b];A>’ =0.

a-»-og, b+
Furthermore, ¢ is uniformly clustering, i.e., for

every A € @ and € > 0 there exists a finite N such
that

[{¢; AB) — (¢; A)(¢; B)| < €l Bl

for all B in @,y yyy- Moreover, ¢ satisfies the
KMS boundary condition with respect to a(t) (for
definitions see Ref.5). As a consequence® of the
uniform clustering of ¢, ¢ is? extremal with res-
pect to the KMS condition; so ¥ KMS and ¥ < A¢
together imply ¥ = ¢.

We now define the automorphism y of @ by means
of

X
ylofl=0};v[0; ] =—0};9[0]]=— 0]

for all { in Z. Let us denote by &, the C*subalge-
bra of @ consisting of its “even” elements,i.e.,

@, = {A < Gl,[4] = 4}.

Clearly H, , belongs to@®,. As a consequence,y
commutes with each @ o(f) and hence with{a ()¢ € R};
also, ¢ is even (i.e., {(¢;y[A] = (¢;A) for all A ¢
Q). Hence ¢ is determined by its restriction ¢,
to@,, and o (f) maps @, onto itself. Let o, (f) de-
note the restriction of a(f) to @,. From the corres-
ponding properties of ¢,one concludes immediately
that ¢, is KMS with respect to a,(¢) and is uni-
formly clustering on @,. One then checks that the
arguments of Ref. 6, Properties 2.2 and 2. 3, go
through for @, and hence one concludes that ¢, is
extremal KMS on @, .

The arguments developed so far apply to any one~
dimensional lattice-spin system with even, finite-
range, lattice-invariant interaction. We now use a
specific ergodic property of the X-Y model. As is
well known, the Jordan—-Wigner transformation?
brings Hy, ,, into a form which is quadratic in
Fermi operators. It can be seen that in this form
the interaction satisfies the assumptions of theo-
rem II in Ref. 8, so that {a, (t)/# € R} acts as a
strongly asymptotically Abelian group of automor-
phisms of @,,i.e.,

lli‘m I[A4,e,¢)[B]]| =0 forall A,BinQ,.
t{-roc0

Therefore, if 7 is any invariant mean on R, we have

1$¢.; C*[4, e, ()[B]IC) =0
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for all A,B and C in G.,. Consequently,® the state
¢, on @, is not only extremal KMS, but also extre-
mal time invariant. Hence ¥, < x¢, and ¥, time
invariant together imply ¥, = ¢,. In particular,

if Y is even on @, time invariant, and satisfies ¢ <
A¢,we can conclude that ¥ = ¢,a fact that we shall
use repeatedly in the next section.

3. ERGODIC BEHAVIOR

Let [c,d] be a finite interval in Z. For each finite
interval {¢,b]in Z suchthata <c —land b >d +
1, we define

C
Hy = Hy eon VP Heay T Hgoyoy = Hg oy 7,

with V independent of a and . We then define the
state ¢, 5 on G, 5 by

(g5 573 4) = Trlexp(— BHy, ,))AY Tr(~ BHy, )

Using Araki's proofs,4 it has been shownl? that a
state ¢ exists on & such that

[{p%;4)— (¢ ;A4 =0

lim L

a—-00, bs+0
for all A in @, and all finite Q,. Hence ¢° can be
interpreted as the Gibbs state corresponding to the
modified infinite chain obtained by cutting off the
interaction between ¢ — 1 and ¢ and between d and
d + 1. Moreover, there exists10 a real constant A
such that ¢° < A¢. Let us now write

G5 =Cp.q, Gpr =0 a
Since @ is isomorphicl! to @, ® @, and since
¢;(resp. ¢§), defined as the restriction of ¢¢ to
Q .(resp. Q,), is the Gibbs state of the system
z{2\[c, d])fresp. Z({e, d])) for the temperature 8,
we have ¢° = ¢5 ® ¢5. Since ¢ is faithful on
Qs (i.e.,(¢g; A"A) = 0 implies A = 0) and since
@ is finite dimensional, there exists a real con-
stant A ¢ depending only on ¢ such that ¥5 <Xg¢j
for all states Y5 on@g. It then follows easily that

YEPg® dp <Agh° < AP

for all ¥ on Qa g+ Since ¢ is invariant with respect
to {a ()|t ¢ R}, we have further that, for any in-
variant mean 7 on R, the state nY defined by

(mp; A) = ni;ale) [AD

also satisfies 7Y < AgA¢. In particular, (my), <
Asro,. Since ¢, is extremal time invariant,

(M), = ¢,. Now suppose that y; is even on Qg and
therefore that ¢ is even on @. Since y commutes
with {a(t)|f ¢ R}, ny is also even. We have thus
proven that, for any even state ¥ on G and any
invariant mean n on R,

n(d/s ® (t’;z) = (P

as states on the whole algebra @. Incidentally,
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s ® ¢%);A) can be computed to be

.1 /T
Jim = [ ® o550 [ADadt.
We emphasize in particular that for any natural
temperature g, the corresponding canonical equi-

librium state ¢ 8, on G is even. Consequently,
for any natural temperaturescﬁo and f,the tirgle
average of the initial state ¢, = ¢5 5 ® P 5 On
the cut system S + R is equal%o the canonical equi-
librium state ¢, of the joint system for the tem-
perature $, independently of 3,. (Since ¢, is?
extremal lattice invariant, the same result using
space averages is easy to prove.)

Hence the first ergodic property mentjoned in Sec.
1 is given a precise meaning, and is proven to hold
for the model considered: The time average {and
space average) of ¢ , coincides with ¢ for all
finite temperatures gy and 8.

1t has been shownl© that the Gibbs state ¢, corres-
ponding to a situation where H[a' p1 is modified by

a certain type of perturbation, exists and satisfies
¥ < x¢. This is in particular the case for the X-Y
model and any local, fixed perturbation. If these
perturbations are, moreover, even {(such as

=— X Bo;
iele, dj
or ‘% vy
Z) [(1 + Ci)ui 01 + (1 - Ci)oi 0i+1])’

iele,d)

and switched off at { = 0,then we notice that an
argument analogous to that developed above shows
that the time average over positive times (as well
as the space average) of the corresponding Gibbs
states ¥ coincides with ¢.

We now turn to the case where 2, can be taken to
be very large (but still finite). Let &, be any finite
interval in Z. We know that on &, and hence a
Jortiori on Qg , ¢, converges to ¢ in the weak™-
topology as Q tends to infinity. Since 2, is finite,
(% is a finite-dimensional linear space,and so

its weak*- and norm-topologies coincide. Conse-
quently, given € > 0 and ©,, there exists a finite
2, 2 Q, such that for all @ 2 Q,

[; 4) — (9g; A < e Al

for all A in G, andall states ¥ considered above.
Hence we can conclude that well inside Q, {namely
in 91) nY is as close as one wants to the canonical
equilibrium of Z(Q2,) for the temperature 8.

4. RELAXATION PROPERTIES

To prove ¢ = ¢, we used a very much weakened

form of the strong asymptotic Abelian character of

the action of {a,(f)[# € R} on @, namely
né¢,;C*[A,a () [B]IC)=0

for all A,B and C in @, and for the restriction
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¢, of the Gibbs state ¢ to @,. The strong asymp-
totic Abelian character of the evolution is evi-
dently much more stringent a condition (and, as
such, is less likely to hold in general). It never-
theless does hold for the X-Y model, so that we
can considerably strengthen the results of the
previous section. These further results will be
obtained by means of a generalization of an argu-
ment published by Kastler,12 which we now
describe.

For any representation 7 of @, in some Hilbert
space JC, we denote by 3 the von Neumann algebra
7@,)" N 7(@,)'. Its commutant 3/ is the von Neu-
mann algebra generated by 7(@,)” and 7(Q,)’, and
hence by 7(®,) and 7(@,)’. Consequently, given
any element B in 3/,any €> 0,and any ¥, (i =1, 2)
in JC, there exists B, = 251 7(4,)B,, with 4, in
@, B, in 7(@ )’ and n finite, such that

1B — By, <e, 1,2.
Using now the strong asymptotic Abelian character
of {o, (1)1t € R} on @, we see that for each A in
@, there exists a positive number T such that

I[Bg, m(a, (H[AD]] < €

for all ¢ with |¢| = T. From these inequalities, we
conclude that

[(¥,, (B, wla, ()[AD1¥,) | < € @14l + 1) e, 0,

which is to say that,for anyB in ¥ and AinQ,,
[B, (o, () [AM tends to zero in the weak operator
topology as |{| tends to infinity. Let now 7 be pri-
mary and [ ¥, = I¥,]l = 1. We form the states
¥, = 1,2, defined on @, by

<1Pi; A) = (¥, 7 (A)¥,)

and notice that there exists a unitary operator U in
®(3C) = 3! such that ¥, = U¥, and hence

<¢1;0‘e O[AD — W/z;ae 0[AD
= (¥y, [U, (2, O)[AD]¥,).
We conclude from this that for any twovector

states ¥, and ¥, on 7(@,), which is assumed to be
primary, we have

|1ti|m [y, (O[A]D) — Was o, O[AD] =0

forallAinQ,.
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In particular, if ¢, is extremal KMS, if 7 is the
representation of @, associated to ¢, (and is thus
primary),and if ¥, < x¢,, then

lim
| th—o0

W, a,(O[AD = (s, 4)

forall AinQ,.

Thus for the states y considered in the preceding
section, which are even, we have not only 7y = ¢,
but actually

lim @;a(@)[A]) = ;4

[t} »c0

for all A in @, i.e.,these states actually relax to
the canonical equilibrium state ¢.

5. CONCLUSION

We have provided a positive answer to the ques-
tion to which we addressed ourselves: Thermal
baths can indeed work in the sense set forth in
Sec.1. We also mention that the methods used to
prove this result apply to some other situations.
Indeed, the essential ingredients are (a) the time-
evolution acts in an asymptotically Abelian man-
ner on the even subalgebra @, and (b) the initial
state ¢y 5 satisfies the following two properties:
(1) ¢, g is even, (ii) ¢ 8 < Py for some posi-
tive number ¢. These conditions also hold10 when
(a’) a uniform magnetic field B in the z direction
is adde%/to the X-Y Hamiltonian and (b’) the initial
state ¢, is the canonical equilibrium state corres-
ponding to 8 and B’({) = B(f) for all but a finite
number of sites i ¢ Z. Hence ¢ ,f () relaxes to the
equilibrium state ¢§, in agreement with results
obtained by Abraham et «l.1 and Tjon.2 The exact
solubility of the X-Y model also enabled these
authors to analyze in detail the excitation spectrum
as the thermodynamic limit is taken;they then use
this analysis to campute the rafe at which equili-
brium is reached. The purpose of the present paper
was, rather, to emphasize some immediate conse-
quences of general ergodic properties, which we
illustrate with the X-Y model.
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A prescription is formulated by means of which one can write conditions for the existence of solutions of
a nonlinear system expressing the unitarity of n X n symmetric matrices. These conditions are less
restrictive than those analog to the Martin~Newton condition for the nonlinear integral equation repre-
senting the unitarity condition in the elastic region. At least for n < 4 these conditions are also neces-

sary.
This paper is concerned with the following prob- which are meaningful only if
lem: Given a # X n unitary and symmetric matrix
. ayp =1, (6)
U=1+1T, (1)
. . are satisfied. The third unknown ¢, , follows from
the elements of the T matrix having the form either Eq. (4c),
T,;=T;= a; e®1j, a, >0, (2) aqyq singy; — a,, sing,,

under what conditions are the phases ¢, deter- 011 COSPyy — gz COSPay
mined when the moduli a,; are known ? Equivalently, or (4d),
the problem is to find out under what conditions the ayq COShy; + @gy COSGy,

nonlinear system of equations for the phases ¢ tand 1, = 5 g, g .

(8)

n
2a,. sing,. = 3, a,,a,, e PiE Pk
ij S, kZ:{ ik ’ The expressions (7) and (8) are in fact identical.

iz i=1,2,...,n, (3) The inequalities (5) and (6) are therefore the
necessary and sufficient conditions for the exis-
which is an expression of the unitarity condition, tence of at least one solution of the system (4)
has a solution. (note the trivial ambiguity: if ¢ is a solution set, so
is 1 — ¢).

This problem may be considered interesting as it
stands, and one might think of a number of physical Although we will not be concerned specifically with

applications in which it is relevant. Our own the question of uniqueness, let us remark in pass-
interest stemmed from a study of the nonlinear ing that if condition (6) were “saturated”,
integral equation which represents the unitarity con-

dition in the elastic region.l Indeed, the system (3) a;, =1

can be viewed as emerging from a discretization

of this integral equation. so that

We shall begin by approaching the problem in a

pedestrian manner and consider first the simplest a1y =33 =1
nontrivial case of a 2 X 2 matrix. Many interest-
ing features of the problem are obscured by the
simplicity of this case, but we shall still examine

as well, there would be an infinity of solutions:

it for the sake of completeness. $11 = b2z = 27, ;= arbitrary,
The system (3) is then yielding matrices
sin = (1/2a + a§,), 4a
¢11 = (1/2211)(ag; + af5) (4a) (0 i
singy, = (1/2ay,)(a%, + a%g), (4b) B iew‘2 0 ?
sing; o which are unitary for any real ¢,.

= [ay1 cos(Py; — d1a) + @z OS(P1; — d22)],  Let us consider now the more interesting case of
(4c} 3 X 3 matrices. The unitary system (3) reads
0 =ay; sin(¢yy — ¢y3) + ay; sin(dy, — ¢pp)  (4d)

sing,, = (1/2a,,Xa2, + a?, + a2.), 9)
The first two equations obviously yield the phases 1 1177 t2 13 (
of the diagonal elements, provided the conditions 2a,y, Ssingy, = ag1a4, COS(Py5 — P1a)
2a,, = a3}, +ta}, or + ayaap; O8(¢15 ~ Pg2)
1—(1—a2,)12 = gy = 1+ (1 — a3l t ay3dp3 COS(¢y3 — ¢y3), (10)

2a5, = afy + a3, or ® o= @11855 SIN(@y; — P15} + ay,a55 SIN(P15 — Gy,)
1—(1-— a§2)1/2 <agps1+(1— 0%2)1/2, t ay3ay4 Sin(¢13 - ¢23), (11)

2041



2048

and to each of these three equations we should add
two more, obtained through circular permutations
of the indices.

Again, we find equations [(9) and its circular per-
mutations] which provide directly the phases of the
diagonal elements, if the inequality

2ay, 2 a?, + af, + af; or
1= (1= afy — a2

< ay; =1+ (1—af, — a};)ir?

(12)

and its circular permutations are fulfilled. The
inequality (12) also implies that the inequality

a3, + ajz; <1 (13)
and its circular permutations should also be ful-
filled, but now these conditions are no longer
necessary and sufficient as well for the existence
of real phases of nondiagonal elements as solu-
tions of either the system of three equations (10)
or the system of three equations (11).

In order to find these conditions, the most direct
approach is of course to actually solve either the
system (10) or the system (11) (indeed, either of
them should yield the same solution) with respect
to ¢y1q, P23, p13—assuming that ¢4, ¢y, P34 have
already been calculated from (9), subject to condi-
tions (12) and (13)—and read the conditions directly
on the explicit expressions of the solution.

This solving cah still be done relatively easy for
3 X 3 matrices if, rather than considering the sys-
tems (10) or (11) separately, one chooses to com-~
bine them. For instance, if one eliminates the dif-
ference ¢;; — ¢4 between Eqgs. (10) and (11), one
gets the equation

A cos2¢,, + B sin2¢,, =C, (14)
where
A= ayjay, €OS($yq + Pyp) + ayy Singy,

+ agq 8ingy, — 1,
B = a;1a3, sin(¢,, + ¢py) — ay4 COS¢y,

~ Qpg COSPy,, (15)

C = (a}3a33a78 — af| — a3,)/2
+ ayy singy; + ayp Singy, — 1.
Equation (14) has the solution
tang,, = [B + (A2 + B2 — C2)1/2)/(4 + (), (16)
which is real if, and only if,
A2 + B2 = CZ2, 17

This explicitly means that

2 2 2 2 .2
2a,,0930,3 = afpa9; + a§zai, + afzad;. (18)

C.EFTIMIU

Similar expressions can be obtained for the re-
maining two phases ¢, and ¢, through circular
permutations, but it is readily apparent that con-
dition (18) is invariant under such permutations.
One should also note that the conditions of the type
(13) are all fulfilled if (18) is fulfilled. Indeed, if
one writes (18) as

a3+ ady = 2x — x2,

where x = aj,a,,/a,,, it is clear that the right-
hand side cannot exceed unity for any x.

We conclude, therefore, that the inequalities (12)
and (18) are the necessary and sufficient conditions
for the existence of a solution of the unitary sys-
tem for 3 X 3 matrices.

Finding the existence conditions by actually solving
the unitary system is not, however, a procedure
that could be followed in general. Already for

4 X 4 matrices, the algebraic effort is quite
serious and, as » increases further, it becomes
practically impossible. It is important, therefore,
to devise a method by which the existence condi-
tions can be stated without actually solving the
system (3). Such a method will be described in the
following, and its correctness will be checked
against the results obtained for 2 x 2 and 3 x 3
matrices.

There are, in fact, quite a number of possible in-
direct approaches to the problem, but none seems
to lead faster and to a better result than the fixed-
point theorem approach which was also used by
Martin and Newton. For the 3 x 3 matrices and
the system of equations (10), we consider a three-
dimensional linear space of vectors x = (x, x,, x,).
endowed with the norm

x|l = miaxlxii. (19)

The system (10) can then be written as
x=g(x) (20)
(x1 = 8ingy 5, x5 = sing,3, x5 = sing, ;) and one

can see without difficulty that the nonlinear opera-
tor G maps the ball

fxl=1 (21)
continuously into itself, provided the inequality
2a19 = 31055 + Gy3a95 * ay3453, (22)

together with two other inequalities obtained
through circular permutations, is fulfilled. It fol-
lows then from Brower fixed point theorem that
the operator g has a fixed point in the ball (21),
i.e., that the system (10) has a solution.

The inequalities (12) and (22) are the analog of the
existence condition derived by Martin and Newton
for the nonlinear integral equation. They are

clearly not the necessary and sufficient conditions
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for the existence of a solution of the unitary sys-
tem in this case, for we already know that these
are (12) and (18) and the latter is by no means
equivalent to the conditions (22). Just to illustrate
the extent to which they may be different, let us
consider the following numerical example:

(133 = 9/5,
a3 = 3/5\/—2~.

a1y = A2 =

d12 = dg3 =

The conditions (12) reduce then each to the in-
equality 1 = 1, but the conditions (22) each read,

2>18/5 + 3/5/2 = 4.02. (?)

Condition (18) is fulfilled:
2=>9/5/2=1.27

so that a solution must exist. In fact, it is not very
hard to find it:

P11 = b2 = P33 = 1/2,
P12 = o3 = P13t 7,

In spite of this inequivalence,there is a very sim-
ple way leading from condition (22) to condition
(18), and this is based on the observation that con-
dition (18), which is part of the system of neces-
sary and sufficient conditions, is independent of the
moduli a,,a,4,d55. As a matter of fact, it can be
proved quite easily that, if one assumes that con-
ditions (12) are fulfilled and concentrates just on
the system (10), the necessary and sufficient con-
ditions for the existence of a solution of this sys-
tem cannot possibly involve the quantities aq4,

sing,, = 3/8V2

@32, 035. This is simply because if follows from
Egs. (10) that
200,
::2122 = 232223 =;I €0SP22 231213 =0, (23)
22’3133 _ 22’323 2;_ COS By 3 2321; =0

Hence, if the system (10) had a solution for fixed
Gy, 033,014 and some a,,, gy, a33 With values
within the ranges indicated in (12), it should also
have a solution for the same values of a,,, ay3, a1 3,
but other values of ay4, ay,, @35 from some open
neighborhood of the former values which is still
within the intervals (12). By continuity, one can
thus cover the whole range of values allowed by
(12) for ayy, ayq, ag4 for fixed a, 5, agg, ;4.

Consequently, even if we did not know what the
necessary and sufficient conditions really are, the
mere fact that (22) involves the quantities a,,, a,,,
ay5 would be a sure indication that they can only

be a sufficient condition for the existence of a solu-

tion of (10). However, if for fixed a,,, 55, a;, One
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lets aqy, a4, a3 in (22) vary within the limits
given in (12), one obtains a class of sufficient con-
ditions for a corresponding class of unitary sys-
tems, the least restrictive of which being those
obtained by giving a,,, ag 5, @33 their minimum
values allowed by (12). When one makes these sub-
stitutions, each of the conditions (22) becomes
identical to condition (18). According to our obser-
vation then, by guaranteeing the existence of a
solution of the unitary system in which, for given
alz, a23, a13, the moduli all, 022, (133 have the
minimum values compatible with (12), condition
(18)—together with (12)—guarantees at the same
time the existence of a solution of any other uni-
tary system involving the same a,,, as3, a; 5 but
any other choice of values of a4, ay,, a;4 allowed
by (12).

1t appears, therefore, that we can formulate a pre-
scription by means of which one could write the
necessary and sufficient conditions for the exis-
tence of a solution of the unitary system (3) and
which does not require the knowledge of the solu-
tion. As such, it can be stated for any n.

One starts by establishing the Martin~Newton con-
ditions for the system (3), by using essentially the
same argument based on Brower's fixed-point
theorem:

n

2ai].2kz_i apa;, Hi=12,...,n, (24)

and one splits it into two parts

n

2, = 21 a3, i=12...,n (25)
k=1
n . -

2a;; = 2 Apaje, U <J. (26)
k=1

The » conditions (25) are already a component of
the system of necessary and sufficient conditions
for the system (3), and they can be used to estab-
lish the minimum values of a,; for given q,,,i # k:

a; =1~ (1~ :[,’aizk)m, @7

where the prime indicates that the term with 2 = ¢
should be omitted.

It can now again be checked that, for fixed a,,

(i # k), a solution exists in any neighborhood of
those values of a;, for which a solution is known

to exist, provided conditions (25) are fulfilled. One
substitutes then the minimum values of a,; as
given by (27) into the } n(z — 1) conditions (26), and
one gets (a = B)

4“5%(@ ”aockaﬂk) 2+ 4(4?'“31) (@’ag,)

= [a&'g(z,;aakask)z + ],Eaczu' + 4?’“51]2: (28)
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where the double prime indicates that the terms in
the sum over k2 with 2 = o or 2 = 3 should be
omitted.

It is straightforward and easy to check that for

2 x 2 and 3 x 3 matrices conditions (28) coincide
with (6) and (18), respectively. It is also straight-
forward but less than easy to check that (28), and
also (25), are also necessary and sufficient condi-
tions for the existence of a solution of the system
(3) for 4 X 4 matrices. (Because it involves ex-
tremely tedious calculations, the case of 4 X 4
matrices is not discussed here.) We are aware

C. EFTIMIU

though that there is no substitute for rigorous
proof and that we failed to produce such a proof
for » > 4. But even if (25) and (28) were not neces-
sary conditions for the existence of a solution of
(3), they clearly are sufficient and significantly
less restrictive than the Martin—-Newton condition.
Because of this, and particularly in view of the
fact that it has been pointed out? that the Martin-
Newton condition is not fulfilled in a number of
physical cases, it would be interesting to extend
the results given in this paper to infinite matrices
in general and specifically to the non-linear
integral equation of Ref. 1.

1 R.G.Newton, J. Math. Phys. 9, 2050 (1968} ; A. Martin, Nuovo
Cimento 594, 131 (1969).

2 1.A.Sakmar, Lett. Nuovo Cimento 2, 256 (1969) ; H. Goldberg,
Phys.Rev.D 1, 1242 (1970).
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For the model theory, N + Af:w“’ :dx in a box, a convergent expansion of the resolvent is exhibited. This
also provides another proof of boundedness below for the model.

We consider the field theory model with Hamiltonian
N + f: @%: dx in a box of length1, We obtaina con-
vergent expansion for the resolvent of this model
and at the same time another proof of boundedness
below of the Hamiltonian. The main idea is to con-
sider the 'subblocks' of the Hamiltonian obtained
by restricting to states with particle number spec-
trum lying between N and 2N. The resolvent of a
subblock is shown to have very small matrix ele-
ments connecting states with a large difference in
particle number. The extension of the present re-
sults to the more general model N, + X [ 125 :dx
has not yet been achieved.

We begin with the basic theorem to be used.

Theorem: Let A be a positive self-adjoint oper-
ator of norm < M, and |a)and |B) be two vectors
of unit length. Suppose (a|A#|g) =0,0 < k<N,
Then, for any A > 0, a real number,

1 <&M 1 N
la'h+AlB>|\A~/ﬁ'<1 +J2_)7A71) @
~ exp(— V2A/M N), (2)

where in (2) it is assumed M and N are large.

Proof: (A + A)7L and (A + A)~1 — P, (A) have
the same matrix elements between |a) and |8),
where P, (x) is any polynomial of degree N. This
implies the matrix element is smaller than the
supremum of |(A + x)~1 — P, (x)| for values of x
in the spectrum of A. We make a linear change of

variables moving the spectrum from [0, M] to
[~1,1]. Now one has the function [A +(x + 1)3M]™*
on the interval |— 1,1|. There is a basic theorem?
in the theory of polynomial approximation stating
that if f is analytic in an ellipse with fociat— 1
and 1 and major and minor radii ¢ and b, then it
may be approximated on [— 1,1] by a polynomial
of degree N within

2f max ( 1 )”
(a+b—1) \a+bd

in the uniform norm. Here f max is the supremun
of the absolute value of f in the ellipse. The theo-
rem is obtained applying this result to the ellipse
witha=1+x/Mandf =[x + (x + 1)zM]"1,

We now come to the Hamiltonian

3

@)

We define P, as the projection operator onto states
with numbers of particles lying in the range

1
H=N+ [y tpt:de =N + V.

20 N 2¥2 i =-—1,0,""", (5)
and P, and F; as the projection operator onto
states with numbers of particles in the ranges

U (2i—4 sNs2t+4) (6)

1 even
and )

U (2i—4 sN<2+4)), (7)

i odd

respectively. We define
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where the double prime indicates that the terms in
the sum over k2 with 2 = o or 2 = 3 should be
omitted.

It is straightforward and easy to check that for

2 x 2 and 3 x 3 matrices conditions (28) coincide
with (6) and (18), respectively. It is also straight-
forward but less than easy to check that (28), and
also (25), are also necessary and sufficient condi-
tions for the existence of a solution of the system
(3) for 4 X 4 matrices. (Because it involves ex-
tremely tedious calculations, the case of 4 X 4
matrices is not discussed here.) We are aware

C. EFTIMIU

though that there is no substitute for rigorous
proof and that we failed to produce such a proof
for » > 4. But even if (25) and (28) were not neces-
sary conditions for the existence of a solution of
(3), they clearly are sufficient and significantly
less restrictive than the Martin—-Newton condition.
Because of this, and particularly in view of the
fact that it has been pointed out? that the Martin-
Newton condition is not fulfilled in a number of
physical cases, it would be interesting to extend
the results given in this paper to infinite matrices
in general and specifically to the non-linear
integral equation of Ref. 1.

1 R.G.Newton, J. Math. Phys. 9, 2050 (1968} ; A. Martin, Nuovo
Cimento 594, 131 (1969).

2 1.A.Sakmar, Lett. Nuovo Cimento 2, 256 (1969) ; H. Goldberg,
Phys.Rev.D 1, 1242 (1970).
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For the model theory, N + Af:w“’ :dx in a box, a convergent expansion of the resolvent is exhibited. This
also provides another proof of boundedness below for the model.

We consider the field theory model with Hamiltonian
N + f: @%: dx in a box of length1, We obtaina con-
vergent expansion for the resolvent of this model
and at the same time another proof of boundedness
below of the Hamiltonian. The main idea is to con-
sider the 'subblocks' of the Hamiltonian obtained
by restricting to states with particle number spec-
trum lying between N and 2N. The resolvent of a
subblock is shown to have very small matrix ele-
ments connecting states with a large difference in
particle number. The extension of the present re-
sults to the more general model N, + X [ 125 :dx
has not yet been achieved.

We begin with the basic theorem to be used.

Theorem: Let A be a positive self-adjoint oper-
ator of norm < M, and |a)and |B) be two vectors
of unit length. Suppose (a|A#|g) =0,0 < k<N,
Then, for any A > 0, a real number,

1 <&M 1 N
la'h+AlB>|\A~/ﬁ'<1 +J2_)7A71) @
~ exp(— V2A/M N), (2)

where in (2) it is assumed M and N are large.

Proof: (A + A)7L and (A + A)~1 — P, (A) have
the same matrix elements between |a) and |8),
where P, (x) is any polynomial of degree N. This
implies the matrix element is smaller than the
supremum of |(A + x)~1 — P, (x)| for values of x
in the spectrum of A. We make a linear change of

variables moving the spectrum from [0, M] to
[~1,1]. Now one has the function [A +(x + 1)3M]™*
on the interval |— 1,1|. There is a basic theorem?
in the theory of polynomial approximation stating
that if f is analytic in an ellipse with fociat— 1
and 1 and major and minor radii ¢ and b, then it
may be approximated on [— 1,1] by a polynomial
of degree N within

2f max ( 1 )”
(a+b—1) \a+bd

in the uniform norm. Here f max is the supremun
of the absolute value of f in the ellipse. The theo-
rem is obtained applying this result to the ellipse
witha=1+x/Mandf =[x + (x + 1)zM]"1,

We now come to the Hamiltonian

3

@)

We define P, as the projection operator onto states
with numbers of particles lying in the range

1
H=N+ [y tpt:de =N + V.

20 N 2¥2 i =-—1,0,""", (5)
and P, and F; as the projection operator onto
states with numbers of particles in the ranges

U (2i—4 sNs2t+4) (6)

1 even
and )

U (2i—4 sN<2+4)), (7)

i odd

respectively. We define
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H, = P,HP;, (8)
He = . E H;” (9)
7 even
H = 2 H, (10)
i odd
H=H +L =H +1L, (11)
We note
PLP =LP =PL =L, (12)
P,L,P,=LP,=P,L,=1L,. (13)
The expansion of the resolvent we are after is
the following:
1 1 1 I 1
E+H E+H, E+H, “¢E+H
1 1 1 .
*Eig LEvE REYE
1 1 1
“E+H E+H F.LF, E +H,
vt _prp -1 _prp L1 __ ..
E+H "¢ dE+H "¢ e E+H
(14)

This expansion converges for E large enough, as
we will show; for E large enough (E + H,)™1 and

(E + H‘{)_l exist and are bounded, | L P4(E + H;)™1
P,|<zand |L,P(E + H,)1P;|< 3,and (E + H,)™!
L_(E + H,)™' and L,(E + H) YL (E + H,)™! are
bounded.

The following two estimates easily yield the re-
quired relations above.

Estimate 1:
H > 2+1p;, i large (15)
Estimate 2:
i .
P,z + 1, P,|<c, exp (—c32¥2) for some
€1,€5 > 0. (16)

Proof of estimate 1: We write V as the sum
Vv, + R, where as usual V, contains those terms
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in the expansion of V all of whose momenta are
less than or equal % in absolute value

H,= P,NP, + P,V, P, + PR, P,. 17
We first note ‘

P,NP,> 2iP,. (18)
As in Ref. 2, one has

V, = — c(lnk)2. (19)
Picking

k, = exp [(1/Ve)2 2], (20)
we get

P; Vk,-Pi z—2+1p, (21)
From

IP,.R,”P,. | <d@2)21/Vk,, (22)

a standard N, estimate, see Ref. 3, we quickly get

|PiRkiPi|s2i’l, i large. (23)

And thus, using (23), (21), and (18), we obtain esti-
mate 1 from (17).

Proof of Estimate 2: Clearly

|E + H, | < e22¢ (24)
for some e (by an N, estimate again),and
E + H > 21 (25)

for E large enough. We apply the theorem with
la) = PP, |a), 18) = P,P,1b) (la) and |b) norma-
lized vectors, A = 21, M = 2%, A=FE + H, —
2¢1 and N < [(2#*1 —4) — (2! + 4)]/4. This ap-
proach is easily generalized to N_ + f:(p‘* vdx.

The subject of obtaining convergent expansions for
the resolvents of other field theory models seems
interesting, as is the question of whether this is

a way of obtaining lower bound estimates for other
models.

* This work was supported in part by NSF Grant GP-17523.

1 A.F.Timan, Theory of Approximation of Funclions of a Real
Variable (MacMillan, New York, 1963), p. 281.

2 E.Nelson, “A Quartic Interaction in Two Dimensions,” in

Mathematical Theory of Elementary Pavticles. edited by
R. Goodman and I. Segal (MIT Press, Cambridge, Mass.,
1966).

3 J.Glimm, Commun. Math. Phys. 5, 343 (1967).
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A class of exact solutions ot the heat conduction equation and the magnetic induction equation are con-
structed for the special case where there is no diffusivity or time dependence. It is shown how these
elementary solutions may facilitate the solution of a more general class of problems in which diffusi-
vity and time dependence may also be present. Moreover,the existence of effective variables, first in-
troduced by Braginskii for the kinematic dynamo problem in the lowest-order approximation, is a direct

consequence of these elementary solutions.

I. INTRODUCTION

During recent years considerable interest has been
shown in nearly symmetric dynamos.1”6 Bragin-
skiil was able to show that, inanasymptotic analysis,
a remarkably elegant pair of coupled equations
[essentially (63) and (64)] could be obtained to de-
scribe the axisymmetric part of the magnetic field
by the introduction of effective variables. The
resulting equations may be solved relatively eagsily
for certain boundary conditions, and Braginskii
was thus able to demonstrate the existence of nearly
symmetric kinematic dynamos. Tough? extended
Braginskii's analysis and showed that, by modifying
the definition of effective variables, Braginskii's
equations for the symmetric part of the magnetic
field are still valid in the second approximation.

In a study of the hydromagnetic dynamo, Tough and
Roberts® showed that in the first approximation
these quantities make similar simplifications to
the equation of motion. In the previous paper,?
henceforthreferred to as Paper I, it was established
that the equations for the axisymmetric motion ob-
tained by Tough and Roberts® are still valid in the
second approximation, provided that the effective
variables obtained by Tough? are used. Since effec- -
tive variables play such an important role innear-
ly symmetric dynamo theory, it is of considerable
interest to know precisely how they come about.
Tough4 suggested that effective variables may be
relevant to all orders of approximation, i.e., an
effective velocity, magnetic field, and I" [see (64)]
can be defined such that Egs. (63) and (64) are cor-
rect to arbitrary order. By considering the heat
conduction equation where effective variables are
also relevant in the lowest two approximations, it
was shown in Paper I that effective variables do
not exist which make simplifications of the above
type. Consequently, since the problem had several
points in common with the magnetic induction
equation, it was concluded that effective variables
would not be relevant in the third approximation
and that the suggestion made by Tough is unlikely.
In this paper a considerably weaker result than the
one proposed by Tough is obtained. However, the
result does indicate why considerable simplifica~-
tions can be made in the low-order approxima-
tions by the introduction of effective variables.

The primary concern of this paper is in obtaining a
particular class of solutions of the heat conduction
equation

Ru-v 6 =0, 1)

and the magnetic induction equation

O=RVX(@uXb), WVb=0 Vu=0, (2

where the velocity u is given by
-1/2

u=Ulp,2)iy+ R "“up, ¢,2) + R_lup(R, p,2) (3)

and the constant R is large,

R>1. (4)
Here p, ¢, z are cylindrical polar coordinates: p is
the distance from the axis, ¢ is the azimuthal angle
(i, is the unit vector in the ¢ direction),and z is
the distance along the axis. It is assumed through-
out that primed quantities have zero ¢ average:

() =0, 5

where

= i, + o+ S )LD = 55 [37F de, (®)

and i, and i, are the unit vectors in the p and 2
directions. Solutions of (1) and (2) are sought in
the form

-1/2

6=0©(p,z) + R ""0'(R,p, ¢,2), (7

b=Blp,2)i,+ B /p'(R,p, ¢,2)

+ R™1b,(R,p,2). (8)
Unlike most previous work in this field, there is

no restriction on the vectors u, and b » lying in
meridional planes.

Much of the notation and procedure is similar to
Paper 1. However, in order that this paper should
be self-contained, the relevant definitions are re-
stated. The operator 3,/9¢ is defined not to dif-
ferentiate unit vectors:

al afp . af(D . afz .

a—(-pf= %lp —a$1¢+ a—z-lz. (9)
The operator ~ is defined by

e g wn #y=10 (10)

5—(5 = where =0,

and results in the identity

2052
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N
Z{( fJ~1f' fatf =0, (11)
]:

For quantities which do not have a vanishing ¢
average, the bar operator is introduced where

o

f=(f—®).

Some new notation is introduced. The operators
and variables 3, x ), u} are defined by

(12)

of- L2
Gl 1
X g'—‘ 3p’531 ’ (13)
%u’i = Jup, Uy, Ul
Since V+u’ = 0, it follows that
9% up =0, (14)

where the summation is over repeated suffices. Of
course, the bracketed superscript takes part in the
summation, but a product of the type x{u; is just
one term and not the sum of three. With this sum-
mation convention, the operatoru’> ¥ is alternatively

@)

wev=uly 0;. (15)

The operator 9; is such that products commute:

2,0;=22;.

(16)
In order to construct a certain class of solutions
of (1) and (2), two sets of vectors v, {() and a

set of scalars ¥ must be mtroduced Their sig-
nificance will become apparent later in the section.
The set of vectors v@®), n = 1,2,--- is defined

by their components in cylindrical polar coordin-
ates, namely

(i) (1) (1)A
X v u’-V(ﬂ :>

e = u,'v(%x(i)vi(n-l)\)

X (t)v(ﬂ'1‘1)> V(n ~1), V<% X(i)ﬁ€>’

amn
Zﬂiv(r).v (%

n =2,

where
V(n) _ (v(n)>’

and for the case » = 2 the meaningless summation

0
E,, .1 is omitted. The omission is also made in the

next two definitions. The set of scalars zp yn =
1,2,:-+, is defined by
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v @< ueve,
@) T 2w Gmr-1)
vV =uvl ¢” Zlvf.vp_w r
7=
_ v(n—l).ve’ n =2, (18)
The set of vectors ", n = 0,1,2, -+, is defined
by
f(o) =0,
f(n) - E V(r)p ) V(n)6 >1,
(19)
and
F(n) _ <f(n)>.

A simple result of the definitions (18) and (19) is
now established. From (19) it follows that

n-1
uw X f(ﬂ): _Eu, X V(‘f)p ‘P(n 7 - xV(’l)e
r=1
and
V(r) x f(n'-'r) - —uw X v(r)_p_lp(n-r)
n-r-1 -
5 v x V(s)g_w(n ) _ gy x v& e,
s=1

Combining these results leads to the identity

n

(n) _ Z V(r) x f(n-'r)-
r=1

w xf (20)

Finally, the vectors V,f, F and the scalar y are
defined by

V= Zi(_" 1/2 n/ZV(n) (21a)
z; l)an/Z-n/Zf(n) ., F= (f), (21b)
ll/ %_Z ( 1)" Rl/Z—n/le(n). (210)

=1

8

Of course, these quantities may not exist as the
series may diverge. In the subsequent analysis, the
existence of the quantities is assumed, and no
attempt is made to determine the precise con-
ditions for existence. However, it is to be expected
that, provided that U is bounded away from zero
(lU1=6>0)and ©, U,u’ have continuous deriva-
tives to all orders, V, f, ¥ are well defined for R
sufficiently large. Even if the series (21) diverge,
the summation of a finite number of terms is
likely to have a useful meaning as an asymptotic
expansion.



2054

The principal results of this paper are now sum-
marized as three theorems as follows:

Theorem 1: The vector V™’ has zero
divergence,

()

VvV =0 (22)
and the ¢ average of zp(") is zero,
W™ =o. (23)

This theorem has immediate consequences. Evi-
dently, from the definitions of £*) and F®, it fol-
lows that

(n) (n+1)

vt =y (24)

and

v.F" = 0. (25)

Despite the innocent appearance of Theorem 1, its
proof is somewhat lengthy and so has been rele-
gated to the Appendix. However, Theorem 1 is
important since it is required in the proofs of
Theorems 2 and 3 and also shows that both V and
F have zero divergence. The two main theorems
are the following.

Theorem 2: For the particular case where
u, =1V,
the general solution of (1), taking the form (7), is
v, (26)

where O is an arbitrary function of p and z.

=06+ R-l/z

Theorem 3: For the particular case where

u, =V,
a class of solutions of (2), taking the form (8), is
b=(0+ Ry, @0
where
B =06U

and © is an arbitrary function of p and z.

Noting that v+b = 0, we see that Theorem 3 is a
trivial consequence of Theorem 2. Moreover, when
u, =V, (27) gives the general solution of (2) for
magnetic fields aligned to the flow. Of course,
there may be other solutions for which u and b are
notparallel. Finally, with the help of the definitions
(18), (19) and (21), it can be shown that (27) is
equivalent to

-1/2

b= B+ R Uy)i,+ R'L. (28)

The solutions of the heat conduction and magnetic

A. M. SOWARD

induction equations given by Theorems 2 and 3,
namely (26) and (27), are called elementary
solutions,

Evidently (1) and (2) may be solved by elementary
methods, e.g., (1) has the solution 6 is constant on
streamlines. However, the significant feature of
Theorem 2 is that, with the choice u, = V, the
function ©(p, z) which generates the solution (26)

is arbitrary. By a simple argument it is now shown
that this P/xéoperty implies that the velocity uy =

Uiy, + R 7""u’+ R "V describes closed streamlines
which tend to the circles p = const, z = const as

R — o, Consider a plane ¢ = ¢,(=const), Suppose
a streamline intersects the plane at x; and inter-
sects the plane again at x; (¢ = ¢, + 2n). Since
the meridional velocities are at most order R -/ 2&
the distance between the points is also order R~ /2.
Thus the position vector x; is defined by x; =

X + R"1/2p. It is now assumed that §(x,) may be
expanded as a Taylor series at the point x,. This
assumption is in accord with the rather general
assumptions necessary for the validity of Theor-
ems 1-3. Now since 6 is constant on streamlines,
it follows by Theorem 2 that

0(x,) — O(xy) = — B ?[y(x,) — w(x,)]

and hence that

-1/2 I

[nevO](x,) + OR n !2) = R—l/z[n'Vzp](xo)

+ ORIy ).

Clearly, since © is an arbitrary function of p and z,
and R > 1, the only value of 5 (small compared to
R/%) satisfying the above equation is

n=20

and consequently the points x, and x; are coin-
cident. In other words, according to Theorem 2,
given an order 1 axisymmetric azimuthal velocity
Ui, and an order R~1/2 asymmetric velocity ’
R-1/2y’ the order R ~laxisymmetric velocity

R~V constructed has the property that the stream-
lines of u, are closed: All velocities have zero
divergence. Moreover,the magnetic field b, =

(B + R~12y)i + R~1, given by (28),describes
closed field lines since it is aligned to the flow u,.

Theorem 2 is proved in Sec.Il. Then,with the

help of the theorem, a procedure for solving the full
heat conduction equation (37) by successive appro-

ximation to all orders is outlined. Since it is natu-

ral to introduce the “effective” velocity vector

llep = up -V (29)
into the approximation scheme, the procedure
provides a framework for discussing the signifi-
cance of an effective velocity. In a similar way,
Theorem 3 may be used to help solve the magnetic
induction equation (55) by successive approxima-
tion—the method is outlined in Sec. HI. As well as
introducing the velocity u,, into the approximation
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scheme, it is natural to introduce the effective
magnetic field vector

b, =b, —F. (30)
To lowest order the meridional components of
the vectors u,, and b, are the effective velocity
and magnetic field vectors first introduced by
Braginskiil. Again,as in the case of heat conduc-
tion equation, the analysis provides a framework
for discussing the significance of an effective mag-
netic field. Briefly, the velocity vector u; and the
magnetic vector b, are introduced so that a syste-
matic procedure for solving the heat conduction and
magnetic induction equations can be formulated.
To this end, the closed streamline property of u,
is only incidental. However, it is this physical
property that clearly gives rise to its mathemati-
cal usefulness.

The approach adopted in this paper is suggested
by the work in Sec.III of Paper I on the heat con-
duction equation. For this reason it is an advan-
tage if the reader is acquainted with the work
described In Paper I. First Theorem 1 and its
proof are suggested by the material between
(1.54) and (I.63).8 Second, the possibility of
Theorems 2 and 3 is suggested by (I.63).

O. THE HEAT CONDUCTION EQUATION

In this section Theorem 2 is established, and it is
shown how the elementary solutions may help to
solve the heat conduction equation.

The subsequent analysis is made clearer by intro-
ducing the linear operators A,Q,D®, and D de-
fined by

Az =u’*Vz,

Qz = (p/U)z,
Dz — y®Wevz, Dz = V+Vz.

(31)

In terms of these operators the fluctuating part
of (1) leads to the equation

(1 + R~1/2QA + R-1QD)9’ = — QAO (32)
[see (I.51)], where it is supposed that u, = V. For-
mally the equation has the solution

6’ =~ (1 + R~1/2QA + R-1QD)-1Q40, (33)
where the inverse is defined to be the formal bino-
mial expansion of the expression in brackets. It
is then possible to show that 9’ is given uniquely
by ¥ and the existence of ¥ justifies the inversion.

Instead of carrying out the inversion, which is a
tedious procedure, it is verified that 8’ is Y.

By setting 6’ = ¥ in the left-hand side of (32), it
follows that

o0
(1 +R-1/2QA + Q 2, (— l)n-lR—l/Z-n/ZD(n))
n=1

x(f} (— 1pRYV/2-w/2Qy (n))

n=1
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=Q %(__ 1)»R1/2-n/ 24 ()
n=1

-]

+Q 2 (— 1)n—1R1/2—n/2AQ1p(n—1)
n=2
0 2=2

+Q 2, 25(— 1)=R1/2-n/2 pNQyn-r-1),

n3 r=1
After regrouping terms, it follows that
(1 + R~1/2QA + R-1QD)y

=—QAO +Q 75 (~ 1)nR1/2—n/2 (Y@ — AQy/fn-1)
n=2

n-2
+ 25 DOQYr-r-1), (34)
r=1

Since QD®O = 0, the terms in the summation
vanish by (18), and hence (32) is verified.

It is now necessary to show that the ¢ average of
(1) vanishes. Evidently

Q@' ve') = < é(_ 1)2R1/2-n/2yr oy (%u,—(n)>>,

so that using the definition (18) and Theorem 1
leads to

o
{(u'*v0') = 2,(— 1)7R1/2-n/2Y(ey® = — V+VO.

n=l (35)
Hence the ¢ average of (i} is

Ru*ve) =V+vO + @'*ve’) = 0. (36)
Thus Theorem 2 is established.
The full heat conduction equation

a8

=f + Ru-vé = v2¢, (37)

where ¢ is the time, is considered. The mean
part of (37) may be solved formally by considering
the equation

LO =— (u’'*vg’)

= (A1 + R7Y2QA + R™1QL)™} QAB), (38)
where
el
—p— . —_ 2
L 5 +up vV — Ve,

(Note that u, is not necessarily equal to V.) How-
ever, in the proof of Theorem 2 it is established
that

V.vO = (A(1 + R"1/2QA + R-1QD)"1QA6).  (39)
An effective operator L, is now defined by
_d
L,= %t (u;7 — V)ev — V2, (40)
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Hence combining (38) and (39) leads to

L,® ={A[(1 + R~1/2QA + R-1QL)"!

_ (1 + R-1/2QA + R-1QD)-1]gA8),
or

L,® =— R"KAQ(1 + R~1/24Q + R™1DQ)"1

x L,(1 +R™1/2QA + R™1QL)"1QAO). (41)
The inverses are defined by their formal binomial
expansions. Of course, the expansions may not be
valid for reasons similar to the criticism following
(21). If we assume the expansions are correct, the
advantage of (41) over (38) is clear. Since the
expression on the right-hand side is now order
R~1, rather than order 1, the equation is in a con-
venient form for solution by successive approxi-
mation.

Finally, correct to order R™1, Eq. (41) is

L,6 =— R"KAQL,QA®), (42)

which is in agreement with (1. 63).

HI. THE MAGNETIC INDUCTION EQUATION

It was shown in Sec.I that Theorem 3 is a trivial
consequence-of Theorem 2. Since the full magnetic
induction equation is to be considered later in this
section, an alternative proof of Theorem 3 is given
which leads directly (without the help of Theorem
2) to the expression (28) for the magnetic field.

AL M. SOWARD

The fluctuating part of (2) leads to
/ i UpiogP _ p-112P T T
b+p1¢pb v — R UVX(u X b’)

_ p-1R 5y =By — i BgrevB
R va(upxb)—Uu piy 7a Vp

+R7IEV x @ xb,). (43)

The second term in (43) may be re-expressed by
substituting the value of b’ defined by (43) itself.
This leads to a cumbersome expression which is
most conveniently expressed by the operators S,
C, E,H and T defined by

Sz =u’ X z,

Cz=VXz, Fz=FXazg,

Hz' = 0z’ — pi, VO *Z', (44)

Tz:—-%vxz+pi¢v§-vx§,

where it is suppased thatu, = Vand b, = F.9
Equation (43) relating u’ and b’ becomes

(1 + R-1/2TS + R-1TC)b’ = (H + R™1TEW’.  (45)
As in Sec.II, b’ may be determined by inverting

the operator on the left-hand side. Instead it is
verified that

Moreover, the approximate method of solving the b’ = Uyi, + R™1/2(f — F) (46)
magnetic induction equation (55) follows naturally
from this alternative proof. solves (45).
J
With b’ given by (46), Sb’ and R-1/2Cb’ are
o0 - 00
N (— 1)=RY/2-n/2y 1y ) % pi,y + 27 (— 1)»R2u’ X (@ — FW) (4a4n
n=1 n=0
and
oo n-1 - ) n
R-12Cb' = — 33~ l)anlz-n/2<2V(r);p(n-r)) X piy — 2 (— 1)yR-n2 (Evm x (o) — F(n—r)) .
n=2 r=1 n=1 r=1 (48)

Combining these results and making use of the identity (20) leads to

o0
(S + R~12C’ = 25 (— 1)#R1/2-/2(f() + VW O) X Ui, — R-12q' X F +
n=1

After some straightforward manipulation, operating on (49) by T leads to

©0 —r
(TS + R-12TC)o’ = R-1/2TEu’ + 2 (— 1)"R1/2-n/2 (.. £0) + FO) 4 pi¢¢oz+1)) .

n=1
It follows that

(1 + R-1/27S + R-1TC)b’ = £© — pi ¢ D + R-1TEu'.

However,
Hu' =f© — pi¢w(1),

and hence Eq. (45) is satisfied by (46).

0 n-1

P 1)nR-n/2<Ev(r) x F(n—r))_

n=1 r=1
(49)
(50)
(51)
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It is now necessary to show that the ¢ average of (2) vanishes. Evidently
(u’ X b’) = (Sb"), (52)
and with the aid of (19), (20) and (47) this leads to

o0 ) 71
(u' X b") =2, (— 1)2RV/2-#/2(F&) + V0E) x Uiy + Y= 1)"R"‘/2<EV(’) X F(n—r)) ,
n=1 n=0 r=1
=— Uiy X F—VXBi, —RIVXF. (53)

Hence the ¢ average of (2) is
R(V X (u x b)) = RV X [(Ui, + R"1V) X (Biy, + R™1F)] + VX (u’ X b") = 0. (54)

It is a simple matter to verify that Veb’ = 0, and thus Theorem 3 is established.
The full magnetic induction equation

%—?:va(uxb)+vzb (55)

is considered. The mean part of the equation is
—%(Biq, + R71b,) = RVX [(Uiy + R™1u,) X (Bi, + R71b,)] + V X (u' X b’) + V2(Bi, + R71b), (56)

where formally

W X by =—{(S(1 + R~Y/2TS + R~1GM)"1(H + R~1TNW’) (57)
and
Gz =%i—pi¢vl% -ﬁ, Mz=§t—z—vx (up X z)— V2z, Nz =b, X z. (58)

As in the case of the heat conduction equation, some simplifications to (56) can be made by using the
identity

R(Ui, + R71V) x (Bi, + R™1F) =— (S(1 + R™1/27S + R~1TC)~}(H + R™1TE’), (59)

and this leads to

2 (Bi, + R"b,) — RV X [(Ui, + R~1u,)X (Bi, + R~1b,) — (Ui, + R-1V) X (Bi, + R"1F) — VZ(Bi, + R-1p,)]
= — v X(S[(1 + R-1/2 TS + R-LGM)"}(H + R"1TN) — (1 + R-1/2TS + R-1TC)-L(H + R~ TE)]u’).

(60)
Further manipulation leads to the form

. . . : (9
(5?(31¢)—vx (w,,XBi,)—v X(U1¢Xbep)—V2(B1¢))+R 1(é-t—bep~vx (uepxbep)—vzbep)
/2
=—R 1(WF—VX(uerF)—VX(VXbeP)—VZF)
+R-1y X (SK-L[GM,(K + R-1 GM,)=1(H + R~ IN) — TN ]u’), (61)
where
u,,=u,—-V, b,=b,—F, Mez=% zZ—V X(u,,Xz)—~v2z, Nz=b,, Xz,
K=1+R-V2TS +R-1TC. (62)

For the purpose of iteration it is probably convenient to restrict u, pand b, p to being meridional vectors,
but this does not appear to be necessary. The azimuthal and meridional components of (61) are consi-
dered separately. The azimuthal component yields the equation

S (Big)—V X (u,, X Bi)—V X (Ui, Xb,,) — vZ(Bi,) = OR™1). (63)
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This equation is well known and corresponds to
(I.22a). However, in order to solve this equation,
further 1nformat10n about b,  is needed. Hence
the order R~! meridional terms of (61) must be
considered. Since the terms on the right-hand
side of (61) are also order R~!,the procedure
becomes more involved, and there appears to be
no simple way of making further reductions. Now
correct to order R~1/2 an equation for b,, can be
obtained from the meridional component of (61)
with the aid of (63), namely

]

57 b, —V X(u,, Xb,,) —V%,, =V X (TBi,),

(64)
where I' is a function of U and u’ and is given
correct to order R~Y/2 py Tough.4 It should be
emphasised that (64) is obtained from (61) after
very lengthy calculations. To this order, the
advection terms on the right-hand side cancel,
and the v X (I'Bi ) term results from the differ-
ence of the diffusion terms. To lowest-order,
Eq.(63) and (64) were first obtained by Braginskii.l
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APPENDIX:

Theorem 1 is established by induction, It is
assumed that

W =0,

for n = N — 1,and it will be shown that the result
is true for n = N,

(n-1)

Vv =0, (A1)

Subsequently, when a subscripted suffix is also
repeated, an abbreviated suffix notation is adopted,

e.g.,

{ Gy (ql)x(zzf(qz)}

’1 z
will be denoted by

8162{ (1) (q) (2) (qz)?r

Note that since the ¢; and i, in the example are
repeated, the expression represents a sum of nine
terms. Using the abbreviated notation, we intro-
duce the following functions:

P =(TTTND Gt (G ¥ P OO P P 53R,
c, V'S:<ns———-1_1(q§” 3, aﬂ_f((} (qo)gx(l)v(qp (e7 (s-1)lE§)X(s)Vs(qs)(e7X(s+1>~,s+1 .(ej_ A r>&;H>>,
Turs =(n_sr_1 (E/r) <al.. -,( %X(l)@)...%x(s) (q)x(s+1)u,s+1[e] x(s+2)l7's+z ,% X(n_r)aln—r>>’
€yr. =("s_111)(q2w) <31"'3n-r<9(e7x(1)@)"'%x(s -1) ti11> (S’V(" )Ie] x(m)A’m"' ,e7x(" r)a,w»,

and where the summation (g,:7) is over all distinct vectors (qo, 91 °
q; are nonzero, positive integers. For f, ., and g, ,  ,the ¢, 1s absent

A second induction proof is now used to show thatl®

s

-,q,) such that 2. g, = ¥, where the
i=0

(1) ,e (2)~, e W)~,
(N—l)' <a ex “igXx #2 g oXx “N)>
1
—w—yn Fraot/yaa—8xaa) T=1
_17 N-v N-r~-1 N-~7r
(N——T-—l) E FNrs—QGN,r.s+§l fN,'r,s—sZ:;l gN,v,s)’ 2=r=N-2,
(FNN 10 —Gyn-11 —8&NnN-11) 7 =N-—1, (A3)

for N = 2.
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By noting that V°V@ = 0,4 = 1,2, -+, N — 2, one of the differentiations in the definition (A2) is carried
out and gives

_ (D (2 (3 (D (2) (3 (D (2) (3)
FN,r,s “FN,r,s +FN.r,s +FN,r,s’ GN,r.s - GN,r.s + GN,r,s + GN,r,s’ fN,r.s — JN,r,s + fN,r,s + fN,‘r.s !
(1) (2) (3)
gN,r,s =8Nwr.s +gN.r,s +gN_r.s7 (A4)
where
(v _ (N—7r—1 rew € @NE (D @y e () @)e (s+D=, e W-r1D
FN'r,s_( s )(qz__)r)<al aN-'r—l[(“ VU¢ )UX Uy U X Ys X Usia X
x
xﬁ;v_,_l]>, 0ss=N-—-7r—1,
N—7r—1 e @pe (U @y, . . e D Gy frg€ () @Ne (s+1)
s(" 7% )(‘IZ?T)<31 aN»r-l[Tjw CEx it px %A (wv Fx vss)Ux
it
F2
Nor.s X, %X‘N"'I)A&_r_l]% l1=ssN-—7r—1,
0, s=0,
e N—r—l) < [e Gy e (U @), . e (s)?s)(,_ e (s+1)
W—r—s—1 (N7 I Qe dy [ W00 G B X e
13
(3) ~ +2) A -r-1) -~
Fyys= Xu’sd)%x(s Z)u’“z %X(N 7 1)“}\1-7—1]>, 0=s=N—-r—-2
0, s=N—-7r—1,
and
(1) _ (N—7r-—1 @,.g € , @)\ e (U @, e (s $)a e
Gy, = ) [ Doy £y @0)) £ (0G0 L g 6Dy e @ e
Nor.s ( s—1 (qg)r) ¢! Oy-r-1 (V VU"D ° Ux vyt gXx U1 Tx % U
x (N""l)”;v_r_l]>, l=s=N-—v,
(s —1) (N—'r—l) S o e-ed [gw(q°)e— W @), e (2 ()
s—1 )iy 177 Wy rx 1 TX Y-z
2 _ e
Gyys = X (V(q).v 197 - 1)vs(€s1—1))% — a ___%X(N-r-l) ﬁ}\l-r’l]>’ 2=<s=N-7,
0, s=1,
N—r—1 . e ,@ype (1 e (s-1) (g,4)
(N_T_s)( s—1 )(QEW)<81 "aN-r—l[ﬁlp 0 TX ”11"'[7X vt
i
(3) - )~ 1y -
Gyys = X (V(")'V %x(s)u's)%x(s RCAVIEE (ej i u;v_r_l]>, lss<N-—r—1,
0, s=N-—7,
and

N—7r—1 e (D @) e () z) e (s+1)~, e W-r-D~
( )(E <61 Tt Oype [(“"VG)UX vyt X YT X T UsattpX “fv-r-l]>:

(2 N—7v—1 e (1 @y e -1 @.7) e () @)\ e (s+1)
fN,r,s:s( )Z} <31...aN_r_1[e(_j_X vll...L_,x Us—s11<“"V(7X vss)ﬁx

X gt ees £ OO ]>, l=s=N—7r—1,
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e £ x

N—r—1 E e (1) (g9 e (s) (g)
01 By .l O = vy ... 8
o )(qi:'r) ! er[ gx o oX
€ (s+2) ~, e W-r-1) »,
T X se2 "X N—r'1]>’ l=s=N-7r-2,

N—r—1 @, )e (V@) ., e 6D @-Pe O . e
o 8(3_1 (?,)a ert [(VO00) X0y e E I O
Nrs=?
x xV TV, ,._1]> 1=s=N-v,
e (D W), . . e G2 @ @ g€ (-1 @ep)
(s—l) s—l )(qEr) % Nr1[e[7X 1111"'f/Xs sszz(VqW[sz v
22 =
Nr.s S>u;--.§x°"’1’a;v_,_l]>, 2<s=N-—7,
(N_T_s) Z)<a ee— <1);(q_1)__'_e (1) W) (@D, € ()7,
3_1 (qr) er 1 X Uy \'A Vﬁx u;
g(a) _ }
= e (s+1) =, e “r-1)~,
Nor.s xﬁxs )us+1...ﬁxw"1)uN_1,_1]>, l=s=sN-—-7r—1,
o, s=N—v.

The above terms are collected together and with the help of the definitions (17) and (18) lead to

(1 (L (L
FNrs_GNr s+1 " 8N, r,s41
N—r— @+ € (1, Gy e () @) e (s+l)~, e W-r-1)
= ( 2 3y oy (W07 Fx Vo e B0 st g
(g;:7)
Xﬁl'v_,-l», 0=s=sN—7r—1,
(1 N—r—1 (Ve (1) (q) e () (@)e (s+)~ e W-r-1)
N,r,s=( s )(qz.r)<al" er(d/ U ! "l—f ves [7)( ’s+1 .[7)(
i-
Xﬁj\,_,_l», 1=s=N—-r—1,
and
(2) (2) (3)
FN 7,5 GN 7.s+1 GN,r.s
—'r———l @) e (1 @) £ (1) (@g.pe (s) (gr1)e (s+)
S( E <al .. _7_1<¢qo X vy CTX vs’{il ﬁxsvsqs A s
B xﬁ's+1---gxwrl)ﬁN,1)>, l=s=N-r—1,
0, §s=0,N-—7,
—r—1 @y e (D (q) € (-1 @,_p e () (1) e (s+1)
S( s )(qE) 9y c* Oyey- 1(‘” o =X e £ X & P05 £ XD £x .
7
3
FN.r,s-l'__

0,

-~ e (N?‘l)'\
X ST 5 ),

l=s=N—-7r-—1,

S:N—'}’,

s +1)A/(qs+1)
Ws

)

)
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and
(2) (2) (3)
fN‘rs_ N.,r,s+1 gNrs
- (N—7v—-1 e (1) (q € (1) (ge.p € () @ +1)€ (s+1)
’S( s )E 9 er(eﬁ viteer X U X G0 X
(g;:7)
= e WN-r-1)
X“s+1"'UX uN,1)> 1=s=N-—7r-1,
0, S:O,N—’i’,
. (N— e (1) @y e (1) (g._pe () (e (s+1)
SS( s ><qE) ¢! N’l(eUX it x AT X U X
Y
f(3) _ . )
Nor,s-1 — -~ e W-r-1) ~
8 Xu’s+1"'L_/X “;v-r—1>>’ 2=s=N-—-7v—1,

0, s=1,N-—7,

Collecting together the above terms leads to

(¢D)] (1) ¢} (1)
FN,r,s - GN.r,s+1 fNr s “ENy.sel

_(N—7r—-1 Qe WG, e yble (g e W-r-Dg >
—< )(q r+1)<a aN—r— (‘P ° U X 1 X ¢ U N r-1 ’

s T s X s+1

0=s=N-—v-—1,

and
Fyyo * Fugs1— Gireit = Cuyos
S(N—sr— 1)(42“1)<81' By (ﬁ)% X(l)vTiz;)_ . ,%X(s -1 G, (q_l)[ej (S)v(sq )5 X(s+1>ﬁs+1, . % X(N-r-l)
B X Uy 1 >> l1=s=N—7r—1,
0, s=0,N—7
and

(2) (3) (2) (3)
fNrs fNVs‘l ENrsel " ENrs

. (N—7— e WG, e (UG e (s>(4>e (s+1)»~, e (N-r-1)- y
SS< S )(aL:d) a N—Y_ <eUX v T X s- lU v U Uour™” X uN—r—l)

—? l=s=N—7r—1,
0, s=0,N—7.

Further manipulation using the identity (11) and noting that {y/ (")) =0, n=1,---,N—1 leads to

Fygs ¥ Fis * Fiy st = Gt = Oxiy s = oty * s — B ot
—N—7—1) % (N——:—Z) Z, <31 aN_r‘l(lej F)e X(l);@"'% (s)_(q_)x(s+1) s+1fef x(s+z)
X W gx(N—r 1)17N_r_1)>_ (N:frl—z)(q m)<al R Uw(qw X(l)v(fl)'_.%x(s»l)v(gf_l)
X xOVIOE Ky e ey, 1)>{

—WN—7—-1) (Fy,,.;,.s = Gnyir,s)y 0=s=N—r—1, r=N-2,
10, s=N-—7. (A5)
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Similarly it can be shown that

(2) (3) 2 (&)
fN.r,s +fN.r,s-l 8N+l " ENps

N _— (N_'r_ 1)(fN_r(]_,s _gN,T*l-S )y
- 0, s:O,N—'r.

l=ss=N—-7r—-1,

A. M. SOWARD

ry=N-2,
(A6)

It is a simple matter to show that (A3) is correct for ¥ = 1, and induction using (A4), (A5), and (A6)

establishes (A3)for 1 =7 =N -1,

Now, by the identity (11) and the commutation property of the operator 3, [Eq.(16)], the left-hand side of
(A3) is zero. Hence for the case » = N — 1 we have the identity

<al<le7;(17—'f) X(1>u,1)>_ ( »

2;:N-1)

Setting @ = 1, we conclude that

w-1)

\AM' 0 (A8)

?

and consequently by (A7)

<31 (ng lp(qo)xu) ng1’)> . <a1(e X(1)V1(N—1))> —o.

(AT)

]

W =o.

The results (A8) and (A9) are easily established
for N=1 and N = 2, This completes the induction
proof,

(A9)
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The expansion coefficients in powers of time of the two-time spin-pair correlation function are obtained
up to terms of order ¢8 for the Heisenberg magnet of spin ; at infinite temperature for the square and
cubic lattices and up to terms of order ¢10 for the linear chain. The result is applicable to the isotropic
as well as anisotropic Heisenberg magnet where the exchange integrals in the z direction and in the or-
thogonal plane are assumed to be different. Analysis of the result is left to future work.

1. INTRODUCTION

The two-time spin-pair correlation function is the
quantity of primary importance in the theory of
neutron scattering from magnetic materials.1,2

A number of attempts to obtain it have been pre-
sented for the Heisenberg model. The approximate
methods3 always involve an unclear error. The
exact calculation for a finite linear chain at infinite
temperature has been given,4 but its generaliza-
tion to the more interesting three-dimensional
case seems impossible at the present time. The

expansion formula for the two-time correlation
function in powers of time has been written by
Kubo.5 The two leading terms of the expansion of
(S,2(t)S,#(0)) were given for the Heisenberg
magnet at infinite temperature by de Gennes® and
Collins and Marshall.? The corresponding terms
are given by McFadden and Tahir-Kheli,8 by
assuming different values for the exchange inte-
grals J,, and J . in the z—z direction and in the ortho-
gonal plane. The third term of order {6 has been
reported by McFadden and Tahir-Kheli®? for
general spin and Morita et al.10 for spin 3.
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cubic lattices and up to terms of order ¢10 for the linear chain. The result is applicable to the isotropic
as well as anisotropic Heisenberg magnet where the exchange integrals in the z direction and in the or-
thogonal plane are assumed to be different. Analysis of the result is left to future work.

1. INTRODUCTION

The two-time spin-pair correlation function is the
quantity of primary importance in the theory of
neutron scattering from magnetic materials.1,2

A number of attempts to obtain it have been pre-
sented for the Heisenberg model. The approximate
methods3 always involve an unclear error. The
exact calculation for a finite linear chain at infinite
temperature has been given,4 but its generaliza-
tion to the more interesting three-dimensional
case seems impossible at the present time. The

expansion formula for the two-time correlation
function in powers of time has been written by
Kubo.5 The two leading terms of the expansion of
(S,2(t)S,#(0)) were given for the Heisenberg
magnet at infinite temperature by de Gennes® and
Collins and Marshall.? The corresponding terms
are given by McFadden and Tahir-Kheli,8 by
assuming different values for the exchange inte-
grals J,, and J . in the z—z direction and in the ortho-
gonal plane. The third term of order {6 has been
reported by McFadden and Tahir-Kheli®? for
general spin and Morita et al.10 for spin 3.
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Nakamurall gave the fourth term of order ¢8

in the expansion of the autocorrelation function
(S,%(t)S,2(0) for the one-dimensional Heisenberg
magnet at infinite temperature. The fifth term of
that expansion is given in Ref.10. In the present
paper, we report the calculation of the coefficients
of the expansion of (S, %(t)S ,#(0)) as far as the
fourth term of order t8 for the square and cubic
Heisenberg magnets and the fifth term of order
10 for the linear Heisenberg magnet. The present
calculation is restricted to spin % and infinite
temperature.

2. BASIC FORMULAS

We consider the Heisenberg magnet. The Hamil-
tonian of the system is given by

H=-- EfZg[Jl(fvg)Sf-sg + J||(f’ )

where J (f,g) and J | (f,£) are equal to J, and J,
respectively,when f and g are nearest-neighbor
lattice sites and zero otherwise. This Hamiltonian
reduces to the one for the Heisenberg model when

54, (2.1)

J, =J,. If J; = 0 and the system is one dimension-

al, one obtains the X-Y model for which we know
the analytic expression for the two-time spin-
pair correlation function.

We calculate the two-time spin-pair correlation
function ¢ (R, t), which is defined by

OBy ;,t) = (S,#()S #(0) — (S, XS,/».  (2.2)

Here Siz(t) is the Heisenberg time-shifted operator:
S;2(t) = e iltS zg-tit (2.3)
In the present paper, we assume that the system is

at infinite temperature. Hence the average (A) of
an arbitrary operator A is calculated by

A

We evaluate the trace in the representation in
which the z components of N spins are given. Then
(2.4) is written as

= trd/trl. (2.4)

A = L 5 ls,et laluls D, (2.5)
2N {Sz' 2}

where ¥/{S,4} is unity when all the z components
of spins are equal to the given respective value in
the set {S;2} and zero otherwise.

Because of the well-known property of the trace,
o(R;;,t) = o(Ry;, — t) at infinite temperature. For
a regular lattice, there is an inversion symmetry
about the center of the ith and fth lattice site. By
this property, o(R; ;,f) = o(Ry, t). Combining these
two properties,one sees that o(Rﬁ, t) = o(Ry,— t);
namely, the function o(R,; f,t) is an even functlon
of time ¢£.

Expanding Sz(¢) defined by (2. 3) in powers of time
t and substituting the result into (2. 2), one obtains
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o(Rif,t) = 0(0)(RU) + ozoi g;—)l!)jto(Zn)(RU)th, (2.6)
where

0(0)(Rif) = <Sizsfz> = %Gif,

0(2)(}?”) = <[H1 [H’SiZ]]sz> ’ 2.7

0(4)(Rif) = <[H' [H’ [H:[

and so on.

When (2.1) is substituted in (2.7),0@"(R, ) is
expressed as a sum of terms with factors
J\2tJ,27=2l where 2] = 0,2,4,--.,2n. We shall
denote the coefficients as 02,(2")(R ):

H,5211s2 ,

0(2")( EJHZIJ 2n- ZZOZI(Zn)(R ). (2.8)
For the isotropic case J; = J, = J,one has

O(Zn)(Rif) = J2g, (2n)(Rif)’ (2.9)
where

Ut(z”)(Rif) = éOUZZ(zn)(Rif)‘ (2.10)

As the Hamiltonian H commutes with the sum of
S over all the spins,};S;? = 24,5, 0ne obtains
the sum rule:

Z:o-(zn)(le) = 0, n = 1,

i

(2.11)
and

Lo@dR )=0, n=1. (2.12)
f

Substituting (2. 8) into (2.11) or (2. 12) and noticing

that the equation obtained must be valid for arbitr-

ary values of J; and J_,one gets the sum rules for

Jo8"(R; ) as follows:
2021(2")(&/) =0,
]

n=1

, (2.13)

Z-ozl(zn)(RU) =0, n=1. (2.14)
f

Summmg over [,the corresponding relations for
o, @n(R, ;) are obtained. The relation (2. 14) and
the correspondmg relation for ¢,27)(R, 7) will
be used to check the final results

3. COMPUTATION

The computation consists of commutations of spin
operators for pairs of neighboring sites. The
commutation at each stage is taken between the
spin operators for the pair of sites (say ith and
jth sites) and one of the three terms (§,*S "

S;7S;* and 25,%5,;%) referred to that pair in the
Hamlltoman 'I]he commutation relations for all
the possible cases are given in the form shown in
Table I as a memory in the computer.

The calculations are performed for ten finite
diagrams shown in Fig.1. The lattice sites and
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TABLE L.
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Commutation relations for a pair of laftice sites, I and 2. The first column in each result is the number of nonzero

terms to be summed to give the result, The second and third columns denote the operators for the sites 1 and 2, respectively.
—,+,and z represent S7,5*,and S, respectively,and 1 for operator 1. The last column is the numerical factor for the product of

the operators.

Spin operators Result of commutation

Result of commutation

Result of commutation

at sites 1 & 2 with §,-S,* with §,+5 ,- with 25,25 ,%

1 1 0 0 0

1 — 1 - =z 2.0 0 0 =z - =20
1 =z i - + -1.0 1+ - 1.0 0

1 + 0 1 + z 0 1 2z + 2.0
- 1 0 1 2z - 1 - 2z =20
- - 0 0 0

-z 0 1 1 - 0.5 1 — 1 -0.5

z 1 1.0

-+ 0 2 {1 . _iof 0

z 1 1 - + 1.0 1 + - -1.0 0

FA 1 - 1 0.5 0 1 1 — -0.5
z z 0 0 0

z + 0 1 + 1 -0.5 1 1 + 0.5
+ 1 1 z + -=2.0 0 1 + z 2.0

z 1 —1,0

+ - 2 {1 z 1.0} 0 0

+ oz 1 1 + -0.5 0 T+ 1 0.5
+ + 0 0 0

bonds are labeled, and which lattice sites are con-
nected by a bond is put in the memory.

The following are the cases to be covered in the
calculation of the term of order ¢{#;where the
number given in parenthesis is the possible num-
ber of the cases at that stage:

(number of diagrams with less than
4 n + 1 bonds, given in Fig. 1);

diagram

(number of sites in the dia-
gram);
(number of bonds in the diagram),

initial site I

first bond

term in H (three terms),

result of commutation (0, 1,o0r 2);

. second bond (number of bonds in the dia-
gram),
term in A (three terms),

result of commutation (0, 1,or 2);

( #th bond
term in H

(number of bonds in the diagram),
(three terms),
(0,1 0r 2);

(number of sites in the diagram).

result of commutation
final site F

After the nth commutation, it is checked whether
all the bonds of the diagram are used and, if such
is the case, the trace is taken and the contribution
is accumulated separately according to the number
of times in which the term involving J,, in the Hamil-
tonian is used for the commutation among » com-
mutations. The result of each commutation is
zero or is expressed by a product of spins or a
sum of two terms as shown in Table I. If it is

zero, we go to another term of H or another bond
or another site,

Except for the initial site 7, when the commutation
is taken for the first time with respect to one of
the bonds connected to a site the resulting state
involves one of the operators S*,S™,or S# for that
site and also one of S*,S-,or S for the other site
of the bond. If that site is not chosen to be F,
another commutation must be involved to that site
to give a nonzero result; by means of this com-
mutation the other site involved in the commutation
enters one of the states S*,S-, or Sz, Hence com-
mutations must be taken at least 2(m — 1) times

| ._I_. 6: ._I_._Z_.i..j_.
t 2 i 2 3 4 5
12 S
2: *——eo—o
! ’ ’ | 42 3
T:
| 2 3 4
| 2 3
3: *——o —o o
I 2 3 4
4
8:
3
4: ! 2
| 2 3
4 3 3 5 5 4
5: 4 2 9: 4 3
| 2 2
! 2 i 2 3
10: ' 2 3 4 5
1 2 3 4 5 6
Fig. 1
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TABLE II. The coefficients y,2"(diagram, IF) and ,,(2»}(diagram, IF) for the terms of order f2~ for the nine diagrams given in
Fig. 1, where IF denote the initial and final sites.

2n = 2 2 =6
diagram IF v, @ 30@ diagram IF 0 vo® 5 (® A
1 11 0.5 0.5 1 11 8.0 8.0 0.0 0.0
1 12 —-0.5 —0.5 1 12 —8.0 —-8.0 0.0 0.0
2 11 15.0 9.0 5.5 0.5
2 12 —-32.5 —24.0 -8.0 -0.5
2 13 17.5 15.0 2.5 0.0
2 22 65.0 48.0 16.0 1.0
3 11 2.0 0.5 1.5 0.0
3 12 -17.0 -3.0 —4.0 0.0
3 13 10.0 7.5 2.5 0.0
2n = 4 3 14 —-5.0 -~5.0 0.0 0.0
3 22 24.0 8.5 12.5 3.0
diagram IF [O)) (4) (1) 3 23 ~27.0 -13.0 —11.0 -3.0
I 7o 2 4 11 10.0 4.0 3.0 3.0
1 11 2.0 2.0 0.0 4 12 —35.0 —24.0 —8.0 -3.0
1 12 -2.0 —-2.0 0.0 4 13 12.5 10.0 2.5 0.0
2 11 1.0 0.5 0.5 4 22 105.0 72.0 24.0 9.0
2 12 -2.5 —-2.0 —0.5 5 11 -7.0 0.0 -7.0 0.0
2 13 1.5 1.5 0.0 5 12 11.0 0.0 11.0 0.0
2 22 5.0 4.0 1.0 5 13 -15.0 0.0 -15.0 0.0
2 =8
diagram F M(B) Yo 8) ya ® va 8) ve (8)
1 11 32.0 32.0 0.0 0.0 0.0
1 12 ~32.0 —-32.0 0.0 0.0 0.0
2 11 161.0 98.0 54.0 8.5 0.5
2 12 —332.5 —224.0 ~96.0 -12.0 ~0.5
2 13 171.5 126.0 42,0 3.5 0.0
2 22 665.0 448.0 192.0 24.0 1.0
3 11 54.0 16.5 33.5 4.0 0.0
3 12 —190.5 ~76.0 ~96.5 ~18.0 0.0
3 13 241.5 143.5 84.0 14.0 0.0
3 14 —105.0 —84.0 —-21.0 0.0 0.0
3 22 6717.0 208.5 325.5 128.0 15.0
3 23 —728.0 —276.0 -313.0 —124.0 —-15.0
4 11 315.0 157.0 72.0 71.0 15.0
4 12 -1015.0 —640.0 —240.0 —120.0 —15.0
4 13 350.0 241.5 84.0 24.5 0.0
4 22 3045.0 1920.0 720.0 360.0 45.0
5 11 —97.0 138.0 —250.0 15.0 0.0
5 12 199.0 —160.0 335.0 24.0 0.0
5 13 —301.0 182.0 ~420.0 —63.0 0.0
6 11 4.0 0.5 2.5 1.0 0.0
6 12 —18.0 —~4.0 —13.0 —-1.0 0.0
6 13 35.0 14.0 21.0 0.0 0.0
6 14 —-38.5 —28.0 —10.5 0.0 0.0
6 15 17.5 17.5 0.0 0.0 0.0
6 22 92.0 15.0 53.5 23.5 0.0
6 23 —137.0 ~32.0 -72.0 -33.0 0.0
6 24 101.5 49.0 42.0 10.5 0.0
6 33 204.0 36.0 102.0 66.0 0.0
7 11 48.0 11.0 20.5 16.5 0.0
17 12 —195.0 —14.0 —94.0 —-27.0 0.0
7 13 157.5 84.0 63.0 10.5 0.0
ki 14 ~52.5 —42.0 —10.5 0.0 0.0
7 15 42,0 21.0 21.0 0.0 0.0
ki 22 900.0 292.0 398.0 165.0 45.0
i 23 —685.0 —256.0 ~-252.0 —132.0 —45.0
ki 24 175.0 112.0 42.0 21.0 0.0
7 33 460.0 120.0 158.0 137.0 45,0
7 34 —90.0 —32.0 —32.0 —26.0 0.0
7 44 20.0 4.0 11.0 5.0 0.0
8 i1 210.0 72.0 48.0 45.0 45.0
8 12 —945.0 —576.0 —216.0 —108.0 -45.0
8 13 245.0 168.0 56.0 21.0 0.0
8 22 3780.0 2304.0 864.0 432.0 180.0
9 11 —14.0 0.0 —14.0 0.0 0.0
9 12 126.0 0.0 126.0 0.0 0.0
9 13 -77.0 0.0 —91.0 14.0 0.0
9 14 42.0 0.0 70.0 -28.0 0.0
9 22 —~324.0 0.0 —336.0 12.0 0.0
9 23 218.0 0.0 196.0 22.0 0.0
9 24 —~238.0 0.0 —182.0 —56.0 0.0
9 33 —98.0 0.0 —56.0 —42.0 0.0
9 34 125.0 0.0 77.0 48.0 0.0
9 35 —168.0 0.0 —126.0 —42.0 0.0
] 44 —54.0 0.0 —42.0 —12.0 0.0
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TABLE III. The number of different ways n(R is> diagram, IF) by which diagrams with the initial and final sites IF occur in the
lattices with the difference of the final and initial sites Rs. (D), (Im) and (I, m, n) for R, correspond to the linear, square, and
simple cubic lattices, respectively.

R, =1(0),(0,0),(0,0,0) R, =(2),(2,0),(2,0,0
diagram IF © (0,0) (0,0,0) diagram  IF @ (2, 0) (2,0,0)
1 11 2 4 6 2 13 1 1 1
2 11 2 12 30 3 13 1 3 5
2 22 1 8 15 3 31 1 3 5
3 11 2 36 150 4 13 2 4
22 2 1
3 36 50 6 13 1 9 25
4 11 12 60 6 15 8 12
4 22 4 20 6 24 1 9 25
5 11 4 12 6 31 1 9 25
6 11 2 100 726 7 13 6 20
6 22 2 100 726 ; éz g Zl’g
6 33 1
20 363 7 31 6 20
7 11 72 600 7 42 3 10
7 22 36 300
7 33 36 300 8 13 1 6
7 44 36 300 9 13 2 4
8 11 4 60 9 31 2 4
8 22 1 15
9 11 8 48
9 22 8 48
2 33 16 96 R, = (3),(3,0),(3,0,0
9 1 8 e i = (3),(3,0),(3,0,0)
diagram IF (3) (3,0) (3,0,0)
3 14 1 1 1
6 14 1 3 5
6 41 1 3 5
7 14 2 4
7 41 2 4
Ri/ = (1);(11 0)’(17 01 0)
diagram IF (1) (1,0) (1,0,0)
1 12 1 1 1 Ri/ = (4)s (4r 0)’(4, 0, 0)
2 12 1 3 5 diagram IF (4) (4,0) (4,0,0)
21 1 3 5
2 6 15 1 1 1
3 12 1 9 25
3 14 2 4
3 21 1 9 25
3 23 1 9 25
4 12 3 10 R, =(1,1),(1,1,0)
4 21 3 10
5 12 9 4 diagram IF (1,1) (1,1,
8 12 1 25 121 2 13 2 2
6 14 4 16
8 21 1 25 121 g ;? g ig
8 23 1 25 121
6 32 1 25 121 4 13 4 8
6 41 4 16 5 13 1 1
7 12 18 100 1 16 48
1 14 4 16 o 12 4 16
7 21 18 100 6 24 6 18
1 23 9 50 6 31 16 48
7 32 9 50
q 34 9 50 7 13 12 40
7 41 4 16 7 15 12 40
7 43 9 50 7 24 6 20
7 31 12 40
8 12 1 10
8 21 . 10 7 42 6 20
0 12 9 8 8 13 2 12
9 21 2 8 9 13 2 6
9 23 4 16 9 24 2 4
9 32 4 16 9 31 2 6
9 34 4 16 9 35 4 8
9 43 4 16 9 42 2 4
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TABLE III-(continued)
R{f = (2) 1)1 (21 1’0)
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Ry=(1,1,1)

diagram IF (2,1) (2,1,0) diagram IF (1,1,1)
3 14 3 3 3 14 6
6 14 9 15 6 14 30
6 41 9 15 6 41 30
7 14 6 12 7 14 24
7 41 6 12 7 41 24
9 14 1 1 9 14 3
9 41 1 1 9 41 3
R, =(3,1),(3,1,0)
diagram IF (3,1) (3,1,0)
6 15 4 4
R,;/= (272);(232,0) EU: (2,1,1) »
diagram IF (2,2) (2,2,0) diagram IF (2,1,1)
6 15 6 6 6 15 12
TABLE IV, Expansion coefficients, 0, 2"(R, ;) and 05, @R, ) for the linear chain.
R, n 0,@ 15" 0, @ 0, @ ) e
(0) 0 0.25 0.25 0.0 0.0 0.0 0.0
2 1.0 1.0 0.0 0.0 0.0 0.0
4 11,0 9.0 2.0 0.0 0.0 0.0
6 163.0 100.0 55.0 8.0 0.0 0.0
8 2 909.0 1225.0 1232.0 420.0 32.0 0.0
10 60 704.0 15 876.0 25 704.0 16 260.0 2736.0 128.0
(1) 2 -0.5 —0.5 0.0 0.0 0.0 0.0
4 —17.0 —6.0 —-1.0 0.0 0.0 0.0
6 —114.0 —175.0 -35.0 —4.0 0.0 0.0
8 —2116.0 -980.0 —868.0 —252.0 —16.0 0.0
10 —44 356.0 —13 230.0 —19 026.0 -10 452.0 —1584.0 —64.0
(2) 4 1.5 1.5 0.0 0.0 0.0 0.0
6 37.5 30.0 7.5 0.0 0.0 0.0
8 826.0 490.0 294.0 42.0 0.0 0.0
10 18 300.0 7 560.0 7 896.0 2 628.0 216.0 0.0
(3) 6 —5.0 -5.0 0.0 0.0 0.0 0.0
8 —182.0 —140.0 —42.0 0.0 0.0 0.0
10 —5073.0 —2835.0 —1932.0 -306.0 0.0 0.0
(4) 8 17.5 17.5 0.0 0.0 0.0 0.0
10 840.0 630.0 210.0
(5) 10 —63.0 —63.0 0.0 0.0 0.0 0.0

in order to get a contribution from a diagram of m
lattice sites. If the term of order #» is of interest,
the number of sites m which are involved in the
commutation must be given by m < tn + 1. For
n=2,4,6,8,m: 2,3,4,5. For this reason,we
need the diagrams with m £ 5 lattice sites for the
calculation of the terms up to ¢8, They are listed
as diagrams 1-—9 in Fig. 1. In calculating the

term of £10 for the linear chain,we need the linear
diagram with six lattice sites;that is listed as
diagram 10 in Fig.1,

Table II shows the average of commutations for
those diagrams. For these diagrams, we used the
notations y, 27)(diagram, IF), where ] and F mean
initial and final sites, respectively,and y,,2»
(diagram, IF)in place of 0,2"(R, ) and 0,,2"(R, ),

respectively. As the y,@#)(diagram, IF) and

Y21 2n)(diagram,IF) are symmetric with respect to
I and F, the values are not listed for F < ]. The
results are given for 2n $ 8. As the Hamiltonian
commutes with the sum of S for all the sites,e.g.,
Z,;S2 = 2,8 %, we have identities:

Ziy9,@"(diagram,IF) = 0,

(3.1
Tryg,2"”(diagram, IF) = 0,

n=1
nz1l,
and the corresponding relations for 5,27, These

relations provide a method of checking our results.

In order to calculate the space—time correlation
functions, one needs the number of how many ways
those diagrams with the initial and final sites (IF)
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TABLE V. Expansion coefficients, 0,2n)(R, ) and 0,,("XR, ) for the square lattice.

Rij n 0t(2n) 00(2n) UZ(Zn) 04(27:) 06(2,.)
(0,0 0 0.25 0.25 0.0 0.0 0.0
2 2.0 2.0 0.0 0.0 0.0
4 50.0 38.0 12.0 0.0 0.0
6 2 050.0 1 088.0 770.0 192.0 0.0
8 120 790.0 43 918.0 47 080.0 25 280.0 4512.0
(1,0) 2 ~0.5 —-0.5 0.0 0.0 0.0
4 —17.0 —14.0 —3.0 0.0 0.0
6 —1770.0 ~477.0 —245.0 —48.0 0.0
8 —46 000.0 —20 916.0 —16 600.0 —17356.0 —1128.0
(2,0) 4 1.5 1.5 0.0 0.0 0.0
6 102.5 80.0 22.5 0.0 0.0
8 7 098.0 4242.0 2 296.0 560.0 0.0
(3,0 6 ~5.0 —5.0 0.0 0.0 0.0
8 —546.0 —420.0 —126.0 0.0 0.0
4,0 8 17.5 17.5 0.0 0.0 0.0
(1,1 4 3.0 3.0 0.0 0.0 0.0
6 190.0 160.0 30.0 0.0 0.0
8 12 096.0 8372.0 3 136.0 588.0 0.0
2,1 6 —15.0 —15.0 0.0 0.0 0.0
8 ~1554.0 —1260.0 -238.0 —56.0 0.0
3,1 8 70.0 0.0 0.0 0.0 0.0
(2,2 8 105.0 105.0 0.0 0.0 0.0
TABLE VI. Expansion coefficients 0,2%(R, ) and o0,,2®XR, ) for the simple cubic lattice.
R, m 0,2 ap2m 0q2m 0,2 0g @
(0,0,0) 0 0.25 0.25 0.0 0.0 0.0
2 3.0 3.0 0.0 0.0 0.0
4 117.0 87.0 30.0 0.0 0.0
6 7 989.0 4 068.0 3081.0 840.0 0.0
8 830 907.0 287 679.0 325 800.0 180 948.0 36 480.0
(1,0,0) 2 —0.5 -0.5 0.0 0.0 0.0
4 —27.0 —22.0 —5.0 0.0 0.0
6 —2034.0 —1223.0 —671.0 —140.0 0.0
8 —213 836.0 —92 820.0 —179 164.0 ~35 772.0 —6 080.0
(2,0,0) 4 1.5 1.5 0.0 0.0 0.0
6 167.5 130.0 37.5 0.0 0.0
8 19 978.0 11 690.0 6 706.0 1582.0 0.0
(3,0,0) 6 —5.0 —~5.0 0.0 0.0 0.0
8 ~910.0 —1700.0 —210.0 0.0 0.0
(4,0,0) 8 17.5 1.5 17.5 0.0 0.0
(1,1,0) 4 3.0 3.0 0.0 0.0 0.0
6 320.0 260.0 60.0 0.0 0.0
8 36 232.0 23 268.0 10 724.0 2 240.0 0.0
(2,1,0) 6 —15.0 —15.0 0.0 0.0 0.0
8 —2 846.0 -2 100.0 —490.0 —56.0 0.0
(3,1,0) 8 70.0 70.0 0.0 0.0 0.0
(2,2,0) 8 105.0 105.0 0.0 0.0 0.0
(1,1,1) 6 —30.0 ~30.0 0.0 0.0 0.0
8 —5 208.0 ~—4 200.0 —840.0 —168.0 0.0
(2,1,1) 8 210.0 210,0 0.0 0.0 0.0
appear when the initial and final lattice sites of and

which the difference is R, . ,are given in the lattice. @n) B .
Those numbers n(R, f;dialgfr’am,IF) are listed in o, @R, ) = Z Lin(R,;

. diagram IF
Table III for the linear, square,and cubic lattices.

The results for those lattices are obtained as a diagram, IF )'yt(z »)(diagram, IF). (3.3)
sum of products of the average for each figure
and the number of ways that figure appears: By using Tables II and III, we obtain our final re-
sults: Tables IV—VI for ¢,,27(R, ) and ¢,2"(R, ).
02,27(R, ) = Y LnR, . Table IV includes the values for 2 = 10, but the
diagram IF data used intheir calculation are not given in

diagram, IF )y, ,(2n(diagram, IF) (3.2) Tables II and ITIi, The results have been confirmed
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to satisfy the sum rules (2. 14) and the correspond-
ing relation for ot(Z")(RU).

0,3"(R ) in Table IV are the expansion coefficients
for the X-Y model, for which Katsura ef al.12 gave
the following closed expression:

(Siz(O)sz(t)) = % [Ji—f(yxt)]z. (3 .4)

Our coefficients 0,2#)R; ) in Table IV are con-
firmed to be correct with the aid of the formula

e 2 (1M +2R)1]2
Tu(20% = 12 g [(n + 2k)1]2(2n + k)1 k! £#h3.5)

4. CONCLUDING REMARKS

This paper is devoted to describe the computation
of obtaining the coefficients of the series expansion
in powers of time of the two-time spin-pair cor-
relation function of the Heisenberg model of spin
4 at infinite temperature,and to report the results
of the computation. The main results are given in
Tables IV-VI. Because of the limitation in the
computer used, the coefficients of higher orders
are obtained after a number of runs of the com-
puter. In order to save the computer time,it is
devised that the trial of choosing sites and bonds
is terminated when choice of the bonds after that
stage will result in zero contribution. Such a
device is used by Kobayashil3 in his calculation
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for the one-dimensional case. Details of these
procedures are not described in the text.

The results obtained for the term of order ¢4
agree with those give in Ref. 6-8. The results
for the order £6 is not in agreement with Ref. 9.
The results obtained by the analytic expression
for the X-Y modell? is used to check a part of
the present computation.

Analysis of our coefficients are in consideration.
The computation of the higher-order terms and
the computation for finite temperatures and for
higher spins are now the problems under consider-
ation.

Cook and Richards 4 announced a future paper on
the term of order ¢8 of the autocorrelation func-
tion. It is hoped that they will give a check for that
part of the present resuit.
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We discuss the problem of decomposing the matrix elements for degenerate representations of SO(p, 1)

according to the noncompact subgroup SO(p — 1, 1),

The overlap functions which obtain this decomposi-

tion are calculated explicitly and their properties are used to discuss the SO(p, 1) generalized Regge

expansion.

1. INTRODUCTION

During the past few years, there has been a rapid
development in the representation theory for non-
compact Lie groups.l A considerable amount of
interest has been focused on the so~called pseudo-
orthogonal groups of the type? SO(p, ¢). In addition,
if either p or g is equal to unity, the analysis of
such representation theory becomes much simpler.
Indeed in this case, SO(p, 1), all the unitary irredu-
cible representations have been classified.3 In
most of this literature, the representations have
been constructed in a basis made up of the finite-
dimensional unitary irreducible representations

of the maximal compact subgroups. More recently,
however, for various reasons, attentions have been
focused on the decomposition according to non-
compact subgroups.4~6 In these cases the results
indicate that a unitary irreducible representation
of the continuous class decomposes according to
its noncompact subgroup into a direct integral of
unitary irreducible representations of the continu-
ous class taken twice and a direct sum of unitary
irreducible representations of the discrete class
taken once (if they occur at all).

In the present paper, we discuss this result for the
decomposition SO(p, 1) O SO(p — 1, 1) in the case
of the most-degenerate, ¢ continuous, principal
series. Although Limic and Niederle previously
gave this result,7 they confined themselves to the
decomposition in their representation space. On
the other hand, we give, as well, the decomposition
of the matrix elements and calculate explicitly the
so-called overlap functions between the canonical
basis and pseudobasis. Moreover, our representa-
tion of these functions is in a form which reveals
their singularity structure explicitly and leads to
a generalized Regge expansion as well as factori-
zation of the residues.

2. CONSTRUCTION OF THE UNITARY IRREDUC-
CIBLE REPRESENTATIONS OF SO(p, 1) ON
THE HYPERBOLOID HG-1)

A single sheet H(’ D={y 711 -

Z a2, =1,m,> 0} of the {‘wo- shieted hyperb0101d
isa transmve manifold for the proper group

SOy(p — 1, 1). In fact, HY ™V is a rank —1 homogene-
ous space2 8 of SOO(,IJ — 1, 1) which is homeomor-
phic to the coset space SOO(p —1,1)/S0(p — 1). We
can construct the so-called quasuegular repre-
sentation of SO,(p — 1,1) on H, as follows: Take
the continuously dlfferentlable functions on H

and make a Hilbert space out of them with the

inner product
WACRIA N

(f1,/f2) = f}lfﬁ‘l)dg (2.1)

and norm
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J

o a2 |f,)]2 < ®,

where dﬂ is the usual invariant measure on

Hi"' 1), denote this space by .,(32(1 1)) then let
L{g) be an operator on £2 (H ) such that fo
each g € SO,(p — 1, 1) and everyf¢ £2 (H“’")
we have

LY@, = fe”'8,).

It is easily verified that L(g) is a representation
of SO, — 1, 1) and it follows from the invariance
of the measure under SO o(p — 1, 1) transformations
that L(g) is unitary. However, L(g) is not irreduc-
ible, but decomposes into a dlrect integral of
irreducible representations by the Gel'fand-
Graev theorem.? The irreducible content of
.CZ(H,E’ '1?) is obtained by considering the eigen-
vectors of the only nonvanishing Casimir operator
0f SO,(p — 1,1) on Hy D the Laplace- Beltrami2.8
operator A(H ))

Now we try to extend the representation (2. 2) with
the aid of multiplier representations to a repre-
sentation of SO ,(p, 1) in analogy with the represen-
tations of SO(p) on the (p — 1)-dimensional sphere, 10
S @1 1o this end we consider the quasiregular
representation of SO (P, 2 on the upper sheet of
the p-dimensional cone, & oo

0, £,> 0, with contmuously d1f erentlable homo-
geneous functlons of degree o of the homogeneous
variables ¥ = ¢¥£2 p=0,1,---,p — 1. First
notice that since ¢? varies between —o and +,

1" is not well defined when ¢¥ takes on the value
zero. Secondly, since £, > 0, when £¥< 0 we have
N9 < 0 and we cannot identify this with the single
sheet H, N fact, we can handle both of these
problems by con51dermg both the sheets H @)

and H¢ Si taking those functions in £2(H (‘"1))
and .82 ) that are related in a continuous
fashion at infinity. The relevant Hllbert space

then becomes the direct sum £2 @Yy = g2t
@ £2(HF ™), and the continuity problem can be
made mamfest by mapping £2(H (1) unitarilyl?l
onto L2(S A, As a result, we have two manifolds,
H+(" D and %Y on which the group SOox—1,1)
acts transmvely and hence two quasiregular repre-
sentations of SO ,(p — 1, 1). And it is for just this
reason that the decomposmon S04, 1) > SO,

(» — 1, 1) occurs with multiplicity 2. We will show
this explicitly in the next section.

(2.2)

We are.now in a position to extend the representa-
tion (2.2)of SOy(p — 1, 1) to a representation of
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S0 (p, 1): Let T°#g) be an operator on £2 HYD)
such that for each g € SO,(p, 1) and every

fe€ £2(H ) we have
ToEYm) = [{g1)in, + (g~ 1)5]°
g-1)¥n, + (¢-1)2
. 2.3
*7 (cg-l);nu v (g—l)g> @3

Again it is easily verified that T9(g) is a repre-
sentation. By the transformation properties of the
measure we see that 79(g) is unitary with respect
to the inner ;();od uct (2. 1) extended to both sheets
H ) and H' if and only if

o=~3(p—1)+ip, preal,
We can, however, restrict p to be nonnegative since
T-¢ and TP are unitarily equivalent. It can also be
verified that T9%(g) is an irreducible representa-
tion of SO 4(p, 1). Thus Eq. (2. 3) describes a unitary
irreducible representation of the most degenerate
continuous class of the group!2 SO (p, 1).

Before proceeding with the actual decomposition,

a few words are in order concerning the infinitesi-
mal generators of the group representation (2. 3).
As is known, 8 given a continuous unitary repre-
sentation of a group, one can always obtain self-
adjoint operators (infinitesimal generators) via
the one-parameter subgroups. Performing this
formally for the representation (2. 3), we find

. d 0
Spu:z(n“ a_nl;_"nu 57;;) (2'4)
for the SO (p — 1, 1) subgroup and
[/ d 9
I‘p—u(m—npn e +on) (2.5)

for the remaining generators. Easily we arrive
at the Lie algebra of SO(p, 1):

[S“ur SO'/\] =i(g'uosp)\ pdsllk
(S, O\] = gL, — 8,,\T0),
T,L,]=iS,,

However, it is not enough simply to write down the
infinitesimal generators as differential operators
on a Hilbert space in order to have a representa-
tion of a Lie algebra. One must know precisely
the domain of definition of these operators. As an
example of this, we see that the generators r,
given above alon (% with the S, , appear to leave the
subspaces £2(HY mva.nant 13 TThus it appears
that one can represent the generators of SO(p, )
on the subspace L2 (H},” )) alone. That this is
only apparent can be seen readily from the global
viewpoint as discussed above; but from the local
viewpoint this information is buried within the
domain of definition of the generators (2. 4) and
(2. 5). The constraints mentioned previously for

gu/\ o + gp )\Suo)’
(2. 6)
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the functions f* € £L2(H? V) i.e., continuity at
infinity, can be understood by breaking them up
into even and odd functions. As long as the genera-~
tors do not mix up the even and odd functions, the
continuity problem remams the same and the
subspaces £2(H @~ ) remain separately invariant;
this is the case for the generators S ,. However,
if the even and odd functions are mixed by the
generators, as is the case for T, , the functions in
the other subspace must also change in order to
keep the proper continuity. Hence the infinitesimal
generators I', do not leave £2(H 1) ) separately
invariant, as we have seen must be the case from
the global considerations.

3. THE DECOMPOSITION SO, 1) D SO(p — 1, 1)

We begin by introducing a system of coordinates
on HY Y for which the Casimir operators of both
the subgroups SO() and SO(p — 1, 1) separate.
They are just the spherical coordinates on H f"' v
given by

1y = % cosha,

7l = sinha sinep_z . sin6;, 0 <9, <2m,

n? = sinha sin6,_, ... sin, cosé;, 0<6, <7,
C =2, p—2

n°~! = sinha sing,_, cosf,_3,

n? = sinha €086, 5, 0 <a<o, (3.1)

The SO(p — 1, 1) Casimir operator is just the La-
place-Beltrami operator on H ¢ 1

— A(Hi‘b_l)) = '——1—2—- —?— Slnhp 2
sinh?™%4 da aa
0 -
+ 2 1 3 sin? 3 p-2 4
sinh®a sin®™" 6, _, 96,2 96,2
2
" sinn2 '291 2 _37’ 3-2)
sinh®a sin“6,_, -+ sin26, 0967
or perhaps in the more convenient form
- 92 3
—aEYY) =L+ (p - 2) cotha =
§ 242 ®-2 da
1 @-2)
———A(S 3.3
sinh?q ( ), 3.3

where A(S("'Z) ) is the Laplace-Beltrami operator
on the (p — 2)-dimensional sphere. Now, to find
the Casimir operator of the compact subgroup
SO{p), we use explicit expressions for SO(p —1,1)
Casimir operator,

85,8 =T2 + 0@ +p — 1) =— A@EP™),

and the SO(p) Casimir operator,
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Cso=38;8” + LT, with i=1,---,p—2

to obtain

Csopy=—ABY?)+am® )+ 1%
—0o{oc+p—1). (3.4)

But we can {ind Iy in the spherical system easily:

Fy=4=1d (~sinha % + 0 cosha);
thus

a2
—Csoy = coshza.ézz— +<(p — 2) cotha
+ (1 — 20) sinha cosha) -;- + o(o — 1) sinhZq
a

— (p — 1)o + cothZa A(S®™P). (3.5)
Of course, the eigenvectors of A(SQ“Z) ) are just
the (p — 2)-dimensional spherical harmonicsl4with
eigenvalue n p_z(n 2 TP — 3). Hence, the eigen-
value problem for Eq. (3. 5) can be solved yielding,
aside from the multiplier factor, the polynomial
solutions in 1/coshe,

Faps

X Yy(0y-2s""", 61)
and the pseudobasis,

%,

X YN (Gp—z’ o ': 61)9

F. ARDALAN

N g ol AR

o
cosh « tan -
" Mp-2

(x 1/cosha).

The factor cosh’ a is a reflection of the fact that

the measure on H -1 is not invariant under SO({p)
transformations, and the multiplier factor is just
what is necessary to make the representation

unitary.

The eigenvalue problem for A(H f"' 1)) has a purely
continuous spectrum; for if to be handled rigor-
ously, one must venture outside the standard
Hilbert space techniques. This can be done using
Gel'fand's “rigged Hilbert space” approach?3;
however, nothing more will be said about this
approach in the present paper exc?t that we will
consider the eigenfunctions of A(HY "1 to be 6-
function normalizable. They are, aside from the
normalization constant, given by

~(npgr (-3V/2)

~(p-3)2
-1/2+iv (c

{sinha) osha),

where — {{p — 2)/2] — 12 is the eigenvalue of
a#H®™Y), Also, for convenience in what follows
we putn, ; =nand n, , = [. We can ngw write
two complete orthonormal bases for £°(H e-1 ):
‘he canonical basis

w(@ 8,0y, 81)=(a, 6,9, 6; |14, N) = N, cosh”! q sinhla ¢ @2Y2 (+ 1/cosha)

(3.6)

v (@68,.3,7%,61) =g, 0,5, 6, 1,1, N} = N,(sinha) ©=32 pll @32 (cogha)

3.7

where N denotes (Rynzy = ny)and Yy(6,.9, "+, 6,) are the (p — 2)-dimensional spherical harmonics.

The normalization ccastants are given by

1/2
)

o vor #=1

and

1 2-2 I'(nj L z)nj+(j-1)/z [(21M +§/2T (0, —n; + 1

7

] . 2 inh 1/2
[MN:A“N"H: ’r(w+z+i’2 2)l v s "”:l N, ..

T (n;,y +n; ) ]

(3.8)
o2

The orthonormality and completeness properties of these basis functions are well knownl?l;

eve D
?
n b 1.”D 1 n'l,nl;

_}[I’-* H_dgp _f;r,N' (Qp) fn'N(gp) = 6

<{r)
Lo %80 @) O () =8, 8 — v')5

L [Tav el @) B @) = 0, — ),

Tpz,.. AL

Bp-2,"p-2

5 fan@) fon @) =06, —9)

Mp g,eee )
vee O

im0
ot

3.9)
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where the range of summation over the n, is
nlz—nz,'-'nz, 1=0,1+-+;andn;=0,1,"
N, P =2"",p— 2 ifn;, isan 1nteger other-
wise, the sequence extends to infinity. Using thesge
relations, we can expand any function in 2@ )
in terms of either the canonical basis or pseudo-
basis

f(a, 6?-2’ R 91) =EN Qp N fn,N(a, 9P_2, e 961)

_vy Jave] o

N 7=~

(@ 6,5, """, 1), (3.10)

and the overlap functions

Kj(v,%,n) = f:’ sinh? 24 da (sinha) ¢~ %2

-( 1+ (p=3)/2]

[o) 1
X P_i 9%y cosh a tanh g

x Cl®-2/2 4 1/cosha) (3.11)

allow us to go from one expansion to the other via

X c
blfTI)V = EO Gy, N Kl (V’ 7, ”)- (3. 12)
n=

Moreover, by using the “overlap” functions (3. 11),
the transition between the canonical basis and
pseudobasis for the matrix elements of group
transformations can be accomplished. Denoting
the matrix elements16 of SO(p, 1) in the canonical
and pseudobasis, respectively, 17 by Tnf’ oy &)
and Tﬁ,ﬁv, Y N(g) we find, using the relations (3. 9)
and (3.1

2 Ky hrn) Ty @)

nnt

T]’;DI N/, UN (g) =

x K| (v, 7,7) (3.13)

1
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and

T @ =2 [av[avK] ', 1'n)

T

X TPP

vI Nt UN (3.14)

(g)Kf (v, 7,m).

By restricting g in Eq. (3. 14) to the subgroup

SO — 1, 1), we arrive at the basic formula for

the decomposition SO(p, 1) D SO — 1, 1):
o s ()

=% [av K}, w,,n") TN () KE (v, 7,7)
T (3.15)

for k€ SO(p — 1, 1). In addition, taking g to be the
identity in Eqgs. (3 13) and (3. 14), the orthonormality
and completeness conditions for the “overlap”
functions can be obtained:

3 favEL w,m, ) K| @ 1,m) =5,
T - (3.18)
LKW, T, n) Ki (v, T,m) =0, 6(v — v).

n

Note that in order to be able to write down equa-
tions like Egs. (3. 13)-(3. 16), we must convince
ourselves that the K functions have the proper
convergence properties.

4, CALCULATION OF THE OVERLAP
FUNCTIONS
First, it is easily seen from Eq. (3. 11) that

K, —,n) = (— (4.1)
and

Kb, 1,n)

VK (v, +,n)

= K;p(— v,7,n) = K;p(v, 7,n). (4.2)

To perform the integral (3. 11), we make the simple
change of variables x = cosha; then

) (= 7 _ -
KiWw, +,n) = NNy [ ar(—x2)"¢ S22 (oot pLBb B2 (1) QOB ) (4.3)
and expand the Gegenbauer polynomials as
Cl+(P~2)/2(l> _ 1 {(n-1)/2} Y I'n +1— ) (?_) n-1-23 . 4)
net ) T+ 3p—21 i Tl +1—1— 2j)j1\¥ ’ .
which yields
{(n-0)/2} Y .
N,N 1Y Tl +1~—3) 0 (% n+2i - .
vV ¢ ( I on-r-2i [ 4O n425 () _ 3)H-VA2 - (0-3V2) (1) (4 1)

r¢+:p—-20] 0 j! Tw—1—2j

where {a} = largest integer <
of Ref. 18, yieldingl?

VT NN, 27 D2 ((ny2) (— 1)
I+ — 2))
T'n+1—)TEn—1+ 53—

K)(v, +,n) = -
i=0 7

X

ip —iv) —j)T(gn—1 + 3 —

-1/2+iv

«. The integral (4.5) can be performed with the aid of formula 18.2.3

ip + iv) —j)

Tl —1+1) —HTGR—1 + 2) =TGR + 30 — 1) —ip) — HT (R +

. (4.8
3 +1)—ip)—3j) .6
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Equation (4. 6) can be expressed in terms of the generalized hypergeometric functions20

[ o] - ), o (), 2
ra ﬂl’ ...,ﬂq n=0.(B1)n..' (ﬁq)nn!
by using the relation
_ oy 1))
Tie—n) (1-a),

to obtain
VIN,N,
HEIER(+ Hp —2)

K, +,n) =
2

~F(a+n)

Fe+DIEm—I1+i—ip—iv))TEn—1+3—ip—iv)

TG — 1+ DTG — 1 + DT + Xp — D) — ip)T(n + 2p + 1) —ip)

—in—1-1),—
X 4Fg

Although the integral (4. 5) does not converge for
all complex v, either Eq. (4. 6) or (4.7) gives an
analytic continuation of the overlap functions into
the complex » plane. And indeed Eq. (4. 6) provides
a very convenient form in which to read off the
analytic structure. We see that, aside from the
square root branch points contained in the N, fac-
tor, there are the following sequences of poles in

the variable o(p — 1) =— 3(p — 2) +iv:
forl fo(p—1) =—ip+2k—3(p—3),
BT o —1) =ip— 2k — 3 (p — 1);
for {o(p——l):—ip+(2k+1)—%(p—3),
n — 1 odd: .

op —1)=ip— @2k +1)—3(p —1);
E=0,1,-. (4.8)

Thus, in the case p = 3, we have essentially one-
half the poles of Sciarrino and Toller. This cor-
responds to the fact that, for Toller M = 0 poles,
the Sciarrino—-Toller residues vanish for those
poles omitted in Eq. (4. 8). In fact, for the degener-
ate continuous representations (M = 0) this is the

—-n,—%(n—l+§—z‘p—iv),—%(n——l+g—ip + iv)

o —1),— 3+ 5(p— 5 —ipl,— 2ln + 2(p —3) —ip]

s1c.
4.7

—

total content of Eq. (5.24) of Ref. 4. Hence, we ex-
pect the factorization of generalized Regge resi-
dues. More specifically,an SO(p, 1) Regge pole
with factorizable residue decomposes into a series
of SO(p — 1, 1) Regge poles, each with factorizable
residue.

It is easy to cast the overlap functions into a form
closely analogous to that of Sciarrino and Toller
by using a different expansion for the Gegenbauer
polynomials in Eq. (4. 3). By using the expansion

cl+(P‘2/2)

n-1

1
@ =1+ =2)

n-1
1 +2(p—2) +3)
x ]Z(\, ETETES))

Tk +1+3p +7)279(1 —2)
Thm—1+1—j)j! ’

performing the integration with the aid of formula
18.2.10 of Ref. 18, and expressing the result in
terms of Meijer's G functions,?? we can write

g
Ko, +.m) = cosmivN, N, ' .y Tl +5(p—2) +ill(n + 1+ 3p +5)2
WM =T+ 20 - 2)] % T@I+p—2—2j)Tle—1+1—7jIl( +j —0)
—_7 1 —_ 4 1 ; Lr__
xc%?{% : f(p V=g arw, 2w } 4.9)
—o—z(p—1), 0 , —1—3(0-3

The poles are obtained easily by using the Mellin—
Barnes integral representation yielding poles at

op—1) =—ip+k—3(p—3),
o(p—1) =ip—k—z(p—1).

Comparing this with Eq.(4. 8), we see that the resi-
dues at the poles in Eq. (4. 9) must vanish when
n—1 +kis odd.
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$. ASYMPTOTIC BEHAVIOR
As mentioned previously, in order that the decom-

position (3. 15) be meaningful, we must assure our-

selves that the integral in this decomposition con-
verges.

The asymptotic behavior of the K functions in the
variable v can be obtainedfrom Eqs. (4. 6) and (3. 8).
The I functions in Eq. (4. 6) have the following
asymptotic behaviorl?:

T(x +iy) < T +iy)l |.2’.|_1_> (2m1/2

- ~(n/2) ¥l
X lylx 1/26 (n/ )y’

I 1+(p-3)/2

while N, - {v . Thus, for fixed n,/,and p

N,T(GERr—1+
< (@m) PP 3 v,

Hence, K/ (v, 7,n) dies off as v goes to infinity
faster than any negative power. But, from Eq.
(2.13) of Ref.16,the only dependence of Tyoy (@)
on v aside from the oscillating factor e”iev ig
through the hypergeometric function:

+3(b—2) —ivin, o + 5(p —2) +k+E;

2;1—e2%),

Fyn),,
pa Tty 5 tD—
which at worst dies off like a negative power as

v - ©, Thus, the integral in Eq. (2.13) converges,
and the decomposition is well defined.

L—ip—iNI(z(n—1 + 5 —ip +iv))
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Finally, we can analytically continue T}, ,v(8) in
the complex plane of the variable p to obtain a
generalization for SO{p, 1) of the usual Regge pole
procedure.4s21 When this is done, any of the poles
of the integrand in Eq. (3. 15) that cross the inte-
gration path become the Regge poles and a Regge
expansion is obtained. Of course, by examining
the asymptotic behavior of Ty (a) as o — + o,
we can never hope to get the integrand of the
“background” integral any better than

e‘a[(P-Z)/Z)

for any complex v. To see this, we write, using
one of Kummer's identities20 and Eq. (2. 14) of
Ref. 16,

-[(p~2)/2]orbvan

+ Aze~[(p-2)/2]a—iua

v
TNN' ~ )\le

as o — o,

In order to get a complete Regge asymptotic ex-

pansion, one must deal with the second-kind func-
tions. A general procedure which can be applied

in our case for finding these functions is given in
Ruhl's book.1
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A closed-form expression for the s wave part of the Hulthén potential's T matrix is derived. This ex-
pression is used to obtain a simpler result for the terms in the Weinberg series for the T matrix than

the results given previously by other authors.

1. INTRODUCTION

Recently® one of us (M.G.F) was able to derive the
completely off-shell, two-particle T matrix for the
exponential potential. The derivation was based on
the differential equation approach used by Van
Leeuwen and Reiner? to obtain the T-matrix for a
potential consisting of a chain of rectangular wells.
The inhomogeneous differential equation that arises
in this approach is similar to the well-known
Bethe—Goldstone3 equation.

In this paper we show that with some modification
the differential equation approach can be used to
find the fully off-shell, two-particle T matrix for
the Hulthén potential.4 The modification amounts
to obtaining an expression for the T matrix which
does not involve the potential explicitly, thereby
avoiding certain integrals that are difficult to do
because of the 1/7 singularity in the Hulthén poten-
tial. Using our closed-form expression for the
Hulthén T matrixwe are also able to find a simpler
expression for the Weinberg seriesS for the T
matrix than the expressions given previously by
other authors®. The Weinberg seriesS is a separ-
able expansion of the two-particle T matrix which
has been shown to be of practical value in calcula-
tions on three-particle systems®,7,

2. THE T MATRIX FOR THE HULTHEN
POTENTIAL

The two-particle T matrix is the solution of either
of the equations

T(s) =V + VGy(s)T(s), (2.1)

T(s) =V + T(s)G,(s)V, (2.2
where V is the two-particle potential, s is a com-
plex parameter, and Go(s), the free particle resol-
vent, is defined formally in terms of the kinetic
energy operator H, by
Gy(s) =(s — Hy™L. 2.3)
Unless stated otherwise, we will assume that s has
a small positive imaginary part, thereby guaran-
teeing the correct outgoing wave boundary condi-
tion, i.e.,
(2. 4)

s=E+ie, 0<e<l.

Following Van Leeuwen and Reiner2, we define
Q(s) = 1 + Gy(s)T(s). (2.5)

Using (2. 1) and (2. 5) we obtain

T{(s) = V§(s) (2. 6)

and
(s —Hy~ V)Q(s) = s — H,, 2.m
which we write out in a mixed representation. i.e.,

[s + v2 — v Kr|Q(s)Iglm) = (s — q2)

x {r|gtm), (2. 8)
where
(rlglm)=(212)~1/2j,(qv)Y, (7). (2.9)

j,(q7) is the usual spherical Bessel function and
Y,,.(7) is a spherical harmonic. We are working in
units in which 1i2/2m is 1. Since the potential is
central, we can write

(r|Q(s)lqim) = (272)1/2Q(r, ¢; 5) Y, (¥), (2. 10)

which upon substitution into (2. 8) gives us

1 a2 i+ 1) .
(s + 7;}31’———15——— V(r)) Q,(r,q; )

= (s — g2),la7)- (2. 11)
The solution of (2. 8) or (2. 11) will be referred to
in this paper as the off-shell wavefunction. If one
has an expression for the off-shell wavefunction, it
can be inserted in (2. 6) in order to obtain the T
matrix. When we attempted to do this for the
Hulthén potential, 4 we found that the integrals en-
countered were difficult to do because of the 1/»
singularity in the potential. An expression for the
T matrix which does not involve the potential ex-
plicitly can be obtained from (2. 5).

If we write out (2. 5) in the representation given by
(2. 9) and use (2. 9) and (2. 10), we obtain

(s — p2)=3plm | 7(5) lqim) = (2v2)=2 [ r2arj,(p7)

x [Q,(r, g5 8) — 7 ,(a7)]. (2.12)

From (2. 11) it follows that outside the range of the

force,
Q,(r, q;s) =j4,lqgv) + A,lq, &) () (k7), (2.13)
where

s=%2  Imk>0, (2. 14)

and % (*) is a spherical Hankel function as defined
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in Messiah, 8 This Hankel function satisfies the
outgoing wave boundary condition implied by (2. 4).
Using (2. 14) it is easy to show that

f v2dyj (pr)h, P (kr) =— k~1(s — p2)~1(p/k)1,
0 (2.15)

Combining (2. 12) and (2. 15) we arrive at

(plm | T(s)|qlm) = — (2n2k)~L(p/k)!A (g, k)

+ @)1z — p2) [ v2dri (pM)0, 45 )

— j,qv) — Alq, B ) (r)]. (2.16)
By setting p = k in (2. 16), it follows that 4, is the
half-off-shell T matrix. Thus (2.13) and (2. 16) be-
come

Q,(r,q;s) =j,lqr) — 202k&lm|T(s) | qim)n, ) (kr),
(2.17)

(pbm | T(s)qlm) = (p/k)(klm | T(s) | qlm)

+(2n2)"1(k2 — p2) f r2drj (pr)[Q,(r, q; 5)

—7,(q7) + 202k {klm | T(s) | qlm)h, ) (kr)].
(2.18)

Clearly (2.17) is a generalization of the well-known
result that the coefficient of the outgoing wave in
the ordinary Schrodinger wavefunction is propor-~
tional to the partial wave scattering amplitude.

(2. 18) is a generalization of the relation® between
the half-off-shell 7 matrix (g = %), the on-shell

T matrix (p = q = #) and the ordinary Schrddinger
wavefunction.

We now turn our attention to finding the ! = 0 com-
ponent of the off-shell wavefunction for the Hulthén
potential,4 which is given by

~r/a

V('V) = VOe /(1 — e-y/"). (2- 19)
If we insert (2. 19) in (2. 11), set I =0, let

Q,(r,q;8) = ulr,q;s)/qv, (2.20)

z = e—r/“, (2.21)
and "

u=e""w, (2.22)
we arrive at

2
2(1—z) ¥W +[C—@A+B+ 1)z]——ABw
dz dz
_ k2a2 — q%a2 [Zi(ka-qaﬂ _ pitkargarl
2i
2 i(ka-ga) + zi(k”ﬂ]“)], (2.23)

where

A(R) = —ika + ia(k2 + V)12,

B(k) = — ika —ia(k2 + V,)1/2,

Ck) =1— 2ika. (2.24)
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The solution of (2. 23) can be obtained from an in-
homogeneous hypergeometric differential equation
studied by Babister,10 namely,

2
z(l——z)fd—y +[C—(4 +B+1)] — ABy =271,
22 dz
(2. 25
A particular integral of (2. 25) is the function10
f A, B; C;z) = —
ag¥l; Dy Yy O'(O' +C— 1)

X JFo(1,0 +A,0 +B;jo +1,0 +C;2), (2. 26)

where ;F, is a special case of the generalized
hypergeometric function defined by

Flay, ag, * o, @3R8y 70, By 2)
o (a)ylay), - (a,), &
—. 2. 27
SR GBI G), B 229

The series in (2. 26) converges when |z [< 1;it
converges when |z| = 1 provided that Re(C — A —
B) > 0, which from (2. 24) is true in our case.

If one uses the relationll

(0 + A) (0 + BYf,.,;(A,B;C;2) = o0 + C—1)

X f (4,B;C;z) — 29, (2. 28)

it follows from (2. 21)-(2. 23), (2. 25), and (2. 26) that
the reduced off-shell wavefunction is given by
ulr,q; s) = singr — 2n2qT(k, q;s)e™ F(A, B; C; e~
thr 2
e Vya —p
T [F1+ika-qr (4, B; Ce7")

—f1+i(ka+qa)(A; B; C;e—r/a)]; (2. 29)

where F is the hypergeometric function [(2. 27)

withm = 2 and» = 1| and
Va2
Tlk,4;5) = kool T(s) [q00) = 2oms
% f1vi(ka-q B B Ci D) ~ 14 ibargay(4, B; G5 1)
FlA, B; C; 1) (2.30)

The off-shell function # satisfies the boundary
condition (o, g; s) = 0 and the boundary condition
at large + implied by (2. 17) and (2. 20).

It is of interest to see how the off-shell wavefunc-
tion # goes over into the ordinary Schrddinger
wavefunction when ¢ = k. From (2. 26)-(2. 28) it
follows that
ABf,(A,B;C;z) =

F(A,B; C;2) — 1. (2. 31)
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If one uses (2. 31), the relation 12

fri1-c(A4,B;C;2) =2V Cf (A+1—C,B
+1—-C;2—C;2), (2.32)

with o = 1, (2. 24), and (2. 30), it is straightforward
to show that

ulr, k; s) = [2if(R)]~1[F(— R) (R, 7)

—fRf(— &, 7)], (2.33)
where the Jost functioni3
f(k) = F(A,B;C; 1), (2. 34)

and the irregular solution of the Schridinger equa-
tion13

flk,7) = e?*"F(A, B; C; e7"/3). (2.35)
Using13

f(B) = | flk)|ei8Ck) (2. 36)
and

fl k) = | flk)|etdCh),

we see that it follows from (2. 30)-(2. 32), and
(2. 24) that our on-shell T matrix is related to the
phase shift § by

k real, (2.37)

T(R, k; s) = — (2n2R)~1eid(®) gin5 (k). (2.38)

We now show that it is possible to write the half-
off-shell T matrix given by (2. 30) in closed form
in terms of T functions. Using the results of Secs.
3.5 and 3.6 of Ref. 14 one can show that
[I"(s)I‘(e)l"(f)]'lng(a, b,c;e, f;1)

= [I(f — a)'(s + a)T(e)]?

X 3Fy(a,e —b,e —c;s + a,e;1),
where

s=et+f—a—b—c. (2.39)
From the series (2. 27) for ;F, it follows that

c—1)
3F2(1, a,b;2, c;z) =E(?l_—(_17rb_:T;
[Fla—1,b—1;¢—1;2) — 1]. (2. 40)

If now we use (2. 24), (2.39), (2. 40), and the well-
known resultl5
F(a,b;¢;1)

=T () (c—a—0b)/T(c—al(c—1b), (2.41)
it is straightforward to show from (2. 30) that

T(k,q;s) = I(k,q) +I(k, —q), (2.42)

O. P. BAHETHI,

M. G. FUDA

where

S

4n2iq f(k)

I'(l + iga— ika)L' (1 + iqa + ika)

I'(1 +iga—ika— AT + iga — ika — B)"
(2.43)

I(k,q)=—

This result for the half-off-shell T matrix agrees
with the result obtained from a different approach
by Ford.16

In order to obtain the fully off-shell T matrix it is
necessary to combine (2.29) and (2. 20), and insert
the result into (2.18), with I = 0. By using (2. 31) it
is easy to show that
u(r, q; s) — singr + 2n2qT(k, q; s)eik”
= Voa2et*r{ — 2n2qT(k, ¢; s)f1(4, B; C; e77/2)
+ (207 fi4i (ka-qa) (4, B; C; €77/9)
—f1+i(ka+qa)(A’ B; C; e-r/a)]}_
If now one makes the change of variable given by

(2.21) in the integral arising in (2. 18), all of the
integrations can be carried out by using the result

(2.44)

1
fo dz z2°°1f (a, by c; 2)dz
=Jo{lc +¢c— D +0)]2
X 4Fa3(l,0 +a,0+b,p+0;0+1,0 +c,

b+o+ 1), (2.45)

This result is obtained by integrating the series
for f_. [see (2.26) and (2. 27)] term by term. To
get our final result for the 7 matrix we also use

4Fa(1,1 +a,1+b,1 +¢;2,1+e,1+f;2)

= (ef/abcz)[3F 5(a, b, c; e, f; 2) — 1], (2.46)
which follows directly from (2.27). The final re-
sult for the Hulthén T matrix is given by the rela-
tions

p = ia(p — k), (2.47)
o=1+ialk— q), (2.48)
X(p, k) = p~13F4(A,B,p; C,p + 1;1), (2.49)
Y, q;k) = 0o + C—1)"1(p + o)1
x,F3(l,0 + A0 +B,0 +p;0+1o0+C,
p +o+1;1), (2.50)

2 _ 42
T(p, g;s) = (k2 —p2)a P Ja {2129 T(%, g; )
4n2ipg

X [X(P, k) - X( _p, k)] - (Voaz/Zi)
X [Y(P,q,k)—Y(P, —q,k)~Y(—P,ll,k)
+ Y( _'p, - q: k)]}- (20 51)
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We have performed a couple of checks on this
fairly complicated result. If one sets p = k& in
(2.51) and uses (2. 49) and (2.27), it is easy to see
that one gets the correct limit. The other check
we have carried out is to set ¢ = & and see if we
got the result obtained from (2. 42) and (2. 43),
using the property

T(p, q;s) = T(q, p; s). (2.52)
In order to carry out this check, we use (2. 24),
(2.34), (2. 36), (2.37), (2. 38), (2. 46), and (2. 47) to
show that

kys) = — RZ—p2a ,
T(p, ks s) = o 2pkf ™ { —f(—B)[X0p, k)
—X(—p, — k)]}. (2.53)

From Eq. (3) in Sec. 3.7 of Ref. 13, (2. 24), (2. 34),
and (2. 47), it follows that

f(~RX(p, k) — f(R)X(p, — k)
2 Tl + p)T(2 + p —C)
" ialp? — k2) TH+p-BTI1 +tp—-A

Substituting (2. 54) in (2. 53), using (2. 52), and com-
paring with (2. 42) and (2. 43), we find that (2.51)
has the right limit when g = &.

).(2. 54)

3. THE WEINBERG SERIES

In this section we show how a simple expression
for the terms in the Weinberg series5 for the
Hulthén T matrix can be obtained from our ex-
pression (2. 51). The Weinberg series> for the
T matrix T(s; 1) arising from the potential AV is
given by

5 VI, (s, (s)V A

T ;A)= ’
(s WV Iy =)

(3.1)

<

where the | ¢,) and 5, are the eigenfunctions and
eigenvalues of the kernel of the Lippmann-
Schwinger equation;i.e.,

Go(S)VI,(s) = n,(s)|y,(s) (3.2)
From (3.1) it is obvious that

VI, (N (s V
W (VI

,,(s)11m_1[r,;1(s) — A]T(s; A).
(3.3)

Thus we can obtain the terms in the separable ex-
pansion (3. 1) directly from the T matrix.

The s-wave eigenvalues for the Hulthén potential
(2. 19) are given by13

n,(s) = V4a2/v(2iak —v), v=123,: (3.4)
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In our formula (2.51) for the T matrix we replace
V, everywhere by AV, so, for example, A [see
2 24)] becomes

Ak, \) = —ika + ia(k2 + AV )1/2, (3.5)

From (3.3)-(3.5) it follows that for the Hulthén
potential

Vi, sy, (sM) |V
(W, MV Y, (s)

_ (2ika — 2y)
Voa?

n2(s) Al-lyn}l [A(R, 1)+ v]T(s; 2).
(3.6)

Using (2. 34), (2. 41)-(2. 43), (2. 49)-(2. 51), and the
relation

lim(z +2)T'(z) = (—1)*/n!, =n=0,1,2,..-,
a¥Q¥n
3.7
we can show that
Lim [A(k, ) + v] T(p, 4; 53 2)
— (k2 — p2)a(C)
- ,k - W,(— ’
81%als — 1)1 (W, (g, k) — W,(— q, k)]
X [X(p,k’ A) - X (——P,k, A)]A:-,n (3. 8)
where
W,(g, k) = o 4a= tha), (3.9)

“ {1 +iga—ikra),

From the results of Secs. 3.5 and 3.6 of Ref.13, it
follows that
X(py ki) Laey = 07H0 + 1751 — v, 1 + v

—2ika,p; 1 — 2ika,p + 2; 1), (3.10)

According to Saalschiitz’ s theorem (see Sec.2.2 of
Ref. 13)

sFol—ma,b;c,1+a+b—c—mnl)
(c—a),(c—0),
m n=0,1,2,--- (3.11)

Combining (3.6), (3. 8), (3.10), and (3. 11), we arrive
at the following expression for the terms in the
Weinberg series:

VI, (XY, sV (v —ika)m,(s)

(W, VIY,(s)  4npqa
x [ny(p’ k) - Wu( — b, k)][Wy(q, k)
—W,(—q,B)]. (3.12)

As mentioned before, this result is much simpler
than the results given previously by other authors.6
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The Green's function is constructed for the problem of time-dependent scalar diffraction by a planar
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1. INTRODUCTION

In difffaction by obstacles with edges, the geo-
metrically next most simple problem after diffrac-
tion by a straight edge is diffraction by any planar
edge not necessarily straight. Such problems have
been treated by Keller's “geometrical theory of
diffraction,”1~ 3 which provides a mechanism for
obtaining asymptotic solutions of diffraction pro-
blems, and by its suitable generalizations.4:5
These methods either generate asymptotic expan-
sions for the fields for small values of the wave
length or provide asymptotic solutions where only
the local geometry of the diffracting screen is of
concern, and contributions of waves coming from
distant parts of the screen are ignored. Exactly
such problems for time-dependent diffraction by
regular plane edges shall be considered here for
the case of zero initial conditions. (Nonzero
initial conditions can be treated in the same man-
ner, with trivial modifications.) The present inter-
est, however, lies in determining the solution in a
form which includes contributions to the field from
nonlocal parts of the screen.

The problem is to determine the function u(¢, P),
which satisfies the wave equation

Ou, = (vz _ _g"_)uu(t, P) = f(t, P) ey

12
(with wave velocity taken to be unity) everywhere
" except possibly on the screen 7, the initial con-
ditions

ou,
u,(0,P) = T P)=0 (2)

for all points P of 3-space, and one of the following
boundary conditions:

(i) uy(t, P) =U,(t, P) for P on T,

auz (3)
(ii) ™ (¢, P) = U, (¢, P) for Ponm.

The function « (¢, P) must also satisfy the edge
condition, «,, (¢, P) < + « at the edge. (The same
condition is assumed for the time-dependent equa-
tion and the reduced wave equation.) Here { repre-
sents the time, which is nonnegative, P is an arbit-
rary point in 3-space, and the functions f, U,, U,
are given arbitrary functions which are assumed
to be as smooth as necessary and are compatible
with (2) and (3).

The objective is the determination of the Green's
function g(¢ — T, P, @) for the problem (1)-(3),
so that u(¢, P) can be obtained in the form

u(t,P) = [[AT, Q)(t — T, P, Q)dTdQ,

where d@ signifies an element of volume in 3-
space, and the integral is over all points (7, @)
of the four-dimensional space-time for which
gt — T, P, @) is not zero,

In the special case of a straight edge and U, = 0,
this problem has been solved. Since the method of
solution used here for a curved edge is different
from that employed by Wait, 6 it is somewhat more
illuminating to first review the solution for the
case of a straight edge.

The basic tool to be employed in the construction
of the solution is Green's theorem for the wave
operator O for the scalar problem. It will be
referred to as the fundamental formula (F). That
is, if u(¢, P) satisfies Eq. (1) and if »(¢, P) satisfies
the homogeneous wave equation

Ou(t, P) = 0, 4)
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1. INTRODUCTION

In difffaction by obstacles with edges, the geo-
metrically next most simple problem after diffrac-
tion by a straight edge is diffraction by any planar
edge not necessarily straight. Such problems have
been treated by Keller's “geometrical theory of
diffraction,”1~ 3 which provides a mechanism for
obtaining asymptotic solutions of diffraction pro-
blems, and by its suitable generalizations.4:5
These methods either generate asymptotic expan-
sions for the fields for small values of the wave
length or provide asymptotic solutions where only
the local geometry of the diffracting screen is of
concern, and contributions of waves coming from
distant parts of the screen are ignored. Exactly
such problems for time-dependent diffraction by
regular plane edges shall be considered here for
the case of zero initial conditions. (Nonzero
initial conditions can be treated in the same man-
ner, with trivial modifications.) The present inter-
est, however, lies in determining the solution in a
form which includes contributions to the field from
nonlocal parts of the screen.

The problem is to determine the function u(¢, P),
which satisfies the wave equation

Ou, = (vz _ _g"_)uu(t, P) = f(t, P) ey

12
(with wave velocity taken to be unity) everywhere
" except possibly on the screen 7, the initial con-
ditions

ou,
u,(0,P) = T P)=0 (2)

for all points P of 3-space, and one of the following
boundary conditions:

(i) uy(t, P) =U,(t, P) for P on T,

auz (3)
(ii) ™ (¢, P) = U, (¢, P) for Ponm.

The function « (¢, P) must also satisfy the edge
condition, «,, (¢, P) < + « at the edge. (The same
condition is assumed for the time-dependent equa-
tion and the reduced wave equation.) Here { repre-
sents the time, which is nonnegative, P is an arbit-
rary point in 3-space, and the functions f, U,, U,
are given arbitrary functions which are assumed
to be as smooth as necessary and are compatible
with (2) and (3).

The objective is the determination of the Green's
function g(¢ — T, P, @) for the problem (1)-(3),
so that u(¢, P) can be obtained in the form

u(t,P) = [[AT, Q)(t — T, P, Q)dTdQ,

where d@ signifies an element of volume in 3-
space, and the integral is over all points (7, @)
of the four-dimensional space-time for which
gt — T, P, @) is not zero,

In the special case of a straight edge and U, = 0,
this problem has been solved. Since the method of
solution used here for a curved edge is different
from that employed by Wait, 6 it is somewhat more
illuminating to first review the solution for the
case of a straight edge.

The basic tool to be employed in the construction
of the solution is Green's theorem for the wave
operator O for the scalar problem. It will be
referred to as the fundamental formula (F). That
is, if u(¢, P) satisfies Eq. (1) and if »(¢, P) satisfies
the homogeneous wave equation

Ou(t, P) = 0, 4)
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then we obtain (F):

J AT, @(T, @uTdQ +/ (u d_, ?E>ds o,
D oo\ d

v dv

where D is any regular region in the four-dimen-
sional space-time throughout which « and v have
no singularities of any kind, D is the boundary of
D, and dS is an element of surface area on 9D.
The directional derivative d/dv, called the “trans-
versal derivative,” is defined by

du _ ou ou ou

=7 M _ g % _
dv 057 "loy

ou
Zay ez’ 2
where [, 1,,1,,1 are the direction cosines of the
inward normal to the surface. This formula may
be proved in exactly the same way as Gauss's
divergence theorem.? For functions » and v, which
may have singularities within or on the boundary
of the region, one can either apply (F) to a neigh-
boring region where no singularities exist and
then take limits, or one can interpret the resulting
integrals in a generalized sense.8

2. THE STRAIGHT EDGE

If ¢ is so small that no radiation could yet be
received at P from any point @ on the edge, i.e.,
0 < ¢ < distance from P to the edge, the problem

/1
sﬁ 6(t-—T—R) in
gy(t—T)P’Q)z“E v
?k}o(t_T_RH(‘I)

R*

one need only consider the case ! is greater than
the distance from P to the edge. First consider
the case with P located above the half-plane 7, for
which case P will receive direct, reflected, and
diffracted radiation.

Since the cone T = ¢ — R now will contain a portion
of the edge of the half-plane, the boundary of the
region D, which consists of all those points

(T, @) from which direct radiation can be received
at (¢, P), is made up of a portion of the cone T =

t — R, the plane T = 0, the hali-plane 7, together
with a portion of the “shadow” plane. By “shadow”
plane is meant the plane determined by the edge

of the half-plane 7 and the point (¢, P). Denote this
shadow plane (actually a hyperplane) by p. Simi-
larly the region D, consists of all points (7, Q)
from which reflected radiation can be received at
(¢, P) and has its boundary made up of a portion of
the cone T = t — R*, the plane T = 0, the half-plane
7, together with the shadow plane p*, which is the
reflection of p in the extension of 7. Finally there
is the region D, which consists of all points (T, @)
from which diffracted radiation can be received at
(¢, P). Its boundary is a “conelike” surface C,,

8(¢—~T—R* in D

2081

does not differ from that for a whole plane, in
which case the solution is known to be

5(t — T—R)

u,P) == [ AT,Q) dTdQ

vl *
f &N o Q)P—(t—:%;:i—) dTdqQ, (6)

4y D,

where R is the distance P@; D, is the region
(space~time) bounded by the portion of the cone
T =t — R which extends from its vertex (¢, P) to
the half-hyperplane n, and the initial hyperplane
T = 0; R* is the distance P*Q, where P* is the
image of P in the extension of 7; D, is the region
bounded by the portion of the cone T =t — R*
which lies on the same side of 7 as does P, the
half-hyperplane =, and the hyperplane T = 0.

Since 6 is the Dirac & function, (6) could be written
in the form

1 ( 1)v+1
— R —d S
fi ,Q)R Q+

1
t,P)=——
uy (b P) 4 f 4z

T Rst

x [ fit—R* Q) = dQ.

R¥<t R

Since the form in (6) shows the Green's function is

D,~D,

v

T

with equation of the form T = { — @, where a is
the shortest distance from P to @ by a path which
touches the edge. That is, by a broken line PE +
EQ, where E is the point of the edge which mini-
mizes the sum. If P = (x,y,z)and @ = (X, ¥, Z)
and if the edge is the line x = 0, vy = 0, then

a=[(r+p2+(z— Z)2]1/2, (7)

where r = (x2 + y2)1/2 and p = (X2 + Y2)1/2,

The idea is to apply the fundamental formula (F)
to each of the regions D;, D,, D, using the (un-
known) function u(¢, P) and appropriate solutions
v of Eq. (4). First apply (F) to D, with v =

6(t — T — R)/R, yielding

O:ffl—ngdeLf <E§£_u

D; cpmon, \R dv

4 -‘?) s, (8)

dv R

where ¢,,m,p+ denote the respective portions of
the surfaces of the cone T =t — R, and planes 7
and p which make up the surface 8D;. (The inte-
gral over T = 0 is zero since « and du/3T vanish
there.) One finds that the only part of ¢, giving a
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nonzero contribution is the neighborhood of the
vertex (¢, P) and this contribution equals 47 u(¢, P)
so that (8) can be rewritten as

— du u(t, P)

(E@_

d 6
U — ds.
R dv )

6
= 2a +
[ 7remaer ] W R

D,

On p, the transversal derivative is just the out-
ward normal, and

d 9_“_':‘_7‘__}_3_)___1_ (5 (t—-T—R)
dn R R
L 5¢=T —R)>dR
e B
R dn
which vanishes on p because dR/dn =0 there. Thus,
I} 6du d b
— 41 u(t, P) = —dTdQ + —— — Y — —}dS
¢ P) fifR Q fvr,-(Rdv dvR)
8 du
+ ——ds§, 9
(25 ”

where one notices that the first term on the right-
hand side is known, as is the integral of either
u(d/dv) (5/R) or (6/R) (du/dv), since either u or
du/dv is given on 7.

Next apply (F) to the region D, picking for v an
appropriate function w and obtain
dw

(w —u -d—;>ds (10)

The only term involving values of # other than on
7 is the surface integral over C ; so if w is the
appropriate solution of (4) which agrees with

6(t — T — R)/R, then one can have

J [ w ) as.

by Ca dv

du

= Td
0 fDdfu)d Q+f dv

Ca*Ta+*Ma-

6du
28U is =
R dv

dw

(d

(11)

vV

If this is true then (10) can be added to (9) to yield

_ 4 u(t, P) = jl') f—6 ATdQ + {) fwdTdQ
i d

u—d——§>dS
dv R

d”’) ds.
dv

du

dv

(12)

+ f (
"d++"d-

If this argument is repeated with regions D, and

D, and functions 8( — T — R*)/R* and w*, which

satisfies the condition corresponding to (11},

namely

*
J2dugso (ud—_"’ -w*"l)ds, (13)
» R¥ dv Cq dv dv
one obtains

G. E. BARR

o-f f——-deQ + [ futdraq + | (;*:“
d
* *
—u—d—6—>ds+j (w*@-—uﬂ>d5,
dv R* TyatTg dv dy
(14)

Finally, subtracting and adding (12) to (14) yields,
respectively,

i} o*
— 4 t. P)= i — ~—dT
7 u,(t, P) {)ifRdeQ fu,fR* dQ

+j fw_w*)deQ—zf Ul——dS

~4f v, %as (152)
T+
and
b o*
— 47 u, (4, P) = 2dTdQ + 2_dT1d
uy (8, P) {)ifR Q JD,fR* Q
+f f(w+w*)deQ+2f Uzk-ds
+ 4 f wU,dS, (15b)

Td+

upon taking into account the facts that R = R*,
6 = 6% w=w*

a8 __de
dv R* dvR’
hence dw*/dv = — dw/dv on 7, and the boundary

conditions. Thus, if a solution w of (4) can be found
which satisfies (11) and a w* satisfying (13), Eq.
(15) give the solutions to the problems (1)-(3).

3. CONSTRUCTION OF W FOR THE STRAIGHT
EDGE

A construction of elementary solutions of quite
general hyperbolic differential equations has been
explained by Hadamard7 and is adapted for use
here. The main difference is that instead of con-
structing the solution of (4) corresponding to the
region bounded by the conoid ' =0, = ({ — T)2

— R2, with the form U™, with U regular and taking
on a specified value at the vertex (¢, P) of the con-
oid, one must construct the solution of (4) corres-
pondmg to the region bounded by y=0,y= (¢t — T)2
— a2, which has the form Vy ™, with V regular

most everywhere and taking such values along the
hyperplane p that condition (11) is satisfied.

On the surface 7" = ¢ — a (the only portion of

y = 0 the argument is concerned with), where «
is given by (7), a convenient coordinate system
can be chosen as follows: If Q(X, 7Y, Z) is any
point on this surface, and if E is the point of the
edge such that PE + EQ is a minimum, then PE
and QE make equal angles ¢ with the edge, so if
E, P have coordinates (0, 0, e) and (x, y, 2), res-
pectively, and the edge is x = 0 = y, then
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r = s, sing, p = o sing,

€ — 2z =5 CosQ, Z —e =0 Ccosg,

where s ; denotes the distance PE and s is the
distance PE + EQ, so
p=ssing~7, Z—z=scosg.

The rectangular coordinates of a point @ are then
seen to be

Q = ((s sing — 7) cosO, (s sing —¥) sinO,
z + s cosg).

Thus a natural coordinate system for the surface
integrals in (15) is {s, 0, ¢), where

T=t—s,
= (s sing — 7) sinO,

= (s sing — 7) cosO,

Z =2z + 5 cosg,

where s ranges from r csco to ¢.

Since w is expected to be infinite on y = 0, one
must apply (F) to a neighboring surface and appro-
ach y = 0 by a limiting process. For this purpose
it is convenient to use the surface T =% — a — ¢,

€ > 0. On this surface,

dS = V2 dxdydz
and

dT+7:deX+’+p dy + azdz 0;

the unit inward normal is

Uos Lis gy 130

1 r+p X rv+p Y Z-—z
———_<1——_.H’ a o;, a >

the directional derivative multiplied by dS is

_z=z2
a 3z}’

which in the coordinates (s, ©, ¢) of @ (with
T =t —s — ¢€) becomes

ds- LA (s sing — 7)sdsdOd¢ 2 .
dv as

For the surface p,, a convenient choice of coordi~
nates is (7,p,0),where X = p cosO, Y = p sin@,
and p has the equation © = 6 + 7, with § defined

by x = 7 cosf,y =7 sinf. Hence, if one continues
to write u, w indifferently of the coordinate system
being used and remembering which surface one is
integrating over, condition (11) takes the form
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dTdpdZ
©=0 +1

fff(l u c(t—l’: R))
_ fff( W >s(s sing — r)dsdodg,

(16)
since onp,,
du _1 o
dv p 0©

and dS =dTdpdZ.

The term on the left-hand side (lhs) is equivalent
to

ffiﬂ (t—a—e€ 6 +1,z) dpdz,

while the term on the rhs can be integrated by
parts with respect to s, giving

- ff s(s sing — r)uw], cscw dBdy
+fffu<23(s sing — r) I + (2s sing —rw>
X dsdOdg.

The first term here vanishes, since u(f —s — ¢,
$,8, ¢) =0 when s = ¢ — ¢, so that (16) becomes

lim ff—l—a—zf-(t—a—e 6 + u, z) dopdz

(2]
=1lim [[[*° u<2s(s sing — ) 2
=0 ¥ cscy as
+ (2s sing — r)w)dsded(p.

In this expression, the change of variables from
p, 2z to s, ¢ in the lhs (s sing =7 + p, s cosg =

Z — z), would make the lhs and rhs agree if and
only if

lim fzw

u(t —s —¢€,s,0, @) [Z(S sing — 7) 2
e0 0 0s

Xw(f—s—¢€5,0 ¢)+ (2 singo——i)
s

Xw(t—s -—e,s,e,cp)}sde

_l?ﬁ (t—s,8,0 +m,0),

P 9

(since a equals the arclength s).

(17)

The quantity in brackets must tend to zero with ¢
for © # ¢ + 7 and tend to infinity for © = ¢ + 7.
In fact, it must behave like §'(© = 6 + 7). Hence
if w = V"7 with V regular inside y = 0, then V
must still have a singularity of some sort where
y = 0 meets p (i.e., where ® = ¢ + 1), so it may
be expected that V has, the form V= WI'™ %, with
a>0or

w=Wr=", (18)

where W remains finite within and on y = 0.
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Substituting (18) for w in the large parentheses in
(17) gives the expression

[2rp(1 + cosG —©) + 2s€ + 2] (23 +e) 1

X (2p(2s + €) [27p(1 + cost —©)

aw

+ 2s€ + €2] =— + W[4rp(1 + cosf — 6)

X (2p + ¥ — ar — ap — 2gp) + €R)), (19)
where Wis W(t —s — €,s,0, ¢),p = s sing — 7,
and R indicates the remaining terms which have
not been written explicitly. In order to satisfy (17),
the expression in large parentheses in (19) must
go to zero with €. Hence, W= W(t —s,s,0, ¢)
satisfies the differential equation

205 a_W +(2p +7 — 207 —2ap — 209)W =0, (20)
which is readily integrated to give
W=D@, ) 2p*2, (21)

where D@, ¢) is independent of s and remains
finite when © = 0 + 7.

The singular behavior of (20) arises frona the
factor [27p(1 + cos¥ — ©) + 2se + €2] o= , which,
for ® = 6 + 7, tends to infinity as € — 0; since it
is only the singularity which determines the vali-
dity of (17), it suffices to look at the most singular
term in (19). Since W is to have no singularities,
W in (19) may be replaced by W from (21). The
most singular term in the resulting expression
can be simplified to

1 (4r)-a—q+1 L2 Ga-3/ a4t

x (cos2ig — @ + N7 De, ¢), (22)
with

A = s€/2rp.

Near © = 6 + 7, cos3(6 — ©) is near zero, which
poses difficulties for the choice of ¢, ¢, and D(©, ¢).
Consider for the moment the similar but simpler
problem of determining «a, ¢, and 8 > 0, such.that
for an arbitrary but nice enough function ¥(x) the
following relation holds:

1
lim )f‘"lf_l Y’ (x2 + )™ Tdx = const -
A0

¥'(0).
(23)

Clearly — ¢ + 1> 0, and since « > 0, integration
by parts gives

lim A'q+1<— v ) ® a2 +2)%2a !

A0 -
+ (l/Za\f_i (x2 + A)« [(B — 1)xB872 Y(x)
£y () ax

= Cy'(0). (24)
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The first term has limit zero and since the first
term of the integrand is more singular than the
second, with the second giving rise to the finite
limit ¢’(0), necessarily the coefficient of the first
term must vanish. So 8 = 1, and (24) reduces to

lim A~4* f (2 +2) " x)dx = 2aCY’(0).
A0

Now the lhs can be written

lim A~ 4*1< f (2 + A)%dx + j (a2 +)"

AYO0
X [ (3) — w'<0)]dx>,

where the second term is less singular than the
first and the first has asymptotic behavior:

‘P'(O)(l L
3 —a

Accordingly, it follows that

', DA (a— 3) As/z-a-«)
I'(a)

3 -
$_a=gq (25)
and that the constant in (23) is

C =TT (a—3) ().

So for (17) to hold with w of the form (18), the
function D(©, ¢) in (21) must have a simple factor
of cos3(6 — ©), the constant ¢ is given in terms
of o by (25), and the limit of the lhs of (17) for

€ — 0 is then equal to [using (25)]

a(4r) %2 TN (@ — 1) (P(e)?

—(t —5,8,8

,9) [eosz (6—@N] ==

x {D(©
+ 7, ¢).

Hence, for equality with the rhs of (17) one must
have o =1, giving C = 1 and

D@©, @) = (2/7) (Vr)cos} (6 — ©),

and accordingly
W(t—s,s,0,9)= W = (2/7) (rp)1/2 cosz(6 — ©).

(26)
Expression (28) is the value-of W only on the
surface y = 0, hence one can write

W=W+ VT,

where V; is a funct1on havmg no singularities on

y = 0. Since w = wr 1,712 is to be a solution of

(4), the equation for V1 can be obtained by substitu-

ting w = WI'~1,-1/2 + v 41/2 in (4). Since one

finds that

1/2
)

owr?, % =,
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V; = 0 gives a solution (for the straight edge)

w=Wrt, 2. @7
That this is the only solution of the form (18) which
remains finite on the edge will be shown later

(Sec. 7).

With this function for w, Egs. (15) give the solution
of the diffraction problem corresponding to the
boundary condition (3). One sees that for zero
boundary conditions these solutions agree with
those obtained by Wait.6 It is merely a matter of
differentiating Wait's solutions with respect to £.

4. CONSTRUCTION OF AN ELEMENTARY
SOLUTION FOR DIFFRACTION BY A
CURVED EDGE

For simplicity assume first that the point P and
time f are such that there is only one minimal
path PE + EQ between P and any point @ via the
given curved edge, for any point @ of three-space
such that PE + EQ < t. Suppose also that the
distance from P to the edge is less than {, so that
diffracted radiation can be received at P at time ¢.
Let a again denote this minimal path length from
any arbitrary point @ to P via the edge. [Note that
a is not given by (7) for any but a straight edge.]
Proceeding exactly as in Sec. 2, we must again
construct a solution = of (4) which takes on such
values on the surface y = 0 that Eq. (11) holds.

To carry out this construction in general one
needs to define a suitable coordinate system, which
is done in the following way. Let an arbitrary

point E of the edge by (a(e), 0, B(e)), where ¢ denotes

arc length along the edge. Hence
(a'(e)? + (B'(e)2=1.

Given P(x, v, z), E(ale), 0, 8(e)) and denoting the
distance |PE| by o,

0 =[(a —x)2 +y2 + (8 — 2)2]*'2,

then the angle ¢ between EP and the tangent line
at F is given by

cosg =0y [(x — a)a’ + (z — B)B' . (28)
Since the path PE + EQ is the minimal path from
P to @ via the edge if and only if the line QE also
makes an angle ¢ with the tangent line at E, then
@ necessarily lies on the cone which has vertex
E, axis the tangent line at E, and semivertical angle
@. It follows that if © denotes the angle between
the plane 7 and the plane containing QE and the
tangent line at E, and if ¢ denotes the length |E@]|,
then the vector EQ is

EQ = o(— o’ cos¢ + 3’ sing cos®, sing sin®, — 3’

X cos@ — o’ sing cosO),

and similarly the vector EP is
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EP =o{a’ cosg + g’ sing cosf, sing sing, p’
X cosg — @' sing cos6),
where 6 denotes the angle between the plane 7 and

the plane containing EP and the tangent line at
E (see Fig.1).

One finds then that the coordinates (X, Y, Z) of @
are given in terms of the coordinates (g, ©, ¢) by
the relations

X = o — o(a’ cosg — B’ sing cosB),
Y = ¢ sing sin®, (29)
Z =8 — o8’ cosp + o' sing cos®),

where ¢ is given by (28), and one finds the angle
Q between the lines PE and QF is given by

cosQ = (EQ,EP)|EQ|-1| EP|-!
= sinZ¢cos(§ — ©) — cos2¢p,

where

sind = yoj! sin~lo.
Since one now has

cosiQ = sinpcosi(o — ©),
one finds

a? — R2 = 40,0 sin2¢p cos2i(6 — ©),

and in addition one notes that in these coordinates
a=0+ Jg-

To carry out this construction in general, one
notices that since @ is the minimum distance from
P to @ via the edge (or, equivalently, since T =

t — a is a characteristic surface for the wave oper-
ator,i.e.,a wave front), it follows that |va|2 = 1. To

QiX, ¥)

Plx, y)

tatel o, 3(e))

TANGENT

EDGE

FIG.1. E(a(e), 0, 8(e)) is an arbitrary point of the edge. The
lines QE and PE make equal angles ¢ with the tangent to the
edge at E to satisfy the minimal path requirements. The angle
© denotes the angle between the plane of the edge r and the
plane containing QF and the tangent line at £, The angle ¢ is
defined similarly.
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show this, suppose the minimum path from P to @
meets the edge at the point E(a(e), 0, 8(e)). The
distance from P to @ along the minimal path is
then

a={lx— a(e)]2 +y2 + [z — B(e)]2}1/2

+{[X — a(e)]2 + Y2 + [Z — B(e)]2}172,  (30)

where ¢ is such that 3a/9e = 0. But then

va = {[X — a(e)]? + Y2 + [Z — B(e)]2}-1/2

X <X - Q(e)’ Y) Z— B(e»’
from which the observation is obvious. Similarly
one has |[WR|2 = 1.

On the surface T=¢t—a—¢€, €> 0,

dS = V2dxdvydz
and

dT + Ja da

a3 dX + dY+§—Z—aZ—0,

the unit inward normal is

1 da da da
(loy l17 121 l3> = - E<lf ?X’ vz’

the directional derivative multiplied by dS is

gs L - _(8 _%ad 3a 9 0da 9

dv- \8T 09XdX Y dY oZ eZ)
which in the coordinate system (o, ©, ¢) is (with
T=t—a—e)

d _ 2
ds 4 = Jdodode 3,

where J is the Jacobian of the transformation from
(X,Y,Z) to (0,0, ¢). Thus in place of (16) one now
gets

du o(t— T—R) 1
e 5271

- jff(u W w a’;>Jdodede.

Use has been made of the fact that on p_,

JdTdode

du _ 1 du
dv ~ 0 sinwd®
and
1
das = o sine JdTdade.

Integration by parts of the rhs of (31) gives

lgnju(t—a—eo@e)(ZJ —(t—a—¢,0,8,¢)

+§—{W(t——a—e 0,@,e)>d@
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= ¢72a-1 sin~2¢ J(0, 6§ + 7, e) ou
X(t—a,0,6 tme)-- (32)

in place of (17).
It is shown in the Appendix that

od

2
3o = JVZa .

Hence (29) becomes

éfnf t—a—eo,@,e)(Z (t—a €,0,6¢)

+ wV2a>Jd6
1
= J(o,9+1r,e)—(t~a,c 6+u,e) (33)
aog? 00

Assume that w has the form

w=E WI-1y-1/2, (34)
Then
w(it—a—¢,0,0,e)=W(t—a—e¢,0,0,¢e)

X [a2 — R2 + 2a€ + €2]~1(2a¢ + €2)-1/2. (35)

Since @ is the angle PE makes with the plane 7 and
PE = 0, and hence

— R2 = 200,4(1 + cosQ),

one has
iu—)(t-—a—e,a,@,e)
o
1 oW
=w<W?U-(t—a—e,o,e,e)
20,(1 + cosQ) + 2¢ 1 >
a2 —R2 +2ac +€2 2a+¢€/’

To satisfy (34) one must have W = W(t — a, ¢, 0, ¢)
satisfy the equation

2a0 %2—’ + (Ao — 2a) = 0, (36)
in place of (20), where

A =aVia—-1.
Integrating (36) gives

W = D(®, e)oal/2J-1/2, 37

Upon substituting

w(t—a—¢€,0,0,e) = W(a2 — R2 + 2ae + €2)~1

x (2a€ + €2)-1/2
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into (33), one finds for the most singular term in
large parentheses

41)(9 s e)a-l/zg(-)uzp/zg-s/z
x sin-1p[cos2i(6 — ©) + A]"2J-1/2,

where 1 = €a(20,0 sin2¢)-1. The limit of the lhs
of (33) is then equal to

u

[D(®, e)(cos;Q)-1] 30

1 S
o-g+5 " 2T@" 102 sin~2¢

x{t—a,0,0 +me);
so for equality with the rhs one must have

D(©,e) = cos3f *21-1 sing
= 171{a2 — R2)1/2°61/2°'1/2 sing,

where the plus sign is taken above the shadow sur-
face and the minus sign below. Hence,

W= 7112~ R2)1/2a1/201/20(—)1/2J—1/2 sing.
(38)
Assume that
w = [t 7°Ha2 ~ R2)12D-1 4 yo + pyy + -+ -]
X 512 (39)

with v, independent of £, T. Then one must have

vo = W(a2 — R?)-1 % 1-1(a2 — R2)~1/2,  (40)

To determine the coefficients v, #» = 1, it is first
necessary to make several observations. First,
note that

O((a2 — R2)1/2r-1-1/2) = — y=3/2y2
X (a2 — R2)1/2,
which may be verified by computation. Second, if

v is any function independent of £, T then (using
Ival2 =1, [VR|2 =1)

/2 3/2

Doy 2 = #1292 — (2 — 1)y

x [(va2, w) + (4 + 2n)v], (41)

and in the coordinate system (o, ©, ¢) one has
(va2,vv) = 2a —gg (0,0, e).

Further, by expanding in the obvious way one has

(a% — R2)1/27-1 = (g2 — R2)-1/2 — (g2 — R2)-3/2,,
+ (a2 — R2)=5/22 — ... (42)

and upon applying the wave operator term by term
to both sides of (42) [using (41)] one obtains

2087
~ y~3/2v2(q2 — R2)1/2
= 7-3/2(2(,% (a2 — R2)-1/2 4+ A(a2 — Rz)-—1/2)
~1/2 9 (42 — R2)-3/2
+ 5 <2a 3 (a2 — R2)
+ (4 + 2)(a2 — R2)~3/2 4 y2(q2 — RZ)-I/Z)
— 3,1/2 O (42 — R2)-5/2
3y <2a 3% (a2 — R2?)
+ (A + 4)(a2 — R2)-5/2 4 1 v2(g2 _Rz)—3/z>
3/2 2 (a2 —_ p2y-1/2
+ By (2aao(a R2)
+ (A +6)(a2 — R2)~7/2 + 1 v2(q2 — R2)~5/2
4o, (43)

Comparing the coefficients of both sides of (43)
gives

2a§%(az — R2)~1/2 4+ A(a2 — R2)-1/2

=— V2(a2 — R2)1/2, etc. (44)
With the above observations one is in a position

to determine the coefficients v,,n = 1,in (39).
First,

Oz 7-1(a2 — R2)1/2T-1 + vo]y-1/2
ov
= y~1/292y, + =372 <2a~50—0 + Ay,
+ 7-1v2(g2 — R2)1/2) = ),—1/2‘7200’

since the term in large parentheses vanishes
because of (44). It follows that

v
= y1/2y2y, — y-1/2 (2a —0—1— + (A + 2,

0
-~ VZUO) .

Now choose v, so as to make the last term vanish,
that is

dv,
261—87' +(4 + 2)1)1 = V2UO. (45)
Equatjon (45) may be integrated by using the

integrating factor a-1/2J1/2 so that

vy = ta-1/2g-1/2 (fua-l/ZJ 1/2V2v0do + Cl)’

(46)
where C, denotes an arbitrary constant of inte-
gration—-possibly a function of © and e but inde-
pendent of o.

Assuming for the moment that the C, are deter-
mined, the above procedure for v, can be repeated
for each of the v, in turn, leading to the differential
equation for v,:
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<2a% +A+ 2n> v, = (2n— 1)"1v2y,_,,

which, upon using the integrating factor fa#-3/2J1/2,
yields

v, = [2(2n — 1)} 1gm1/2J-1/2

% (fo'an.a/zJ 1/2v2vn_1dq + Cn>, 47)

forn = 1.

With such functions v,, whatever the integration
constants C,,w given by (39) will, by construction,
be at least a formal solution of the homogeneous
wave equation (4), and also take on such values on
= 0 that Eq. (11) holds. The determination of
the constants C, will be taken up in Sec. 7, after
the remaining steps in the formal construction
have been completed. Before attacking the general
problem, it will be worthwhile to construct the
solution of the comparatively simpler problem
of the slit, in order to gain insight into the effect
of the edges on waves already diffracted.

J

S(l/R)G(t — T—R)

— [w; + & D'w}]

"

where w; is defined by (27) witha =a;,j =1 and 2;

then one has

ot ft, P) = [F(T,Q) 8,0t~ T, P, Q)dTdQ,

(48)

where the integration is over D;,D,, D4, and D,
separately and the results are added. Verification
that (48) satisfies the differential equation (1)
involves the same computations as for the case of
the half-plane and are accordingly omitted here.
To verify that the boundary value of ju, (or
(a/an)qu,) is zero for 0 = ¢t < d,but not for ¢ = 4,
one notes that on the plane, R = R*, 5 =5%,
(d/dn)6 = — (d/dn)6*, while wy, =— w1, (@d/dn)w, =
(d/dnYwy, w, = wy, (d/dnyw, = (d/dn)w} to the right
of the left-hand edge, and w, = — w3, (d/dn)w,
= (d/dn)w;, w, = wI, (d/dnYw, = — d/dn w; to the
left of the right-hand edge. Thus the boundary
condition is satisfied until such time as D; meets
)
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5. THE SLIT

The construction of the solution of the wave
equation (1) in the presence of a plane with an
infinite slit will be carried out much as was done
in the two-dimensional case.® Namely, one first
constructs the function ,u, (¢, P), which is the solu-
tion for small enough time ¢ such that the two half-
planes have not had time to interact, that is, for

t = d, where d is the width of the slit, For such?,
the solution is the same as for the two half-planes
separately. Thus, if a; and a, denote the minimum
distances from P to @ via the edges {say, left and
right), respectively; if D, and D, are the regions
(in space~time) from which, respectively, direct
and reflected radiation can be received at (¢, P); if
D, and D, are the regions from which diffracted
radiation can be received via the respective edges,
so that

D; ={(T,Q):a; <t~— T};

and if one defines

for (T, Q) € D,,
&Mt~ T,P,Q) =~ 217? (— 1)"(1/R*)5(t— T —R*) for (T,Q €D,,
) for (T,Q) € D,

j =1land2,

f

the right-hand edge or D, meets the left-hand
edge, that is, at least until ¢ = 4.

It follows that one needs to construct a function
1#,(¢, P) which satisfies the homogeneous wave
equation (4) and which takes on the negative of the
values of quy, if ¥ = 1 [or has normal derivative
equal to — (d/dn)gu, if v = 2] on the slit plane, in,
which cases the sum

Uy, = ol, + 1%y

will be the solution of the problem. Such a function
1%, can indeed be constructed by using the terms
in (15) corresponding to a nonzero boundary con-
dition. (One needs a pair of such boundary inte-
grals, one for each half-plane.)

Suppose one uses rectangular coordinates, with the
slit being the set of points y = 0,— 3d = ¥ = 1d.
Then the value of ju,; on the slit plane will be

o1(t,%,0,2) = o [f (T, X, Y, 2wt — T,x,0, 2 X, Y, Z)ITAXdYdZ

0=T<t—({x+id+[(X+Lid2+ Y2Ji/2}2 + (z — Z)2)L/2, x = 3d, i=1,
over
. 0=T<t —(—x+3d+[(X—3d)?2 + Y2[1/2}2 + (z — 2)2)1/2, x=< —4d, i=2,
an
1 2
1u1(6,%,9,2) = — P Sonq(t,x7,0, 20[(x — x°)2 + y2 + (z — 27)2]L/2

X o[t—t'—[x —x)2 + y2 + (z — 2")2|1/2} dt'dx'dz’, (49)
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over 0= ¢/ <t—[(x—=x)2 +y2 + (2 — z")2]1/2,

-7 ay foul(t x',0, 2wt —

{0 = < t— (o — 3+ [l — B2 2P 4 2 — 2212,
ove

1
x' = 3d,

2089

and x' = — 3d,

V,x,y,2;x',0,2)dt"dx'dz’

A
[N
‘Q.
~

1!
‘N

0= t'<t—({— x' — 3 + [(x + 3d)2 +y2]1/2}2 + (2’ — 2)2)1/2, x' =~—13d, j=1

Hence one can write

1”1(t’xayyz) = ff(TsX’ Y, Z)lgl(t'—

where

—————fw(t'

T,%,v,2;X,Y,2) = 2

1g1(t"
X o(t—t'—

T,x,9,2;X, Y, Z)dTdXdYdZ,

T,x,0,2;X, Y, Z)[(x — x)2 + y2 + (z — 27)2]-1/2

[(x — x7)2 + 92 + (2 — 2")2]V/2)dt'dx"dz’

T+ ({x‘, + ‘é‘d + [(X + %d)z + Y2]1/2}2 + (21_ Z)Z)I/ZS <t — [(x_ x')2 + yz + (Z— z’)Z]l/Z,

T+ ({—x +5d +[(X —LdP +¥2J1/2}2 + @' —Z2)2)1/2 =’ < t— [(x —x)2 +y2+ (2 —2'RJ}/2,

over =, Q=1
x'= *%d: i=2,
_212 by.a_ fwi(t' - T,x,0,2"; X, Y,Z)wj(t__ t' x,v,2;%",0,2")dt dx'dz’
T

T+ ({x' +3d+ [(X +3a)2+ Y2)M/2)2 + (o' — 2)2)12 < pr< t — ({x' — 3d + [(x — 3d)?

271/212 ' 232172 41 1
over + y2]/ 22 + (27 — 2)2)1/2 1’2 3d,

i =1,

ji=2,

T+ (= x'+3d+[(X— 3202+ Y2122+ (2 — )2 < /<t — ({— x' — 3d + [(x + 3d)2

+ 92]1/2}2 + (20 — 2)2)1/2 x' = — id,

i=2,

j=1

The case of boundary condition (3. 2) is quite similar and it turns out that

L= T,x,9,2;X,Y,2) = 1gz(t

Then the Green's function for the slit problem in
the case U, = 0 is given by

£y, = o, t (50)
and

u, = [fg,dTdQ

is the solution being sought.

18y

(51)

Notice that the solution for nonzero boundary con-
ditions may be obtained by adding to the rhs of
(51) the quantity

dw, 1
f U, ——dS~—f,,d Ul—d~u—ds——ﬂ—
dW2 A
x f"dzU1 =45 it v=1
or
1 b 1 1
37 Ju g U8S + fﬂdlwlUst 7 fndzszzds

if v=2,

T,x,y5,2;X,Y,2).

f

where 7, denotes the portion of the slit plane 7
which is included in the boundary of D, 7, denotes
the upper side of the portion of 7 included ‘in the
boundary of D ,j = 1 and 2. [Each of these terms

is a solution of (4) which vanishes and has vanishing
'normal’ derivative in the plane of 7, except on

that portion indicated as the range of integration.]

Verification that (51), with g, defined by (50), is
correct can be carried out in manner similar to
that done?® for the corresponding two-dimensional
problem and hence will not be done here. One
need only be able to observe that the rhs of (49),
with an arbitrary function ju,(t’,x’,0,2’) in the
integrand does in fact give a solution of the homo-
geneous wave equation (4) which has continuous
first partial derivatives everywhere save on the
plane itself, and there the solution takes on the
value of yu,(t,x,0,2).

6. DIFFRACTION BY PLANE CURVED EDGE

In resuming the discussion of the problem of dif-
fraction for a planar screen having a curved edge,
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there are a few observations which will be useful.
One should notice that the function ,g, above is
nonzero inside the region bounded by the secon-
dary diffraction wavefronts. That is to say, the
surface of D, (and likewise D,) may be thought of
as a primary diffraction wavefront which, upon
striking the opposite edge of the slit, gives rise to
a secondary diffraction wavefront, and it is within
this region that ,¢, is nonzero. Furthermore g,
is a solution of (14)

If one were to apply the fundamental formula (F)

to the region D; when the time'¢ is larger than d,
the width of the slit, one would find that D; would
for some points P meet the other edge, and hence
its boundary would include portions of the other-
half-plane. This would introduce an additional sur-
face integral which would require another equation
for its elimination. This additional equation wouldbe
obtained by applying (F) to the region bounded by
this secondary diffraction wavefront with an ‘appro-
priate' solution of (4). This, it would turn out, is
essentially ,g, (or half it, the other half is due

to the secondary wave from D,). A similar thing
does not occur when this secondary wavefront
reaches the edge. No effect of a tertiary diffrac-
tion wavefront or so on ad infinitum has to be con-
sidered, because the relevant portion of g, is zero
and has zero normal derivative in the extension of
the corresponding half-plane.

This observation is important in the treatment of
the case of a planar screen with a curved edge
where the primary diffraction wave from one part
of the edge can meet another part of the edge. The
observation implies that the only essential new
feature the curved edge has different from the slit
(other than geometrical) occurs in the construction
of an elementary solution of the wave equation (4)
corresponding to a primary diffraction wave. A
method of obtaining this solution was described in
Sec. 4. One may now complete the solution of the
diffraction problem for a curved edge much as
was done for the slit.

Define

0&,(t-T, P, Q) = —(4m) ™"
( R *6(t-T-R) for (T,Q) €D,
x ? (—1)’R"'6(-7-R") for (T,Q€D,,
— (w + (—1)*w*) for (T,Q) €D,

where by D, is meant the set of all points (7, 0, ©, e)
from which diffracted radiation can be recelved
at time ¢ at the point P. Thus

Dd::{(T,o,O,e):a<t—T}.

One notices that to any one point @ of Euclidian
three-space there may correspond more than one
“point” (o, ©, ) in the space consisting of all such
triads. Such “points” are to be considered distinct,
just as the points in D are considered distinct,
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from those in D , even though the two regions over-
lap in four- space Then

P = [AT,Qpe,t —

T, P, Q)dTdeQ,

where the integration is over D, D, ,and D, sepa-
rately and the results are added and where d@ is
the spatial integral, i.e., Jdod®de for D 4 18 a solu-
tion of the problems (1), (3), with U, = 0, for

times ¢ sufficiently small that no secondary diffrac-
tion occurs.

For larger ¢, one needs to define an additional func-

-tion g, just as in the case of a slit by

1820t~ T,P,Q =—(4n™) ™ [ w(T' — T, @, QR

X 8(t — T’ — R")dT'dS’ —(2r%)~!
xfﬂdw(T’ - 7,9, wit— T',P,Q)dTds’,

and

-9
153 2y 1825
where R’ = Q'@ and where dS’ denotes an element
of surface on the plane 7.

7. THE EDGE CONDITION AND THE
INTEGRATION CONSTANTS

The functions v,,n = 1, of Sec. 4 were defined by
Eq. (47) except that the integration constants C,
and the lower limit of integration have not yet
been specified. What should now be done is to show
that the “edge condition”
u,(t,P) <+ » (52)
at the edge of 7 determine the C, (and hence the
v,) uniquely and that the resultmg series for w
actually does converge in some region, thereby
establishing the existence of a solution u (¢, P) to
the stated problem. Unfortunately the existence
problem has not yet been resolved, being apparently
much more difficult than the uniqueness problem.
However, assuming existence [i.e., that for some
choice of constants C, the resulting series con-
verges to a function w satisfying the edge condition
(52)] it will be shown that the C_ are uniquely de-
termined. Namely, that all the &n = 0 and the lower
limit of integration in (47) is zero, so that one has
-n+1/2

-1/2 0 n~3/2,1/2_2

NC A
(53)

=[2@2n — 1] i

a
Xy, do, n=z1,
To see this, note that if w remains finite at the
edge, then from (34) so does W, and from (39) one

has

1,2 _ g3z, T(vg + vyy + ++)

for 4 small enough,

W=zxuw

from which it obviously follows that each of the
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v, must remain finite (since the v, are independent
of t,T.) But since v, = O(01/2) as - 0, is as easy
to verlfy from Egs. (37) and (40),and J = O(g), and
since the effect of the Laplacian can only be to re-
duce the powers of o by 0,1, or 2, it is clear that
v, cannot remain finite at 0 = 0 unless the quantity
in large parentheses in (46) vanishes there, which
implies that the integral is actually of order o1/2
{or higher) and not of order 6~ or lno, as at first
sight appears possible. This means that the lower
limit of integration can actually be taken to be
zero and that then C; = 0 also. The same argu-
ment can clearly be repeated for each v, in turn,
yielding (53) as stated.

8. A SPECIAL CASE OF DIFFRACTION BY A
CIRCULAR HOLE

In the case of a circular hole, if the observation
point P is on the axis of the hole, one can carry
out the computations involved in the construction
of the function denoted above by w; these have been
done in part. For example, if the radius of the hole
be denoted by ¢ then in Egs. (30) one has

a(e') = ¢ cose/c, fle)= c sine/c,
@le) = /2 for all e,
J

— a'cosg + B'sing cos® — B'sin®
J = 0 sing | sing sin® cosO
— f’cosg — ®’'sing c0s®  a’sin®

which straightforward computation shows (¢ de-
pending on e) to be just

/J/= o sing (sing + 0B),
where

= oo sing—a”(g’)” (cose + c0s0).

Notice that on the shadow surface this reduces to
just

~1_. 2
J = ago sin” ¢,

Proof that &L = gv%a

as

First note that from the above expression for J, one
has

~-109J _
J 55_2

On the other hand, differentiation of (30) yields

— J ! sin? ®.

aza

a—)?z= —(x - 01)20_3 +ot

et + (x — a)o—a[(a — X)a'
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also

-1 ~1 -1
A=—-1+ 2a0 —aco p , = ¢+ 0cosB,

J=oc 'p.
Hence,with W from Egs. (36) and (39), one finds

~RH V- ),

1/2

-1, 2
Vo= 7T (a

M= (—ap cose)

From here on the computations become rather
tedious, but one can obtain

2 - RZ)-I/Z[%(p—z ——a-z)M
M —1)%),

Vzvo =+1 'a
— (@ —R¥ logo?
which is actually O(c~ Y2) a5 g - 0, and not

0(0~2/3) as appears at first sight. Thus v, =
0(0172),

The leading term of V2y, has been computed and
found to be 0(0~1/2); hence v, = 0(0/2) also.

APPENDIX:

The Jacobian J of the transformation (29) is clearly
equal to

o'+ oo (—a cosg + B'sing cos®)
8 ;. .
oéz(smcp) sin® ,

B —0 = (B’ cosg + a'sing cosO)

+ (- 2835

2

—a——a =—~Y2 -3 -1
Y2 ore )
—{¥o (e~ X}’ + (6 — 2)8']} 5%
2
3 - -
3—2—-“2:—(2—5)20 S
—{g'o™t + (2 = o ¥[(¢ — X)a’
+ (ﬁ - Z)B } aZ,
hence

0 2
v%a= 207" —-0—1("' a‘%*’ B’ 5%)
——0_2[(01 —X)a’'+ (B — Z)B’]((X - 01)0"1
+ Yo 1ae+(z 8o 1ae)

de

aX

But the quantity in large parenthesis is just (9/90)
e(o, ©, e), which is zero since o, 8, ¢ are independent,

Hence
2 -1 -1 de
Via=20 " —¢ ( 3—Z>

ax P
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de _ ~13(Y,2)
x-Y 30,6
= sing [a’sing sin’e — cosO(B’ cosg
— o' sing cosO)],
de _ 10X, Y)
Z d(o, ©
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= sing[p’ sing sin’e + cosO(a’ cosg
+ B’ sing cos0)],
S0

, Oe , Oe -1 _. 2
o a—X-+B a—Z—:oJ sin” g,

from which the stated result is obvious.
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1. INTRODUCTION

Consider the elastic scattering of equal mass
particles of spin zero. Given the total cross sec-
tion and the elastic cross section, as well as the
unitarity requirement on the partial wave ampli-
tudes, how large can the absorptive part of the
elastic scattering amplitude become at any given
scattering angle? This problem has been solved by
Singh and Roy,! and the maximum value has been
compared with experimental differential cross

FIG. 1.

An example of a local maximum,

sections at high energies and for small scattering
angles on the basis of several further assumptions:
(i) At high energies, the equal mass assumption
can be relaxed. (ii) The unpolarized differential
cross sections are independent of the spin of the
external particles and, hence, the spin-zero bound
applies. (iii) The amplitude, in the region of the
diffraction peak, is purely imaginary. The com-
parison! with experimental data is rather good for
small angles, but for larger angles the data fall
far below the calculated bound.

The distribution of partial wave amplitudes which
achieves this bound looks very much like a2 Fresnel
zone plate, carefully constructed to maximize the
scattering in the given direction. The distiribution
is illustrated as the shaded region of Fig. 1, the
details of which will be explained later. The larger
the angle, the more zones are required. More con-
ventional models of matter would have a central
core surrounded perhaps by successively less
absorptive regions. A particularly simple way to
implement this intuition is to require the imagin-
ary parts of the partial wave amplitudes to de-
crease monotonically with increasing angular
momentum.2 This is not unreasonable for energies
above resonances. Adding this assumption to those
given above should yield a better bound at larger
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small angles, but for larger angles the data fall
far below the calculated bound.

The distribution of partial wave amplitudes which
achieves this bound looks very much like a2 Fresnel
zone plate, carefully constructed to maximize the
scattering in the given direction. The distiribution
is illustrated as the shaded region of Fig. 1, the
details of which will be explained later. The larger
the angle, the more zones are required. More con-
ventional models of matter would have a central
core surrounded perhaps by successively less
absorptive regions. A particularly simple way to
implement this intuition is to require the imagin-
ary parts of the partial wave amplitudes to de-
crease monotonically with increasing angular
momentum.2 This is not unreasonable for energies
above resonances. Adding this assumption to those
given above should yield a better bound at larger
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angles, precisely where the preceding one fails.
It is to the solution of this problem that this paper
is devoted.

The approach used in the construction of the solu-
tion is the method of Lagrange multipliers gen-
eralized to include inequality constraints.3 One of
the main purposes of this paper is to illustrate
their use in both a discrete and continuous maxi-
mization problem of physical interest.

In Sec. 2, the exact problem is formulated and
solved by considering the partial wave amplitudes
as discrete variables. In order to clarify the solu-
tion, the same problem is treated in Sec. 3 by
approximating the discrete partial wave series by
a continuum and by assuming the scattering angle
is small. Section 4 compares the improved bound
with experimental data and interprets the results.
Finally, in Sec. 5 we summarize our conclusions.
In an appendix, a number of sums are tabulated.

2. MATHEMATICAL DETAILS

The mathematical statement of the problem is as
follows4: Maximize

A=2321 + 1)a,Py(z2)

given the total cross section

k2
AO =EOT =Z>(2l + l)al,

the elastic cross section

2
E 2%(761: Z}(2l + 1)(a? + 1’?),

el

and unitarity

= 2_ .2
w, 2aq;—a; —r; =0,

[=0,1,2, --- .
This is essentially the problem solved by Singh
and Roy.! In addition, we will require that the
partial waves decrease monotonically,? i.e.,

a, = a,;. (1)

However, thinking of the requirements of statistics
as well as of most dynamical models, one would
like to impose this requirement separately on the
even and odd partial waves, i.e.,

a,= a,,. (2)

Fortunately,this is a minor complication. To avoid
notational confusion, we solve the problem first
assuming (i) and then state the result assuming
(ii). From a mathematical point of view, these
requirements are interesting since they impose a
relation between neighboring partial waves, unlike
those examples discussed in EB.3

To this end, we introduce the auxiliary function

2093
£ =A+ald,— 2021 + 1)a,]
+ %(g} — 72 + 1)(a,2 + 712)>
+ Z;(ZZ + 1)7\1741 + Z;wl(al - al+1)’ (3)

where, on the basis of the theorem3 that the multi-

pliers are the rate of change of the maximum with

respect to the constraint, we anticipate that
0<a<1 and a>0.

Of course,A;, = 0 and w; = 0 for all /. Varying

with respect to 7, we find

6L 1 N
oy, =@ +1) <—-E—2)\I>r,_0.

This implies », = 0. Also,

L a,
'G-a—l = (2l + 1)<Pl —a—; +Al(1_ 2al)
Wy W

For convenience, we have defined w_; = 0. First,
we must find the necessary conditions on a local
maximum. The most general form for a local
maximum under these assumptions is

x=Q0=l=-=ay>ay,> >0 =a.,

=t =0y 2 A +N,1 S>> a = 41

fl

=4 > a oo —
LN, © OLyeNyrl > >, = 0

=0="')

In words, the solution is a series of plateaus, on
which at least two partial waves have the same
value, and regions where successive partial waves
are strictly decreasing. Our problem is to deter-
mine where the transition points and jumps occur
as well as the values of a,. As in EB, we define
three partitions of the partial waves:

B, =1lla, =1},
1={tl0< a,< 1},
BO ={llal =0}.

A priori,B,, 1, or B, could be empty. It follows
from our variational equations (4) that, in B,,

1 W, — W4

AlzPl—-a—E+—2l—-+—1—20, (53)
in I,
Wi-r T W a
A, =0, W=Pz—a—a—l, (5b)
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Wiy — W

2+l =0

A, =a—

1= Pl+

Let us first determine the properties of each of
the transition points where a, actually decreases.

@) ay > @y, implies wy = 0; hence, from (5a)

p W1
j— — _—— e —— > .
ANO— NT ATy 2N0+1_0’
consequently,
1 W1
Pv—a-g =N, +1= "

In particular, this means that a(P, — a) = 1; so,
as in the case without monotonicity,3 B, is empty
ifal —a) <1,

(b) In1,if, for any [, one has a,_; > a, > a,.;, then
w;.y = w; = 0. Hence, from (5b)

a, = a(P,— a).

Of course, by the definition of I, one must have
1> a(P,—a)> 0.

2(53)) ap,-1> ay, =0 implies w, _; = 0;so,from
c b

wLN
My=e—Fymp 5129

and, consequently,

a—P >__i)i.>0
I T

In particular, this means that ¢ = PLN.

Now we come to the heart of the problem, how to
determine the plateaus of constancy. The three
points (a)-{c) immediately above suggest that the
multipliers ¢ and o determine where B, stops
and the value of largest nonzero partial wave
amplitude, just as in the case without the mono-
tonicity requirement. In 7, we shall find that the
transition points are determined independently of
a and o, In other words, o, and o, determine
the size of the core (B,) and the value of the
largest contributing partial wave (BO). However,
in the intermediate region (I), the shape of the dis-
tribution is determined solely by the requirement
that the strength of the partial wave amplitudes
should be monotonically decreasing. To see this,
consider any particular plateau

a_>a,=--=a_~>a .
L; 1 L; Lj*N; Lj+Nj+1

We know that Wp -1 = 0. Using the difference
equation (5b), one can then solve for

SAVIT, BLANKENBECLER, EINHORN

L.+n
7 'aLJ
(5¢) —%M=Em+n@—aw—»
7 L: a

7

n =0"..’Nj'
Using Wy = 0, we find

LjN;

J aLj

It is convenient at this point to define a weighted
average of the Legendre polynomials

N N
MNPy = 2520+ 1)P,/E 2! + 1).
=M =M

Notice that \(P), = P, and that

WP +ey =By e

for any constant ¢c. We have found in Eq. (4) that
= P — a).
“L]- a(L]-+N]-( YL, a)

Thus the value of the partial wave amplitude is
related to the weighted average of the Legendre
polynomials across the plateau. The requirement
ay, > 0 implies ijJ(P,)L]_ > a = 0. Therefore, o

determines the largest nonzero partial wave.
Inserting this solution for @,  into the equation for
W jun» We have ’

i
E (Zl + 1)(Pl - L‘+N.<P1>L.)7
L]- 77 7

n =0, ,N,. G)

- ij+n =

Note that this can also be written as

LN
ijm = L].+Zn>+1(21 + 1)(P1 - L]-+Nj<‘Pl>L]- );
n=07”'7Nj_1, (7)

The condition w Ly > 0 therefore implies

Lj+Nj<I)l>Lj = Lijn <PI>Lj for »=0,--,N,
or

L]-+N]-<PZ)L]-+N]-—n = Lj+NJ-<Pz>L]. for n=0,--- »N;.

It can be shown that the conditions that w 11 = 0
and a 11 >a 1, imply PLj_1 > Ly %(Pp,‘j , while the

conditions w Ly = Oanda L > N1 imply
pP),. > P .
LJ-+N]-< l>L]- L]-+N]-+1

We may summarize all of these inequalities as
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P P,

PLj—l > L]-w]-( z>zj > Lj*Nj+1 (8a)

and

L]-*Nj<Pl>L]-*m = L]-*N]-<PI>LJ- = Lj+n<Pl>Lj’
n,m:O,l,---,N (Sb)

e

As the derivation shows, either of the two in-
equalities in (8b) implies the other. Notice that all
reference to @ and a have disappeared so that the
plateau interval [L;, L; + N,] may be determined
solely by propertles ot] the ﬁegendre polynomials.
Since successive plateaus must be monotonically
decreasing, the condition Lj+N]~<Pl>L]- > o is signifi-

cant only for the last interval, i.e., only for deter-
mining B,. Thus we may determine all possible
plateau intervals independently of the multipliers
a and a. Since for a maximum o is greater than
zero, we may restrict our determination to those
for which L]_wj(P,)Lj > 0.

We have now completely characterized the neces-
sary conditions on a local maximum. In summary,

the last value N, in B; must satisfy a(PNO —a)= 1.
Ifa,,>a,> a,,,thenl> a, =a(P,— a)>0.

The plateau interval must satisfy the sets of in-
equalities expressed by Eqs. (8a) and (8b). On a
plateau, 1 > a, = a(Lj+Nj<Pl>L]- — a) > 0. Finally,

the first partial wave L for which a, vanishes
must satisfy a = PLN‘ To determine the local

maximum, one must determine the sufficiency of
these many conditions. We have not been able to
show that these conditions uniquely determine the
local maximum; indeed, we suspect that one can
probably find some angles for which the local
maximum is not unique.5 Given any given scatter-
ing angle, one can use the inequalities to determine
the plateau intervals. Then,given o, and o, one
can try to determine @ and a to satisfy the equality
constraints. In practice, it is easier and faster to
choose a and a and to then calculate the corres-
ponding ¢, and ¢,

It is a simple matter now to solve the problem
where the monotonicity requirement is applied to
the even and odd partial waves separately [Eq. (2)].
The general form of the local maximum is

xeven — (1 —_— e — a2M0 > a2M0+2 > el D> aZK,
=@pg.p =" =Gggaoy, > Gagp2Me2
> > @3k, =0=0="+"),

x0M = (L =+ =ayy.> dan.3> 00 > Ay
=dgp .3 =""" =0y.9N+1 > Bar o843

> e >a2LN,,1=0=0=-'-).

Correspondingly, we are led to define weighted
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averages over the even and odd partial waves
separately:

an(Pay = E (4n + 1)P2,‘/Z) (4n + 1),

ane1{Pane1 = Z) (4n + 3)1)2,.+1/E (4n +3).

The preceding solution then becomes the correct
solution to this problem if one everywhere treats
the even and odd partial waves separately. For
example, for the even case, the last value in B,
must satisfy a(PZMo — a) = 1. The plateau inter-

vals [2K;, 2K + 2M; ] must satisfy
PZK]'Z > 2K1+21W] <Pl>2K] > PZKj+2M]-*2’

ZK]-+2MJ-<PZ>2K]~+2M >2Kj+2Mj<Pl>2K]- > 2Kj+2n<P z>2xj

m,n:O,l,---,Mj_

On the plateau, we find
= P, —a).
a 2; a(zxj+2Mj< 1>2K]. @)

Finally, the first partial wave which vanishes
satisfies a = PZKM. Corresponding statements

hold for the odd integers. In an appendix, we record
the values for a number of the sums and.averages.

3. CONTINUUM APPROXIMATION

It is slightly more convenient in numerical applica-
tions to approximate ! by a continuous variable
since many partial waves contribute in general, and
to assume the scattering angle is small. This
approximation also makes it possible to carry the
solution further analytically and clarifies the
result. Since one of our purposes here is to illus-
trate a somewhat unfamiliar mathematical method,
we will solve the problem again in this approxi-
mation. Via the standard replacement of the
Legendre function by a Bessel function, the auxi-
liary function £ of the last section becomes

-2& I Az
2 sin25 £ = f xdxJ (x)a(x)+a<81roT

_ f xdxa(x)) (ﬁ: O — foooxdxaz(x>
+ fo xdoen ()ulx) — fo dxw(x)d;x(x),.

where

A2 = — ¢ = 4K? gin24y,

wlx) = 2 sin?3pw,.

x = (21 + 1) sinp,

(For simplicity we have set », = 0 at the outset.)
One consequence of replacing the Legendre poly-
nomials by Bessel functions has been to shift the
dependence on the momentum transfer to the
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boundary conditions. [Compare Eq. (3).] It is im-
portant to remember that this approximation is
best for small angles and when many partial waves
contribute to the sums. Notice that the monoto-
nicity requirement, Eq. (1) naturally translates
into a negativity condition on the slope of the par-
tial wave amplitude. One could, of course, also
generalize the monotonicity condition separately
applied to the even and odd partial waves by defin-
ing partial wave amplitudes of even and odd signa-
ture, but for simplicity, we will ignore this alter-
native. We will also assume that a(x) is a con-
tinuous function, so the most general behavior pos-
sible has regions where a(x) is strictly decreasing
separated by regions of constant a(x).

Formally, £ is a function of a(x) and its first
derivative da/dx; thus the maximum satisfies the
usual Euler-Lagrange equations. One finds

+ Al = 2at)] + L 92 _ o,

alx)
a x dx —

Jyl) — o —
oW )

As before, we label the three partitions of the solu-
tion B,,I,and B,. The obvious analogs of Egs.
(5a), (5b), and (5¢) are, respectively,

1, 1de

By: Ax) =d,x)—a— 7 T = 0, (10a)
I Ax) =0, -_}1% :Jo(x)—-a——g—g—c-), (10b)
By: Al)=a—Jol)— 2% =, (10c)

On any interval y; = x = x;,; on which a(x) is
strictly decreasing, w(x) = 0 and, hence, dw/dx = 0.
Therefore,

a(x) = alJy(x) — a]. 1n
Continuity of a{x) then implies that

1 = alJyl) — @), (12)
where y, is the largest value of x in B, and

0 =Jyln) — a, (13)

where x, is the smallest value in B,. Thus, the
equality multipliers a and o determine the sets
B, and B,. Of course, if 1> a(1 — @), then B, is
empty.

Let us further explore the intervals x; = x < y, in
I, on which a(x) is constant. These are surrounded
by intervals on which a(x) is strictly decreasing
and, by Eq. (11), a(x) = a[J,(x) — o] on the survound-
ing intervals. However, since a(x,) = a(y,), con-
tinuity of a(x) then implies J,(x,) = J,(y,). It
follows from (10b) that w(x) is continuous in I and,
since w vanishes on the surrounding intervals, we
have w(x;) = w(y,) = 0. Inside the plateau interval
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d R
d—;’" = x(fl—f—lx—’) + o — Jo(x)> = x[Jy(x,) — Jo(x)].

Using w(x;) = 0, this may be easily integrated to
obtain w(x). The condition w(y,) = 0 then leads to

Jo(xi) = yi<J0>xi ’

where, as in the previous section, we define the
weighted average

S0 = fnyo(z)zdz/fxyzdz.

(See the Appendix for the explicit evaluation.) In
summary, the end points of the plateau interval
satisfy

Jo(xi) = yi<Jo>xi = Jo(yi) , (143)
which may be compared to Eq. (8a) for the discrete
case. One may further exploit the condition w(x) =
0 inside the interval to obtain the analog of Eq. (8b),
NIAYESREATIEING A

forx; = x,y = 9.

(14b)

One can show, however, that these inequalities in
fact follow from (14a), provided that the plateau
interval extends over only one cycle of J,(x). This
makes finding the plateau intervals easier in the
continuous case than in the discrete case. And,as
before, the determination of the possible intervals
do not involve a and a.

Given the multipliers a and a, the necessary con-
ditions given above are also sufficient to deter-
mine the solution. These multipliers, in turn, are
to be determined from the equality constraints

1 XN
807 = 1% + fJ’o xdxa(x), (15)
2 *N
o= b3+ [ xdra(o), (16)

(Y

where
alJy(x) — al,

a(x) = {
alJolx,) —a], x,==x=<y,
and, if B, is empty, y, = 0, whereas, if B, is not
empty, 1 = a[J,(yy) — @]. In any case, x,, satisfies
a = Jy(xy). A typical solution is indicated in Fig,
1, where the dashed curve is a[J,(x) — o] and the
solid curve is the solution a{x). The shaded regions
indicate the partial wave amplitudes in the prob-
lem without the monotonicity constraint described
in the Introduction.

It is interesting to compare the expressions for the
end of B, and the start of B

Jog) =a +1/a and Jylx,) =o.
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As a becomes large, J,(v,) = Jy(xy). Since both
these points must lie on falling part of the curve
a(x), one has y, = x, as a gets large. Thus the
ratio o, /cT approaches unity as a gets large. On
the other hand, if a is smaller than {1 — @)71, then
B, is empty and one expects a small value of the
ratio ¢, /0.

Given values of 0, and ¢, from experimental data,
one can determine ¢ and o and, subsequently, the
maximum value of the absorptive part of the
scattering amplitude may be computed. We now
turn to the numerical computations.

4. NUMERICAL RESULTS AND CONCLUSIONS

Because it is somewhat easier to evaluate, we dis-
cuss in detail the results in the continuum approxi-
mation. We have compared this to the evaluation
in the discrete case and found little difference for
the momentum transfers with which we will be
concerned below. We believe that for the entire
range of data presented, the continuum approxi-
mation gives a bound within a few percent of the
actual bound, and, as we shall see, it is of little
interest to inquire into the precise discrepancy.

To find numerical values for the upper bound, the
candidates for plateau intervals must first be
determined. The end points (x;, y,) of each interval
are all quite close to the odd zeros of J,(x). For
example, the first region of constant a(x% extends
from x; = 2.35 to y; =~ 8.55. For comparison,
the first and third zeros of J;, occur at 2. 40 and
8.65. Values of x; and y, for successive intervals
lie even closer to the higher odd zeros of J(x).

Physical values of o, for processes of interest
are around 40 mb, and realistic values of 0, /0
are in the range + —3. For values of the momentum
transfer A2 < 2(GeV/c)2, these constraints can be
accommodated with ¥, < 1.6 and o in a range

that allows between two and eight plateaus. Since
there are two equality constraints, the maximum

value of do/d¢ (neglecting the real part of the

amplitude) will depend, in general, on two variables.

It is convenient to choose these to be 7 = A20, and
R =0y, /o,. Figure 2 shows the maximum value of

do /2 do f{do
1677217 Or —-E/<W> 10

versus 7 for two values of the ratio R.

In Fig. 3, the solution to this problem is compared
with data and with the solutions of the problems
discussed by Singh and Roy?® and by Ravenhall and
Pardee.2 To facilitate comparison with earlier
results, we have used for the abscissa the variable
p = (A20; /416,,) = TR/4n. Data for 7p and pp
scattering are indicated.® Curve A is the upper
bound derived by Singh and Roy in the absence of
monotonicity constraints. Curve B is the bound
given by Ravenhall and Pardee for the same pro-
blem as we have discussed.? The curves C and C’
are the same bounds appearing in Fig. 2, only here
plotted as a function of p rather than of 7. Notice
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that, in Fig, 2, C' lies below C, while, in Fig. 3, C’
lies above C over most of its range.

Inasmuch as the variable p has been ascribed
some significance,1;2 let us comment on this
variable. Suppose B, were empty, so that y, = 0.
Then since a{x)/a is independent of ¢ for all x, the
ratio

AlAg = [ " xaxd, (x)a(x)/ 1" xdxata)

is independent of @ and depends only on @. How-
ever, setting y, = 0 in Egs. (15) and (16), one sees
that o is determined by the ratio

<A20T) 2 /a2,
87 gr 2P

Therefore, if B, is empty, A/A, is a function of p
only, a property which has been called “univer-
sality.” 1,2 This result is independent of the mono-
tonicity assumption. However, the actual values
for the experimental data usually require that B,
not be empty. Thus, in general, the upper bound
derived here will depend on R as well as on p. In
fact, one can show that

i(i) .
OR \4, A2g,,

(2901 (Wo) — ycz)Jo(J’o)],

0 I I 3
- B
8l
olo
P — 0, —
~ OlE 2025 E
Bt E o .
T F S, ]
— O"T . C —{
F ¢’
0.0 S Y B B
0 40 80 120 160 200 240
Xor

FIG.2. Upper bounds for R = 0.20 and R = 0. 25.

L b L1l

LLJ_LIIIJI! Lol

[ex]
O

FIG.3. Comparison of the present solution with previous bounds
and with data (see text for full explanation).
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where the differentiation is performed for fixed p.
While this is zero when B, is empty, it is not zero
in general.

Comparing our upper bound with the data, we see
that the addition of the monotonicity requirement
has significantly improved the bound of Singh and
Roy!; however, it still approximates the data only
for a very small range of p. Already at p = 10, the
bound exceeds the data by a factor of 2; for typical
values of ¢, and 0, this corresponds roughly to
A2 < 0.3(GeV/c)2.

5. SUMMARY

One could have hoped that with such general con-
siderations as crude unitarity («, = 0),and the
values of the total and elastic cross sections, the
shape of the diffraction peak might have been
understood. Even assuming the real part of the
scattering amplitude is negligible, we found that
only for very small values of the momentum
transfer does the bound approximate the data. An
exponential fit to the data is a good approximation
far beyond values for ¢ for which our bound is
relevant.

One should note that the values of the 2, which
realize the maximum at a particular angle depends
on that angle. The upper bound plotted in our
graphs is not a reflection of any one set of partial
wave amplitudes, but rather, as the angle changes,
the values of the g, also change. Thus, for example,
the area under the upper bound could be much
larger than ¢, and this turns out to be the case.

We conclude that if the shape of diffraction peaks
is to be understood, it is no/ on the basis of the
naive considerations discussed here. There is
probably a deep dynamical reason both for the
small real part (if, indeed, it is small for all ¢) and
for the rapid decrease of the differential cross
section with momentum transfer.
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APPENDIX:

L
:/_‘,O(zl +1)P, = P;,, + P},

N

2 (4n + )Py, = Py,
n=0

N
% (4n +1)= (N + 1)(2N + 1),

N
’?(1)(471 + 3)P2m1 = P neas

%(47: +3) =V +1)2N + 3),
n=
where
P, =2 ().
Consequently, we have

Py, — Poxeanger = Poga
2pe2MN V2K T (M + 1)(4K + 2M + 1)

P Poreane — Py
apeon1{PPare = W +1)[d4L + 2N + 3y’

Plya + Pry — P — P14
(N +2)2L +N)

LB =

In the continuous case, we have, analogously,

2[yd1(¥) — xJ; (x))]
y<J0>x = V2 A2 .

1 V.Singh and S. M. Roy. Phys. Rev. Letters 24, 28 (1970); Phys.
Rev.D 1, 2638 (1970).

2 A similar generalization has been treated in D. G. Ravenhall
and W. J. Pardee, Phys. Rev. D 2, 589 (1970), although their
solution is not the absolute bound.

3 M. B. Einhorn and R. Blankenbecler, Report No, SLAC-PUB-
768 (TH), (1970), submitted to Ann. Phys. (N.Y.), hereafter
referred to as EB. The present paper can be considered a
sequel to Sec. II1. B of EB.

4 The notation and conventions are as in EB.

5 However, such angles are probably rare. One could pro-
bably show that, among all scattering angles, the set on which

the necessary conditions are not also sufficient is of mea-
sure zero; we have not tried.

6 Data were taken from the graphs in Ref, 2,

7 There seems to be some confusion in Refs. 1 and 2 on how to
treat B; and its effect on the solution. In addition, one might
wonder why the “upper bound” B determined by Ravenhall
and Pardee lies below ours. The answer lies in their identi-
fying the incorrect intervals as plateau intervals, and their
curve consequently not being the upper bound. The use of
inequality multipliers to impose the monotonicity constraint
allows one to uniquely determine the regions of constant
a(x).



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 12, NUMBER 10 OCTOBER 1971

Vector Operators and a Polynomial dentity for SOfn)

A.J.Bracken and H. 8. Green
Department of Malhematical Physics, University of Adelaide,* Adelaide, S. Australia 5001
(Received 5 April 1971)

It is shown that if o denotes an n X » antisymmetric matrix of operators o, ,p,4 = 1, 2, ..

. ,n, which

satisfy the commutation relations characteristic of the Lie algebra of SO(x), then a satisfies an nth

degree polynomial identity. A method is presented for determining the form of this polynomial for any
value of ». An indication is given of the simple significance of this identity with regard to the problem
of resolving an arbitrary n-vector operator into » components, each of which is a vector shift operator

for the invariants of the SO(n) Lie algebra.

1. INTRODUCTION

The structure of 3-vector operators in quantum
theory was investigated by Dirac,? Giittinger, and
Pauli,? who considered the matrix elements of
such operators in an angular momentum basis.
Later Wigner3 indicated the possibility of a sys-
tematic treatment of any set of operators trans-
forming according to an irreducible representation
of the rotation group, and the calculus of tensor
operators was subsequently developed by Racah.4
Some of the results of these investigations, and
their application to calculations in the quantum
theory of atomic spectra, can be found in the books
by Gondon and Shortleys and Slater.6

Racah? and Biedenharn8 have emphasized the de-
sirability of finding, in the case of other semi-
simple groups, the generalization of these and
other results in the theory of angular momentum,
or SU(2), We present here some results in the
theory of SO(n), or, more accurately, of its univer-
sal covering group [for convenience, this group is
subsequently referred to as SO(n)], relating in par-
ticular to the description of n-vector operators.
Even in the much studied case » = 3, our approach
has, we believe, some novel and attractive features.

We are concerned with the general situation where

one is given a set of operators 6,, o, (= — a,.),

b.,q,r =1,2, ... ,n,satisfying the commutation
relations
[0 05 ] = 8,0, + 8,60, — 8,055 — Oy, (1)

[6,, aqr] = 8,,6, — 3,9, (2)
In particular, the o, could be anti-Hermitian
operators acting in a Hilbert space, in which case
they form the generators of a unitary representa-
tion, in general reducible, of SO(n). Then @

[ = (64,64, ... ,0,)]is an n-vector operator act-
ing within the corresponding representation space.

In such a case, the Casimir operator o, = o 0,
can be expressed in the form?

02=2A1(A1 +n-—2)+2A2(A2 +n—‘4)+"'

+ 2A,,(A,, + 7 — 2m), (3)
where m is the integral part of 3» and the eigen-
values A; of the operators A;, which serve to label
the irreducible components of the representation
of SO(n), are either all integers or all half-odd
integers and satisfy

A= Agzeee =z A, 20, n=2m+1,
Apzag ==, =120, n=2m.  (9)
When » = 3, an established result® 2 is that 8 can

be resolved into three components, each of which
is a 3-vector shift operator for A,, the magnitude
of the angular momentum. Thus

8 =0"+00+9-
where

A0° =001, A0t=0%A 1)

The results obtained by Bhabha, 10 in investiga-
tions of 4~-vector operators within finite-dimen-
sional representations of SO(3, 1), enable us to
deduce that, for n = 4,

0 =01 +07 +0} +03,
where

ABE= 05, £ 1),

It is not difficult (see Appendix B) to deduce the
generalization of these results for » = 3 and 4.
Thus when » = 2m + 1, # can be resolved into
components 0,087,087, i=1,2, ... ,m, where

AP0 =00A;, ABF=0%(A;t0,), (5)
while, in the case n = 2m, the result is the same,
except that 90 does not occur.

In what follows, it is convenient to think of o, as
the element in the pth row and gth column otP an
antisymmetric » X n matrix of operators. We de-
note this matrix by o and by a*and o*the mat-
rices whose pgth elements are

(@), = (@ N,0, k=23 ...,

("‘k)pq = (o Jap-

Furthermore (cf. 0,), we define o, by

0, = tr [¢*] = (a*),,.

We shall show that, as a consequence of the rela~
tions (1), @ satisfies an nth-degree polynomial
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identity, of the form
Fa)=a" +a, ™ +--+ +a, =0, (6)

where the coefficients a,, £ = 1,2,
invariants of the SO(z) Lie algebra.

. ,n,are

The existence of this identity is in no way depen-~
dent on the existence or nonexistence, within the
representation space for «, of an n-vector opera-
tor 8. However, when such a 6 does exist, its re-
solution into n n-vector shift operators for the
SO(n) invariants, as in Eqs. (5) above, can most
readily be achieved with the use of this identity,
as we shall see,

We are mainly concerned with the determination
of the form of the coefficients g, in Eq.(6), as
functions of ¢,,03, ... , which are in turn func-

tions, also to be determmed of Ay, Agp, oot LA,
Before proceeding, however, we ma.ke the followmg
general remarks concerning the identity expressed
in Eq.(6).

It is clearly an analog of the Cayley—-Hamilton
identity for an n X n matrix of complex numbers.
There are, however, some interesting differences.

In particular, suppose we define the determinant
of an # X n matrix A of noncommuting elements, by

det(4) = (1/nl)e;; . m€pg...tAipAjq** Ames
where €;; . ,, is the alternating tensor, with
€12 .0 = 1 "Then in the present context, we find

det(a——pl):p"+a’1p"'1+-“ +al, (7)
where p is an arbitrary complex number, I is the

n X n unit matrix,and a;,, £ =1,2, ... ,n, like

a,, is an invariant of SO(n). However, we find that,
in general, a; # a,, in contrast with the case when
o is a matrix of complex numbers.

The existence of the polynomial (7) is compara-
tively well known, having been discussed in studies
of Lie algebras by Killing!1 before the turn of the
century and, more recently, by Racah? and Bieden-
harn.8 Much less, it seems, is known of identities
of the form in Eq.(6).

This equation actually expresses n? identities in
the elements of «. Lehrer-Ilamed!2 has shown
that n2 identities of more general form are satis~
fied by the elements of any » X » matrix, provided
these elements belong to a free associative alge-
bra. Here we are dealing with a special case,
where the algebra is in fact a Lie algebra, whose
structure constants are such that these identities
can be expressed in the simple form of a poly-
nomial identity in . [One of the authors (H.S.G.)
has now determined similar identities for Sp(n)
and SU(n).]

In the course of investigating certain identities
satisfied by elements of any representation of the
Lie algebra of SU(3), Lehrer-Ilamed13 has utilized
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similar generalized Cayley—-Hamilton identities
satisfied by some elements of the algebra, (See
also Racah.14) However, to our knowledge, the
identity (6) for SO{x) has not previously been pre-
sented, even for the case n = 3.

2. VECTOR SHIFT OPERATORS AND THE POLY-
NOMIAL IDENTITY

Considering a system of operators 8, a as in Eqs.
(1)-(5), we find that 69, 0%, and 87 are eigenvectors
of the generator matrix o, in the sense that if 6,
represents any one of these » operators,

ad, =do._,
i.e.,
gl =815

where d_ is an invariant of SO(n). This follows
from the fact that, for any vector operator 6,

[02,6,] = 2(2a —x + 1)8,.

For, in view of Egs. (3) and (5) above, 0, commutes
thh 49, so that

(@ ~3zn+3)0°=0. (8)
Also,
[05,67] = 2[A (A, +n ~ 20),67]

= 2(2A; +n — 2i +1)67,

so that

(@ —3n + 18] = (A, + 3n — 0o} (9)
Similarly,

(@ —3n +1)07 =—~(A; +3n— £)67. (10)

In Appendix A we show that o satisfies a poly-
nomial identity of the general form of Eq. (6).
The results (8)-(10) then allow us to write the
identity in more precise form, effectively deter-
mining a,, £=1,2, ... ,n as a function of A,

i=12, ,m. We must have

F (a) =0, (11)
where

E(a) = G, (a?), n = 2m, (12)

F(a) = (a — 3)G,(a2), n=2m +1, (13)
and

a=a—3n+1,

G, (a?) = ,ﬁ; (a2 — (A, + n ~i)2]. (19)



VECTOR OPERATORS

Conversely, once the results (11)-(14) are known,
one can see why and how an arbitrary n-vector
operator 8 can be resolved in the manner indicated
by Eqs.(5). Thus, in the case n = 2m + 1, we use
Eq.(11) in the obvious way to define projection
operators PO(a), PH(a),P;le), i=1,2, ... ,m,
which are polynomials of the (n — 1)th degree in

o and which satisfy

(@—4n +5PO=0,
[@ —in +1F (A; +on—2)JPF =0,

POPf = PEPO = PfP; = P7PT =0,

(PO)2 = PO,  P}P =05, PY,
PO+ 73, (Pt +P7)=1. (15)
i=1
Then the required resolution is
m
0 =60+, (07 +67),
i=1
with
g0 = P09, 9% = P%9. (16)

The case n = 2m is similar, except that PO and
89 do not occur.

We do not go into details here, but mention that in
order to confirm that Egs. (5) follow from Egs.
(15) and (6), it is not sufficient to consider the
commutators of 89,0% only with 0,. Rather one
needs to calculate the commutators of these vec-
tors with a complete set of invariants, which, like
0, but unlike A;, are explicitly constructed from
the set of Oy Finally, one must know the expres-
sion for each member of this complete set in
terms of the A;. We return to this last point in
Sec. 5.

3. SYMMETRIC AND ANTISYMME TRIC POLY-
NOMIALS IN o

If the matrix polynomial f(o) is symmetric, i.e.,

if fla) = f(a), then

gla) =(a —zn)fla) +3 tr [fla)] (17
is antisymmetric, i.e., g(a) = — g(a).
Furthermore, if g(a) is antisymmetric, then

ha) =(a —3n + 1)g(a) (18)

is symmetric.

The proof is as follows. Since f, (@) transforms
as a tensor under SO(xn),

[apq!fys(a)] = qufps(a) _ 6prqu(a)

+ Gqsfyp(a) - 6psfyq(a)- (19)
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By putting ¢ =~ and using f,(a) =, (a), we have

afla) + fla)a =nfla) —tr [fla)],

with the help of which the antisymmetry of g(a),
defined as in Eq. (17), is readily established. On
the other hand, if f, (o) is replaced in Eq.(19) by
£,s(a), where g,s(ozs = —g(a), we deduce that

agla) —gla)a = (n — 2)g(a),

which establishes the symmetry of k(a), defined
as in Eq. (18).

Noting that ¢© = 1 is symmetric and that ¢ is anti-
symmetric, we see from these results that any poly-
nomial of degree 2l ina, [ =0,1,2, ... ,can be
expressed as the sum of a symmetric one of de-
gree 2l and an antisymmetric one of lower degree,
Similarly, any polynomial of degree (2! + 1) can

be expressed as the sum of an antisymmetric one

of that degree and a symmetric one of lower de-
gree,

We then infer from Eqs. (11)—-(14) that F (a) is
symmetric or antisymmetric, according as »n is
even or odd, i.e.,
F,(@) = (- 1)'F,(a). (20)
4. METHOD FOR THE DETERMINATION OF
THE MATRIX POLYNOMIAL

For any given value of n, F,(a) can be‘calculated
by reduction to polynomial form of the appropriate
equation (A3) or (A10), as shown in Appendix A for
n = 3,4, and 5. However, as n increases, such a
calculation quickly becomes very involved. Here
we present, in each of the cases » even and » odd,
a method of obtaining F,(a) quite easily for any
given n.

(a) When n = 2m is even, F,(a) is completely
determined by the conditions
(i) F(a) = G,[(a?), where G,(a?) is a poly-
nomial in a2 of degree m and a =
a—m +1,
(i) F(a) = Fy(a),
(iii) tr [F,(a)] = 0,

which follow from Eqs.(12), (20), and (11). The
proof is as follows.

Consider the sequence of polynomials defined by

f():l,

S = [ala —2m + 1) +b]f,

fi=ale —m + 1) +b,f,

+[3¢ +cola —m +1) +d;]tr[f],

1=12, ..., (21)
where b,,b,,¢;, and d; are arbitrary constants.
According to the results of the preceding section,
each polynomial in the sequence is symmetric.
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Moreover, in view of the conditions (ii) and (iii)
above, we see that, for some choice of b,,5,,¢c,,
andd,, I=12, ... ,m—1,

F, =f,—tr[f,)/(2m).

Then f,,, like F, , must be even in a, and we shall
use this to determine b,5,,c,, and d; uniquely
[except for d,,_,, which remains arbitrary, but
which does not in any way contribute to F,, in view
of Eq. (22)].

We denote by f? that part of f; which is a linear
combination of positive powers of a, with numeri-
cal coefficients, i.e., not involving 0,,04, ... . It
is evident that

(22)

O =al@ —m +1)pala —2m +1)]

=ala + m — 1)p,[le¢ + m — 1)(a —m)]},
where p,(x) is a polynomial of the (I — 1)th degree
inx. It is also clear that if £, is even in q, so are
Y and (f,, —f9). But,if f9 is even in q, we have
{a+m—1)p,[la+m—1)(a—m)]

=(a—m +1)p  [la—m + 1) (@ +m)].

We set, in succession, a =m —1, a=m—~2, ...,
a = 1 in this identity and thus obtain (for n > 2)

Pml1(2 — 2m)] =p,,[2(83 —2m)] = ...
=pllm —1)(~m)] =0,
and therefore
D) =( +2m —2)(x +4m —6) -+
x [x + mm — 1)],
fO=(a+m—1a—m+ )(a+m—2)]
X[@a—m +2)a+m—3)] -+ [(a —1)a)a,
=af(@ —2m + 2)(a —1)][(a —2m + 3)(a—2)]
Xeeo [(la—mla —m + 1))@ —m + 1).
Thusb,=12m—1+1), 1=0,1, ... ,m—1,and
in order that f, should also be an even function of
a,we must takec, =—1/(2]), I =1,2, ... ,m —1

andd,=—3(m—1), =12, ... ,m — 2, while
d,.q 1s left arbitrary.

Thus, when n = 2m,
Fyla) =f,—tr [£,)/(2m),

where
fi=ala —m +1),

fra=(@—Da—2m +1+1)f,—(a —m +1)

X (@ — 1) tr [£,]/(2D). (23)
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For example, when n = 2,
Fala) =f; — 3 tr [f,],
fi=a?

for n = 4 [cf. Eq. (A8)],
Fyla) =fy — i tr [f,),
f1=ala—-1),

fo=(a —2)(a —1)2 - (a — 1)20,;

forn = 6,
Fga)=f3—3tr [f4],
fi= ala —2),

f2=(a —4)a —2)(a — 1)a — 3(e — 2){@—1)a,,

fa=(a —4(a —3Na —2)2(a —1)a — 3(a — 3)

X (@ — 2)2(a@ — 1o, — (@ — 2)2[20, — 140,
+ 160, — (03)?].
(b) When n = 2m + 1 is odd, F,(a) is completely
determined by the conditions

(i) F,(a)=(a - 3)G,(a2), where G, (a?) is a
polynomial in a2 of degree m and a =
oa—m+t3,

(ii) Fo(@) =—F,(a),

which follow from Eqs. (13) and (20).

In this case we consider the sequence of antisym-
metric polynomials generated by

g-]_:a’
81 = [a(a ~2m) +b,]g, + [c,a + 3] tr [ag,],
1=1,2, ....

For some choice of b, andc;, 1 =1,2, ... ,m,

we must have F, =&, ,,. We determine these con-
stants uniquely by requiring that g _,, satisfy con-
dition (i) above.

Suppose g0 is obtained from g, by dropping terms
involving o, . Then

81y = ap ol — 2m)),
=[a +m —z]p,[(a — 2)2 —m?],
where p,(x) is of degree ! in x. From condition (i),

we see that g0, must vanish for a = }, so that
P {—m?2) = 0 for m > 0, and we can write

b)) =(x + m2)q,(x),

8901 = (a +m — Ba— 3)2q,[(@ — 52 —m?].
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Again from condition (i), we see that (@ + m — 3)
(a — 3)q,[(a — 3)2 — m2] must be an even poly-
monial in a, so that

3)4q ,lla —3)2 —m?2)

[(a +3)2 —m?2].

(a +m — 3)(a—

=(@a—m +3)a+3q,

We set, in succession, a = m — 3,

and obtain, for m > 1,

a=m-—3 ...

oW

a——g,

g, 1(1 —2m)] =q,[2(2—2m)] =

=qulm —1(—1—m)] =0,

whence
g %) =[x +12m —1)][x + 2(2m —2)] - --
X [x + (m —1)m + 1)),

g% =(@—5a+m—a—m+Ha+m-—3)]
X [(a—m + )(a+m——-)]---

2)](“ —3)

X [(a—-(a

=afle —2m) + 1(2m — 1)][a(a — 2m) + 2(2m —2)]

X oo [a(@ —2m) +m2].

Form =1, dm= 1. Thusb,_l(2m——l) and, to
make g, 1/ {a — %) an even polynomial in a, we
must also take ¢, = — 1/(2).

Thus, whenn =2m + 1,
F,(a) =g ,.4la),
where
g =0,

&1 =(a—Na—2m +1)g,—(a —)trfag,]/(2]).

(24)
For example, when n» = 3 [cf. Eq. (A12)],
&2 = (@ —1)2a — 3(a — 1)o,;
for n = 5 [cf. Eq. (A13)],
8g = (@ —1)(a — 3o — 3(a — 1)021
83 =(a —2)%(a —3)(a - 1)a — 3(a — 1)(a — 2)20,
—ila — 2)[o — z(0,)2].

5. INVARIANTS OF SO(n)

Consider the sequence of antisymmetric poly-
nomials e,(a), I'=1,2, , defined by

4 — 403 t+ 30,

e =a, e, =alad—n+1le +itrjae].
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The identity tr [e;] = 0 then expresses 0,, ; as a
function of 64,03, ... ,05,.5. Thus

03 = 3(n — 2)o,,

= 3(3n — 4oy — 3(n — 1) — 2)o; — 3(0,)2,

etc.

We see also, from the fact that tr [« an (@)]=0,
k=12, ,that ¢,,1,0,.s, ... can be expressed
as functions of ¢,,05, ... ,0,. It follows that all
o, can be regarded as functions of 05, I = 1,2,

, m, or, alternatively, and more conveniently
from our point of view, as functions of 7,;, where

T, = tr [f,]/(20),
T, = tr [ag,;)/(21),

with f,,&,; as in Eqgs.(23) and (24).

The functional dependence of 7, 0n A,, i, =

1,2, ,m, and hence the eigenvalues of 7, can
be determined by comparing the two forms G, (a2)
given, on the one hand in Eq. (14), on the other via
Eqgs.(23) or (24).

Thus in the case n = 2m + 1, we deduce from Eq.
(24) that

n=2m,

n=2m+1,

Gpla?) ={=7, —[a% — 3l q

+ [a2 —§][a2 —=3] -+« [a® — (m — 3)2]}, (25)
so that
Tw=—6,1), T,q=3-7,—G,Q0]
Toeg = [T, =67, —G(3))/24, etc.
Then from Eq.(14) we have, writing x; =
(A; + 3n —1i)2,
w=ED™ I (x — ),
T-1 = (— 1)m+1<I'Q(x, :( -—.,)) etc.

We note also, from a comparison of Eqs. (25) and
(A10), that .

m
BBy = —mr = m— 1" 1 (x;— 1)

In the case » =2m, we find from Eq. (23) that
G (a2) = {—

T n — G271 —a2?[a2 —1]r,, ., —

m=1
—a2faz — 1] *++ [a% — (m — 92]r,
+a2faz — 1]+ [a2 — (m — 1)2]} (26)
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Tp=—Gu0), 7, ,=—7,—G,1),
Tz =ml~Tm—47,.,—G_(4)], etc.
Again writing x, = (A; + zn — 7)2, we see from

Eq.(14) that

1 m
T = (— 1)m+ igl Xis

m1| ™ m
Tme1 =(—1) A 0—1) =0 x|, ete.

The set of operators 74,75, «+« , T,y and 7,

(or B(m) ;m)) is a complete set of invariants for
SO(2m + 1). However, in the case n = 2m, as is
well known, one pseudoscalar invariant such as

g™ (see Appendix A) or A, is needed. We note
from a comparison of Egs. (26) and (A3) that

(80 12/m2 = — 1, so that
(m) m 1 s
B = mf(i) I (A +an— i),
i=

where we have taken the sign of the square root
which is consistent with that weight vector inter-
pretation of (A;,X,, ... ,1,,) adopted in Appendix
B. The setofoperatorsr, l—1 2, ,m—1,
and

APPENDIX A:

Here we establish the existence of an nth degree
polynomial identity for . Following Bakri, 15 we
de{ine the completely antisymmetric tensors

Bpg +++,, k=0,1, ... ,m, of rank n — 2k, with

(0) -
B pq...v,

(k 1)

tuv*

B (A1)

__l
- 2

uvB

Then one finds that, for 2 = 0,1, ... ,m — 1,15

ﬁ(k) n+1(6pvﬁ(k*1)

—kByq)..iv=(—1)
+ (= 1)75,,B8ED /(R + 1).

(A2)

In the case & = 0, this identity is proved by inspec-

tion, and the proof for general values of & is ob-

tained by induction.

(a) When n = 2m, we take 2 = m — 1 in Eq.(A2)

to obtain

(k+1
_bqu ) t+ .

ﬁ(m-l) —(m I)B(m-l) B(m)/m’
e, 8 D@ —m + 1) =— “/m. Moreover,
ap™ V) =" Ny 50 that

(@ —m + 12" V2 = [g"™)2/m2. (A3)

™ is a complete set of mvar1ants for S0(2 m).

A. J. BRACKEN AND H. S. GREEN

The quantity [8" ]2 can be reduced to a poly-
nomial of degree (2m — 2) in o, so that Eq.(A3)
is in fact the required identity. It is not a simple
matter to complete this reduction for a general
value of m. However, for small values of m, the
desired result can be obtained from the identity

S P
€1)ij...lelreqst.‘..-uzrr=E(_ ¢ )épqazscjt * 0,400,
(A4)
S(P)
where Z(— 1) means a sum over all permuta-
tions of p,4, ... ,k,and [, with appropriate sig-

natures, by multiplying with

(aij.“ akl)(ast“. auv) (A5)

and shuffling factors till the required order is
reached. For example, when n = 4,

(8% =

so that

—a? + 30, =—0a2 +2a + o,

(@ — 2)(a — 1)2a — 3@ — 1)20, + 1{8*]2 = 0. (A6)

{In the important related case of SO(3, 1), with
generators J, ,, A, p =0, 1, 2,3, satisfying

[JMHJpo] = i(g)\pJpc +gpo‘]>\p _gupJ)\c_g)\oJup)

where g, , is the pseudo-Euclidean metric tensor,
the correspondmg result is

oy PO,V . oy Py V¥
I IS T Ty —4id, T T,
+ (=8 J, I, — 2, —1)I,”°
= (Jl + [lez)ﬁpy’
where J, = 1J,,J™, andJ, =3¢, ,,,J""7"%}

(b) When#n = 2m + 1,we take k =m — 1 in Eq.
(A2) to obtain

(m= 1) (m-1)

_(m )qus
= (1/m)(5,85 — 6,,8™).

Premultiplying this equation, on the one hand by
on the other by B(m), we obtain

Boar
(A7)

Ohs

apqﬁl(l”‘) = Bém)a = mB(m), (A8)
and
YarOys + (m — )y, = (1/m)(g™p™

— B, (A9)

where y, = —y,, = B("')B (=-1) " Next, premultiply-
ing Eq.(A9) by (o, — mb& ) and using Eq. (A8), we
obtain
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(o —m)[ya +(m—1)y + (l/m)ﬁ;m)ﬁ(m)] 0
or, since y is antisymmetric,
(@ —m)[(@ —m)y + (1/m){™B")] = 0. (A10)

This is the required identity, as ¢ can be reduced
to a polynomial of degree (n — 2) in a.

In this case, using Eq. (A4), we find

= 2(2-n)(ai_. sy Nag et )
x E(— S(P)quozséjt ' 6Imélv' (All)

For example, when » = 3, we find y = o, so that

(@ — Df(e —a + PP =0; (A12)

for n = 5, after a lengthy calculation, we find
=203 —8aZ + (6 —0,)a + g,

so that

(@ — 2}{(a — 2)[203 — Ba2 + (6 — 0y)a + 0]

+3828,7} = 0. (A13)

APPENDIX B:

Here we justify the assertion that an arbitrary
n-vector operator 6 can be resolved into com-
ponents satisfying Egs. (5).

An irreducible representation of SO(xn) is charac-
terized by a set of integers or half-odd integers
(g, Ay ,A), as in Eq.(4). This set may be
interpreted as the weight vector of highest weight
for the corresponding representation,16 when each
weight vector is defined as an ordered set of
eigenvalues of, in particular, — io 5, — fa g4, ... ,
— 10y ,1,2me Accordingly, for such a represen-
tation, one can find an element { of the represen-
tation space, such that

—i0g W =N, 1=1,2, ... ,m. (B1)
Moreover, since Y corresponds to the highest
weight and since, for ¢ > 2{ > 2j,

(—iag;q, 00 Ap,mq,, T 0y ,)
=(agimq, o T 10 N—d0g; g 5, T 1)
and

[(—dagyeq,50; (@550, + iy, )] =0,
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it follows that

(Qgim1,q Ti0g; W =0, q>2i. (B2)
One sees conversely that any ¢ satisfying Egs.
(B1) and (B2) belongs to the representation labeled
(A1, A9, ... ,A,,). For example, Eq.(B2) implies
that (no summation over repeated subscripts here
except where indicated)

(@gim1, g = 1Qgs, Mg g, Tiay; JY =0,
q > 2i,
ie.,
(0g5- 9, 4%, 261 T Qo g¥q 2:) ¥
=—ilgy, 0¥ = N¥.
Thus
n
27 (0giq,,0, 251 F Qg g¥g 25) = (0 — 20N,
g=2i+1
n n
LZ),(O[Zi—l.qaq,Zi-l) + 20 (0,0, i)]W
=21 g=2i+1
=)0, +n— 20y,
and

aay = f} 22,0\, +n — 20,
i=1

Now suppose there exists an n-vector operator

0 actmg on Y. Inthe case n = 2m + 1, define
=(0g;-0 £ 0,0, i=1,2, ... ,m, and

zpb =0, . It follows from Egs.(2), (BI),

and (B2) that ¥¥ and 0 correspond to weight

vectors (Ay,Ag, o0y A, A E LA q, ouu ,A,)

and Xy, g, ... ,A ) and that the set YO, ¥F,

i=12, ... ,m 1s mvarlant under the action of

the operators (Qpj1,q T 10y 0 7 =1,2, ... ,m,

q > 2j.

We deduce therefore that 8y has components only
in respresentations labeled (A, Xy, .. , A 4,22 1,
)\Hl,...,)\m)z:lz ,M, 0T (A, g, vue G A )
It is easy to see then that the same must be true

if ¥ is replaced by any element of the represen-
tation space labeled (A1,X5, ... ,1 ), so that the
required result follows for » = 2m + 1. The argu-
ment for the case n = 2m is similar except that
%0 does not occur, and 8y can have no component
in the representation labeled (\1,Xy, ... , A ).

This work was done in part at the University of Adelaide and

in part while the authors were at Michigan State University

and the International Centre for Theoretical Physics at

Trieste.
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A hierarchy of tensor identities, satisfied by the generators of the general linear group GL (n)}, is obtain-

ed in terms of two different sets of invariants. An application to the identification of irreducible repre-

sentations and the decomposition of reducible representations is described. Similar results are obtained
for the generators of orthogonal, pseudo-orthogonal, and symplectic groups.

1, INTRODUCTION
The generators of the group GL (n) satisfy the com-
mutation relationsl

[aij’akl] _ Gk‘ail_ Oilak

; e ..., l=1,...,n,

1)
and their matrix representations are of some
interest, as they also furnish representations for
other Lie algebras. Indeed,the commutation rela-
tions

k

[Zi 7zj] =C ij %k

in which the structure constants necessarily
satisfy

p

k
ij+cji:

!

l m 1 m mn
c 0,C°,C Yy +C LT +CCT, =0,

can be satisfied identically by writing
b
Zi =C jiajk s

provided that a’j satisfy (1). Different irreducible
representations of the a' ; are, moreover, associa-
ted with different sets of eigenvalues of the invari-
ants ¢, defined by (repeated affixes ¢,7,%,7,...
are understood to be summed over values from 1
to n; however, subscripts 7,s, ... are exempted
from this summation convention)

oy=a,, o0y=a,d, 03=a']a’kaki, (2)
etc., which are Casimir operators, i.e., commute
with all elements of the algebra. Thus, an irre-
ducible representation of GL(n) can, in principle,
be identified by determining the eigenvalues of
04,09,...,0,. Of course, such a representation is

not necessarily irreducible for the z,,and the o,

¥ < n,are not necessarily independent. The prob-
lem of determining a complete set of independent
invariants for a semisimple Lie algebra has been
considered by Biedenharn? and by Gruber and
O'Raiffeartaigh.3

Another, less explicit but sometimes more con-
venient way of defining a set of invariants for
GL(n) is in terms of the highest weights of the
finite-dimensional irreducible representations.
Let A, be an operator whose eigenvalue, in a par-
ticular representation R of this kind, is the same
as the maximum eigenvalue ¢, of a1, in this re-
presentation. Further,let A ,» =2,...,n) be an
operator whose eigenvalue é, in R is the same as
the maximum eigenvalues of a”,, when al,, ...,
ar? _, havethe eigenvalues ¢;, ... ,f,_ ,respec-
tively. Then, if ¥ is a vector such that a”, ¥ =
£y, it must satisfy ai;¢ = 0,j > i,and (as one
can verify by computing 0, and o,¥)

n
0’1 :E?\,’,
r=]

n
0o =2 2,0, +n+1—27). @)
r=1

The representation R is labeled by £ = ({, {,,...,
£€,),where £, — €, is integral and nonnegative

when 7 < s,and can be identified in this way if the
dependence of the first » of the ¢, on the A is
known. Unfortunately, the complexity of the expres-
sions for the ¢, in terms of the A increases
rapidly with .

One use of the invariants is in the decomposition
of a reducible representation into distinct irre-
ducible components, which can be solved by deter-
mining the projections on to different eigenvectors
of the o, (or A,). There are, of course, other ways
of dealing with this problem, notably the method

of character analysis, which has been applied to
U(n) and SU(n) by Blaha.? Our present interest in
the problem arises from its connection with a
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not necessarily irreducible for the z,,and the o,

¥ < n,are not necessarily independent. The prob-
lem of determining a complete set of independent
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Another, less explicit but sometimes more con-
venient way of defining a set of invariants for
GL(n) is in terms of the highest weights of the
finite-dimensional irreducible representations.
Let A, be an operator whose eigenvalue, in a par-
ticular representation R of this kind, is the same
as the maximum eigenvalue ¢, of a1, in this re-
presentation. Further,let A ,» =2,...,n) be an
operator whose eigenvalue é, in R is the same as
the maximum eigenvalues of a”,, when al,, ...,
ar? _, havethe eigenvalues ¢;, ... ,f,_ ,respec-
tively. Then, if ¥ is a vector such that a”, ¥ =
£y, it must satisfy ai;¢ = 0,j > i,and (as one
can verify by computing 0, and o,¥)
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£€,),where £, — €, is integral and nonnegative

when 7 < s,and can be identified in this way if the
dependence of the first » of the ¢, on the A is
known. Unfortunately, the complexity of the expres-
sions for the ¢, in terms of the A increases
rapidly with .

One use of the invariants is in the decomposition
of a reducible representation into distinct irre-
ducible components, which can be solved by deter-
mining the projections on to different eigenvectors
of the o, (or A,). There are, of course, other ways
of dealing with this problem, notably the method

of character analysis, which has been applied to
U(n) and SU(n) by Blaha.? Our present interest in
the problem arises from its connection with a
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hierarchy of polynomial identities existing be-
tween the generators of GL(r) and of certain of its
subgroups. Earlier work by Lehrer-Named®
showed that there are always »2 identities satis-
fied by the elements of an #»~dimensional matrix
which are also elements of an associative algebra.
Here we shall show how to determine such identi-
ties explicitly for the Lie algebras derived from
GL(n). The method is a generalization of that
developed previously for O(n) by Bracken and
Green.® We shall also show how to obtain corres-
ponding identities for tensor operators of arbit-
rary rank and symmetry type, involving the gene-
rators a'; linearly.

There is, indeed, a hierarchy of characteristic
identities for GL(n), O(n), and Sp(n). The simplest
and most fundamental type is the characteristic
equation satisfied by the generators of GL(n), re-
garded as a matrix. If we (cf Racah?) define
series of tensor operators ¢’ ,7 =0,1,2, ... ,or
powers of a, by

" @) = 6 @, =d',@)", Y,
it is easy to verify that,for » =1 and n = 2,
a—o0y; =0 (meaninga?;—o0,0% =0),
02_(01 +1)a+%(0% +01—02)=0, (5)

respectively. These identities are in some sense
analogous to the Cayley—Hamilton identity satis-
fied by numerical matrices, but, because of the non-
commutative nature of the a ", cannot be obtained
by the usual elementary metf;od; the polynomials

in a on the left sides are, indeed, different from

the Killing determinantal polynomials appearing

in the work of Racah® and Biedenharn and Louck.?

The @” defined in (4) can be regarded as linear
operators on an n-dimensional space of vectors
or vector operators ¥ :(a"y)’ = (a')'jtl/’. The next
in the hierarchy of identities involve linear opera-
tors on a space of symmetric or antisymmetric
tensors of the second rank. In general, we define

ra,.,s pa..s r+1,pq..
(a0) jReam = b jkoam> ((l ) jRaam
P ryig.. S q 7\ Pie S
=a,{(a) jk__m+ai(a) om0
+asi (ar)m"ljk..m’ (6)

where 8°%+% " = yPee® yhen yPtis a
tensor or tensor operator of given rank and sym-
metry, Then,for instance, we have 6%, =

3(6° ,0%, + 5°,67,) for symmetric tensors of the
second rank, and the characteristic identity for
n=2is

(@ —o0y— 2) [a%2 — 2(0; + 1)a + 2(0,2+ 0, — 0,)]=0.

)

Our principal aim in the following section is to
show how to obtain similar identities for arbitrary
n and tensors of any rank and symmetry, In Sec.3
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we show informally how such identities are con-
cerned in the decomposition of reducible repre-
sentations, in particular the direct product of two
irreducible representations. Finally, in Sec. 4 we
shall outline the extension of these results to
generators of the orthogonal, pseudo-orthogonal,
and symplectic groups.

2. CONSTRUCTION AND PROPERTIES OF THE
IDENTITIES

We shall develop here a method for the systema-
tic determination of the identities for arbitrary ».
The actual procedure is summarized in (34), (36),
and (39) of this section; we first enumerate the
results on which the procedure is based and, where
necessary, outline a simple proof.

[1] The characteristic equation satisfied by the
malrix opevator a,defined as in (4), may be written

®

n
J(@=x, —n+7) =0,

where the X ave the opevators appearing in (3).
To prove this, suppose ¥ is a vector operator satis-
fying
- b
[alj:w ]=6]'¢,, (9)

e.g.,¥ could be the column with elements ain+1 of
the matrix a‘j in which 1 <{,7 s n + 1, Since

Ay =y7(a% +35,),

there must be a component, ¥, say, of ¥ which
increases the eigenvalue of A, by 1, leaving the
eigenvalues of the other A, unchanged:

AW, =¥, +0,). (10)
Now, if 4 is the negative transpose of the matrix a,
i.e.,

al=-a’, 11)
then we have, for any vector ¥,

ay =Y(n—a) 12)
(meaning @'y’ = ny’ —y7a}), and

[02,¥] = a¥ — ya = (2a — n)y. (13)

But, according to (3) and (10),

[Gzy‘pr] = [)‘r(xr tn+1— 27)"‘/7]
=2, +n—2rY,.
Hence, by substitution of ¥ for ¥ in (11), we have

(@—xr, —n+7)¥, =0, (14)
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and (6) follows. We note, in retrospect, that
¥, = P(a, ¥,

where P _(a, ) is the projection operator given by

(a—x, —n+s)
S:T(A’y—y—A’S +§5.

P (a,r) = (15)

[2] The chavactevistic equation satisfied by the
transpose @ defined in (11) is

n - -
1'1;[1(61 X,—n+7r)=0, (16)
where
Xr =" Ay (17)
and a” is defined recursively by
vl i v ki
@"),'= (@) a, (18)

This result follows directly from (14), which, with

the help of (12), can be written

V,(@+xr,—7+1)=0. (19)

[3] The charactevistic equation satisfied by the
opervatoy a,defined in (6), depends on the contra-
variant (or covariant) vank p of apq"s].k" . and the
symmelry type of this tensor, which corresponds

to an irreducible representation (my,mq,...,m,),
with Zmr =p,0f GL(n). It is
r

1 1
g(a—~§t2——§;‘,m;(hy +3n+gz—3m,—7)=0,

to=2m,(m, +n+1—27), (20)
r

wheve the product 17}‘ is over all sets of the non-
negative integers m,, such that

m, sm, smy, r=12,...,n,

14 1
m,q tm, Smy +tmg <my +my, Y #Ss,

I ! ’
m, g +mn_1 +m, sm, +ms +mtsm1

+mgy +mg, ry#s # I,
ym,=2m,=0 (21)
r 7

The labeling (m,m,,...,m,) of the irreducible
representation is the usual one and implies that

if more than m, superscripts of a tensor ¢'/**™

of the corresponding symmetry type have the same
value 7, o7 if more than m , superscripts have the
same value 7, when there are already m,,...,

m ., superscripts with the values 7, ...,7,_;,
then ¥7**™ vanishes identically. This is the origin
of the inequalities in (21),as will be seen in the
following proof of (20), which is similar to that of

(8).
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It should be noticed that
ot

(22)

2. P ik, s
(ad/)] m':a]ill/l m +ai¢ﬂ..m +.”+amiw

and that a can be defined so that

(lllc—l)jk" m -

k TR +1ij" iaim,

(23)

ik = j jie,m=
v a] +y’"a,
with @ Pq given by (11). Then we have

(05, W] =a¥ —va,ya=(—a+b"b7)y, (29)

where bij is the multiple substitution operator de-
fined by

k il.yn 3

bij(f)kl"n -5 jq,) +5 n L klian

+6"0"",
(25)

for a tensor ¢ of the same rank as Y. As the b’
constitkutgn a realization of the generators of GL(n},

Risen
JOE L

and ¢’ an irreducible representation, it follows
from (3) that

A RN (26)
with ¢, given by (20). Hence,

(05, %] = (2a — t,)¥. @n

But, if ¢/,  , is a tensor (with tensor superscripts
jk..m omitted) such that

}‘rwst..v = t’/st..vo\r +06,, t6,+00 + Grv)! R
(28)
then it follows from (3) that
0, ¥ o] =2amy@x, +n +1—m, —2r), (29)
p

where m, is the number of subscripts of Vq..»

which are equal to ». Combining (27) and (29), we

have

la—3t, ~2om.(x, +3n + 3 — tm, — )]
x wst..u =0

and our result follows.
[4] Similarly,

(30)

n,[a— 3ty ——Z;m;,(ir +3in+3 —3sm,—7)]=0,
(31)

where X, is again given by (17), and the m/, again
satisfy the inequalities (21).

The remaining results of this section are directed
towards the expression of these identities in terms
of the ¢, instead of the A, which cannot, in general,
be expressed directly in terms of the generators
of the group. They will concern only properties of
the simple tensor a'j and identities of the type (8),
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though generalizations corresponding to (7) or
(20) are certainly possible.

581ff o, = @) and s, = (a 7’)ii ,and
F(a, o) ,—:ill fa—x,—n+7) (32)

is the charactevistic polynomial in a [which vani-
shes when the a'j are generalors of GL(n)],then

F(a,0) = (— 1)"Fln — 1 — a,0). 33)

For,if 6, = ¢,(A),then 0, = 0, (). This identity
then follows from (8) and (17).

[6] We call a_polynomial g(a, o) in a symmelvric
if gla, 0) = g(a, 0), and antisymmetric if g(a,0) =
~gla,0). Then,if f4 =0,f1 =a,and

(5711
o] s) .
Spey = (a — ")f 0+ Z; Crasy Sr2s-1s

j( =a, f(f)

lhen f, is symmeliric ov antisymmetvic accovding
as v is even or odd.

& —a/A(,)Y, (34)

The proof, by induction, is very simple. If f, is
symmetric (antisymmetric), it follows from

[a'), (,)4] = n(f,) ', — 6",

that (e — 3n)f, + 3 (f r)ii is antisymmetric (sym-

metric).
[7] The polynomial F(a, o) of (32) is complelely
determined by the conditions

F(a,0) = (— 1)'F(n —1 — a,0), (35a)

F(a,0} is symmetric when » is even, antisymmet-
(35b)
(35¢)

ric when » is odd,

[F(a,0)], =

Equivalently, we could assert that F(a, o) is gener-
ated recursively by (34) and

Fa,0) =f, — (1,)'/n (36)
and that the coefficients c{s) are uniquely deter-
mined by the condition (35a) only. This is, in fact,
what we shall prove. Of course, all three condi-
tions are trivial consequences of the vanishing of
F(a, 0),but the point is that by using only these
conditions we can determine F(a, 0).

The proof is as follows. From the method of con~
struction, it can be seen that
(SRS,

s
=0 b, (37)
s=0

where p & = p ®(a — Ln,0) is a polynomial in

IDENTITIES FOR GENERATORS
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— 37 which is even or odd according as » — s
is odd or even, respectively. If the condition
(35a) is to be satisfied,

{a— 3s)p m(a——%n,o):(a—n +1+3s)

x pa—4n +1,5).

By settinga— sn =7r,forvr =3(n~—s) — 1, =
s(n—1s)—2,. r_lwhenn——siseven,orrz

2n——s~-1)'r_2(n-—s—3) .7 =1whenn—

s is odd, we see that the polynomial p n) must have

ZEeros for these numerical values of a. Consequent-

ly,

$@-sy1
(s)
PP == I [@—t02 -2,
r=1
n — S even,
S@-s-1)
)
4 ns = yr:[l [(a - é.n)2 - (’)’ - %)2]’

n— s odd, (38)

Thus, f, has been completely determined.

[8] The characteristic polynomial is given by
(36), wheref is determined from (34), with coeffi-

cients ¢ ) given by
)51 — )
RO (=1)" "(29)! (n—r)! - (39)

Cr T 2853 51(s + 1)1 n—7r—2s —2)!

The coefficients are determined as follows. By
inspection of the coefficients of the polynomials
%D we see that

0] )
()+c(v+)1 =~ n—r—1)2/4,
@ Q) o O ) )
€y +Cv+1—'cr+1cv+29 9w Cyp TCp
© (-1 @ (s-2) sy Q)
“‘cr+1c r+2 +cr+1 r+4 +. +Cr+1cv+23-2 .

These difference equations can be solved with the
help of

(1) (s)
Cf,)l—o Crogs-1 =0,
giving
C(yo)=_ mn—~r)ym—r—1)/23,

e =(n—r)n—~r—1)n—r~—2)n—r—3)/27,

(40)
and, by induction, (39).
(9] I
=(f)j,/'r L,=v—x,—%@n+1),
Fo=4tT (L, +4s) + (- D@, —4), (41

r=1

then the 0 and the L, are connected by the rela-
tions
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Fs='_ (s — 1)!9»1-5*1 —(s— 2)!9"'3*3/1!
— (s =310, ¢.5/2! — - s!

gn-s*l
=—8F  +s+(s — 2)F _,/1!

—s(s —1)(s —4)F,_,/2! + - (42)
The first of these relations follows from the iden-
tity

Fla,0) =—1[6, +6,_ja’ +6, 5(a'2— 3

n
tOge@?—) +ec] =1L, va), @43
where @’ = a — 3(n — 1), which is obtained by equa-
ting F(a,0),as given by (36), (37) and (38), with the
left s1de of (8) We 51mply form F, by substituting
a’ =%3sand a’ =— s in (43). The second relation
is obtamed by solution of the first.

We note also the following associated results,
obtained by direct comparison of coefficients of

-1 a2 )
a" " ,a" ", ... in (43):

S, = _Z,SL,LS =—0,— (n + )n(n —1)/24,
r>

S;= X L,L.L,=—05+n(n—1)(n—2)6,/24,
r>s>t

Sq4= 2 LLLL,=—0,+@m—1)n—2)
r>s>t>u

X (n—3)0,/24 + (n + Vn(n — 1)(n — 2)

X (n — 3)(5n + 7)/560, (44)
etc. The eigenvalues of L;,L,,L;,... are in
ascending order and are therefore easily identi-
fied. The above relations allow symmetric func-
tions of the L, to be expressed in terms of the o, ,
by substxtutlon of the explicit forms of f, into

¢, = () ;/7. Thus, we have, from (34) and (39),

r

6, =0,, 26,=0,— 0%,
305 = 03 — 310, — 3 (04 — $n)(0, — 03)
0
~ (0 — 30, — c(l))ol, etc. (45)

The continuation of this table is most conveniently

effected with the help of a LISP computer program.

3. IDENTIFICATION AND DECOMPOSITION OF
REPRESENTATIONS

In this section we shall discuss some applications
of the foregoing results, which will, incidentally,
throw further light on the role of the characteris-
tic identities.

One way of identifying an irreducible representa-
tion is to determine the characteristic identity
satisfied by the generators. It is, however, neces-
sary to note that although the generators a in
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general satisfy an equation of the nth degree, they
may also satisfy a reduced equation of lower de-
gree in a particular irreducible representation.
For, if the eigenvalues ¢, and £, of A, and A, are
equal in such a representation and f > s, then the
component of the vector operator y satisfying
(@ —A;—~n + s)¥ = 0 must vanish in this repre-
sentatlon and the factor (¢ — l — n + s) may there-
fore be omltted from the characterlstm equation
Iyl(a—f,,—n+r)=0. (46)
By omitting all such factors, we obtain the reduced
equation of the representation. If this reduced
equation is of the gth degree in a, the eigenvalues
s, of the o, satisfy a gth-order dlfference equation
[obtamed by multiplying (46) by a” and contracting
the resulting tensor identity]. The solution of this
difference equation is of the form
s, =5c, (L, +n—1""", 1)
t
where the ¢, are numerical constants. We tabulate
for reference the characteristic identities and the
eigenvalues of the invariants in some of the simpler
irreducible representations:

(1,0,...): {(a—n)a=0, s,=n’-l;

1,1,0,...): (@a—n+1a=0, s,=20—1""%

2,0,...): (@—n—1a=0, s,=2nr+1)"5

(1,1,1,0,...): f(a—n +2)a +0,
,=3m—2""

2,1,0,...): (@a—n—1)(@a@a—n+1)a=0,
=3[ +1)" + (n—1)")/2;

3,0,...): {a—n—2a=0, s,,=3(n+2)"_1

(48)

We consider now the problem of decomposing a
reducible representation into distinct irreducible
components. The latter are, of course, distinguished
by the eigenvalues of invariants, and can be isola-
ted by applying projection operators corresponding
to the different sets of eigenvalues. We intend to
apply this procedure to the decomposition of

GL(n) XGL(n). We denote the generators in two

irreducible representations by az and bz , so that
those in the product space are
i i i
[ iz aj + b] (49)

(or, more precisely, a] X1 + 1 >< b ]) We adogt
tensor representations ¢ = tl/ **and ¢ = ¢

for vectors in the range of a and b % respectively,
so that

ki, ,n

Xkl..n :¢ .e !P

is a vector of the product space which we wish to
decompose. Distinct irreducible representations
correspond to different eigenvalues of
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= %(a’ja",. + bljb], - cjc]i) =— aljb],- . (50)
Suppose ¢ o are the eigenvalues of y in the re-
presentation, so that

(m), kleen
NG —c ™)y " = o. (51)

According to (25) and (23),

kleen B jleen 1 kjeen n kl,.j
yo =—(a;6""" +a;0 +a; )
- kl..n ki, — o\ kl..n
=(pa) ", Y2 " =(¢a?) ",

etc. with a defined in the generalized way of (6). It
follows, then, from (51), that

((1)71;‘[((—1 . c(m))> kl..n‘p = 0. (52)
This is evidently the reduced counterpart, in the
special representation we are considering, of the
identity (31), and it follows that

c(m)=%t2+;m;(£r+_%n +%—'%m;—7); (53)

where £, =— £_,,_, is the appropriate eigenvalue
of A and the m, must satisfy the inequalities (21).
The eigenvalue (53) corresponds to the irreducible
representation (¢, +m{, £, + mj,...) contained
in the product space we are considering. This
shows that the factors of the characteristic equa-
tion (8) correspond to different representations
generated by the direct product of the adjoint re-
presentation (1,0,...) and that associated with the
a,. The factors of the generalized equation (20)
correspond to different representations generated
by the direct product of the irreducible represen-
ta}tion (m,,m,,...) and that associated with the

a]..

Of course, not every set of values of the m
satisfying (21) is necessarily represented in the
reduced characteristic identity. The vector

(0,1, G=c O = c®) ",

bpEm

which is the component of x corresponding to a
proper irreducible representation (Cl +my, 62 +
m),...),cannot vanish, and this requirement in
general imposes further conditions on the m_,
analogous to those which restricted the degrees of
the characteristic equations shown in (48). These
additional conditions can be found by considering
in the first instance the possibility that ¢*"" ig
completely antisymmetric. Then the conditions
(21),and.

b, +m, >, +m,, (54)
are sufficient. The corresponding conditions for
tensors of other symmetry types are obtained by
expressing them in terms of direct products of
completely antisymmetric tensors, e.g.,(2,0,...) =
(1,0,...) x(1,0,...)—~(,1,0,...). It should be
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remarked that a given irreducible representation
may appear multiply within the product space, so
that although (54) is a vector of only one distinct
irreducible representation, it may still be decom-
posable. The decomposition can be effected by
projection onto eigenyectorsl of other independent
invariants a’b’,b";,a’ bbb ; , etc., of the reducible
representations, but we shall not pursue this ques-
tion here.

4. IDENTITIES FOR SUBGROUPS OF GL(n)

It is well known that the introduction of a metric
tensor is necessary for the definition of the ortho-
gonal and symplectic subgroups of GL(r). If g, ;

is symmetric and we define

o = ko k
ij = 8i? ;T & ;

[where the @’,,as before, are generators of GL(n)],

then the o;; are generators of the orthogonal transg-
formations which leave the quadratic form g,,0"Y’,
involving two vectors ¢ and ¥, invariant. Similarly,
if g; y is antisymmetric and

_ Bk
@, =8al ; tEul

then the o, are generators of the symplectic trans-
formations’ which leave g, ¢’ invariant, We can
accomodate both possibilifies by writing
k k —
aijzgikaj_gkja i g,-,—ﬂg,-i, (55)
where 1 = 1 for 0(r) or — 1 for Sp(n). These genera-
tors satisfy

lo 0 ) = 8000 — 8% — 81 + 81/ pie (56)
Ity * is a vector operator,

. .
lo,, ¥ =0y, —no ¥ ¥i= gV - (7

It is necessary to assume that g; ;jis nonsingular,
which is only possible {Or Sp(n) when n is even.
Then a contravariant g ’ exists such that

g”g_,'k=gkj.xg]z =0, (58)
and we can proceed to define tensor operators o
and & analogous to a and a given by (22) and (23),
but constructed from

.izt%kgki:—az. (59)

ot = ika o
;T8 Qs J

The invariants are defined by

r.i
g, = (@) iy (60)
but 0, now vanishes identically and, as we shall
see, the 0,,.; can be expressed in terms of the
0,,. There are,therefore, 2 independent invari-
ants, where

h=3n—1), nodd.

(61)

h=1%n, mneven, or



2112

In addition, there is the inversion P, when det(— g)
=—1.

We can also introduce the well-known invariants
A7 =1,2,...k, implicitly in the following

way. First a transformation reducing g, ; to the
canonical form g;, = +§,; for O(n);gi]. = 0,1,

i odd) or — 6,51 (i even) for Sp(n) is applieé.
Then, in a particular irreducible representation,
suppose that fl is the maximum eigenvalue of al,,
and that £, is the maximum eigenvalue of #2771, |
when the @251,  with s <r already have the eigen-
values £ .. When ¥ is the eigenvector of this re- -
presentation corresponding to the eigenvalues Zs,
it is readily verified that

)
o =224, (€, +n+1—n—2nY.
T:l

We define A, as the operator whose eigenvalue is
£, within the irreducible representation described,
so that

R
09 =222, +n+1—n—27 (62)
r=1
for any representation. If we define A, for 2 <
Y <nby
A, =N — A1y, T=n—h+1,,...,n
A1 =1, mnodd, (63)

then we can also write

n
0, =mh(n—h) + 0, (A, — n+n+1—27)
=1
§ (64)

From this starting point, it is a straightforward
matter to derive the characteristic identities, by
the methods of Sec.2. We shall simply state the
principal results. There are, in general, 2 vec-
tor operators ¥ ; (excluding ¥ ., when x is odd)
such that

)‘rlps = l'Ds()‘r + 5rs)' (65)
When # is odd, the additional vector operator
¥ ,.1 commutes with all the A,. The vector opera-
tors thus specified satisfy

(a-—)\r—n +7n +T)!l/,r=0,

Vv, (a+r, +1—7)=0, r=1,...,n, (66)
where oy and t}/&_ denote Y;ector operators within
components (ay)’ = a’, ¥ " respectively. The
characteristic identity is therefore
n

J@—a, —n+n+7)=0, (67)
and @ satisfies the same equation. An equivalent
result was obtained previously, for O(r), by Brac-
ken and Green®;the application to Sp(n) is new.
Also, the analogy with the corresponding result (8)
for GL(n) is interesting.
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The result (87) is just the first of a hierarchy.
There is a generalization in which «a is the tensor
operator defined by

(aw)jk_,m= ajiwik..m +a kiwji..m Foane amiwjk..m
(68)
for any irreducible tensor representation of O(x)
or Sp(n). If we disregard associated representa-
tions (derived from one of lower rank by the use
of the alternating tensor) the irreducible tensor
representations can be labeled by (m,m,,...,

m,), where E:.': 1M, =p, the rank of the tensor. With

such labeling of tpj k"m, the characteristic identity
satisfied by o is
I (a — ity —Em;o\, tm—m+i—im, ~r))=0,

h
ty=22m,m, +n+1—n—2r),
Y=

0<m) <smy,

0 <m, +m! <m; +m,,

n 3

Tmy < Lm,=p. (69)
r=1 r=1

Finally, we give the procedure for constructing

the characteristic identity (67) in terms of the o,
this is somewhat simpler than that given for GL(n),
but again depends on the construction of a se~
quence of self-conjugate or anti-self-conjugate
polynomials in a,the conjugate being defined by

ki

fji=gjlafbg . (70)
The sequence defined by
f2=a(a'—%n +’7),
Jomg=l@a—7)@a—n+n+7)f,,

—(a —7) (@ —3n +0)(fy,),;/(27) (71)

is self-conjugate and is unique in leading to a poly-
nomial f, , which is even in @ — %, when n = 2k is
even. The characteristic polynomial is therefore

for— 2n)',/(2h) =0, n even. (72)
On the other hand, the sequence defined by
fi=a, fap1= (@—7a—n+7)fy,4

— (@ = 7)(afy,4)},/(27) (73)

is anti-self-conjugate and is unique in leading to a
polynomial f, ., which is of the form (a — %)
times a polynomial even in @ — 37, when n = 2 +
1 is odd. The characteristic identity for O(n)
(given by Bracken and Green®) is therefore

fam1 =0 (14)
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We noted previously the existence of identical
relations between the 0,,,, and the 0,, for O(n)
and Sp(n). For instance,o; = (zn — 1)0,. These
relations are easily obtained from (71), if we note
that (@ — n)f,, + 3(f,,)¢, is anti-self-conjugate,
so that

(@f5,); = 0. (75)
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By substituting explicit forms for f, ,, we obtain
the desired identities.
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Expressions are developed which describe exactly the ensemble average of the number of nearest, next-
nearest, and third-nearest-neighbor pairs per particle, when indistinguishable particles are arranged on

a two-dimensional rectangular lattice.

I. INTRODUCTION

In previous pa.persl’2 exact relationships were de-
veloped which describe the occupation statistics for
one-dimensional arrays of dumbbells and A~bells.
(Here A refers to the number of contiguous lattice
sites occupied by a particle; A = 2 for dumbbells,)
The purpose of the present paper is to point out
that these previously obtained results can be utili-
zed to determine the ensemble average of the num-
ber of nearest-neighbor pairs, next-nearest-
neighbor pairs, etc., for single particles (A = 1)
arranged on a two-dimensional retangular lattice.

II. NEAREST-NEIGHBORS PAIRS, n,

Consider a rectangular lattice consisting of M
columns and N rows on which are arranged a total
of p particles. (See Fig.1.) If there are ¢ particles
on one of the rows (0 < ¢ < M) and these particles
are arranged in all possible ways, then there are?

N M= i—q+ 1) (M7 1) )
runs along that row which are composed of » con-
tiguous particles. This expression is the result of
the following reasoning. If we consider the run of
r contiguous particles and one of the vacancies
which terminates the run as a unit, then there are
M — v — 1 individuals remaining. g — r of these
are particles, and M — g — 1 are vacancies, and
these may be arranged in all possible ways. How-
ever each of the arrangements arising from the
permutation of these M — r — 1 individuals may be

created in (M —g— 1)+ 2= M.— g+ 1 ways be-~
cause the unit consisting of the unit composed of

the » particles and the terminating vacancy can be
inserted between each of the M — g vacancies in

M — g — 1 ways, in addition, it may be inserted be-
tween a vacancy and each end of the array. When
the ¢ particles on a row are arranged in all possible
ways and the positions of the remaining p —g particles

(IP)

GA-0O-1+0 o1 -+-Q O
NIP (NIP, (NIP)
b b 6
(NIP)
Q Y @]
o+—ro| | |oto
(NIP)
-0 : O\
16 oo
(NIP ([
Q :
o4 Oo4—0 +O eREeRRe
FIG.1. When three particles are placed on a

2 x 3 array in all possible ways, there are 28
nearest~neighbor pairs (dashed lines); 16 next-
nearest-neighbor pairs (solid lines); 8 third-
nearest-neighbor pairs (arrows), 2 with an inter-
vening particle (IP) and 6 with no intervening
particle (NIP),
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We noted previously the existence of identical
relations between the 0,,,, and the 0,, for O(n)
and Sp(n). For instance,o; = (zn — 1)0,. These
relations are easily obtained from (71), if we note
that (@ — n)f,, + 3(f,,)¢, is anti-self-conjugate,
so that

(@f5,); = 0. (75)
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By substituting explicit forms for f, ,, we obtain
the desired identities.
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Expressions are developed which describe exactly the ensemble average of the number of nearest, next-
nearest, and third-nearest-neighbor pairs per particle, when indistinguishable particles are arranged on

a two-dimensional rectangular lattice.

I. INTRODUCTION

In previous pa.persl’2 exact relationships were de-
veloped which describe the occupation statistics for
one-dimensional arrays of dumbbells and A~bells.
(Here A refers to the number of contiguous lattice
sites occupied by a particle; A = 2 for dumbbells,)
The purpose of the present paper is to point out
that these previously obtained results can be utili-
zed to determine the ensemble average of the num-
ber of nearest-neighbor pairs, next-nearest-
neighbor pairs, etc., for single particles (A = 1)
arranged on a two-dimensional retangular lattice.

II. NEAREST-NEIGHBORS PAIRS, n,

Consider a rectangular lattice consisting of M
columns and N rows on which are arranged a total
of p particles. (See Fig.1.) If there are ¢ particles
on one of the rows (0 < ¢ < M) and these particles
are arranged in all possible ways, then there are?

N M= i—q+ 1) (M7 1) )
runs along that row which are composed of » con-
tiguous particles. This expression is the result of
the following reasoning. If we consider the run of
r contiguous particles and one of the vacancies
which terminates the run as a unit, then there are
M — v — 1 individuals remaining. g — r of these
are particles, and M — g — 1 are vacancies, and
these may be arranged in all possible ways. How-
ever each of the arrangements arising from the
permutation of these M — r — 1 individuals may be

created in (M —g— 1)+ 2= M.— g+ 1 ways be-~
cause the unit consisting of the unit composed of

the » particles and the terminating vacancy can be
inserted between each of the M — g vacancies in

M — g — 1 ways, in addition, it may be inserted be-
tween a vacancy and each end of the array. When
the ¢ particles on a row are arranged in all possible
ways and the positions of the remaining p —g particles

(IP)

GA-0O-1+0 o1 -+-Q O
NIP (NIP, (NIP)
b b 6
(NIP)
Q Y @]
o+—ro| | |oto
(NIP)
-0 : O\
16 oo
(NIP ([
Q :
o4 Oo4—0 +O eREeRRe
FIG.1. When three particles are placed on a

2 x 3 array in all possible ways, there are 28
nearest~neighbor pairs (dashed lines); 16 next-
nearest-neighbor pairs (solid lines); 8 third-
nearest-neighbor pairs (arrows), 2 with an inter-
vening particle (IP) and 6 with no intervening
particle (NIP),
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are held fixed, n, the number of nearest-neighbors
pairs along that row is given by

" = é(r — 1N(q, M)

_‘I _ _ M—-r—1
—’Q(‘r 1) (M q+1)< q—'r>

(2)
because each run of » contiguous particles along a
row contains » — 1 pairs of filled nearest-neighbor
sites. This sum is from the smallest to the largest
possible run and yields

=M —1) (’(‘14_—22)

A row containing a particular arrangement of ¢
particles will occur (¥(¥-1)) times because the
rest of the particles,p — ¢, are arranged in all
possible ways on the rest of the sites, M(N — 1).
Then n4;, the total number of horizontal nearest-
neighbor pairs which appear on the N rows, is ob-
tained by summing

M —2\ [M(N — 1))
NM—-1
( ) (q - 2) < p—q
over all possible values of g. There are three

possible intervals over which the sum is to be
taken:

(i) A particular row can be empty but cannot
be filled because p < M,i.e.,0 < q < p;

(ii) a particular row can be empty and can
be filled because M < p < M(N — 1), i.e.,
0<qs<M,

(iii) a particular row cannot be empty be-
cause p > M(N —1),i.e.,p — M(N — 1)

3)

(4)

g <M.
All three situations lead to the same conclusion:
MN — 2
"lth(M—l)<p_2>- (5)

Similar reasoning leads to the number of “verticle”

nearest-neighbor pairs so that n,, the total
number of nearest-neighbor pairs arising when p
particles are arranged in all possible ways, is

n; = (2MN — M —N) (’V;N_—22>.

Thus the ensemble average number of nearest-
neighbor pairs per particle is
-1

In the limit as M and N approach infinity the
number of nearest-neighbor pairs per particle is
twice the lattice coverage.

(6)

(M

III. NEXT-NEAREST-NEIGHBOR PAIRS, n,

The following calculation of the number of next-

nearest-neighbor pairs will be based on a deter-
mination of the number of next-nearest neighbors
along a diagonal. In other words we will consider

R. B. McQUISTAN

two particles occupying adjacent sites along a
diagonal as constituting a next-nearest-neighbor
pair. Assume that a diagonal d units long (1 <
d < N) contains g particles and that these are
arranged in all possible ways. Then there are
[see Eq. (1)]

Nad=a-qt (730 ®)
runs along that diagonal which are composed of r
contiguous particles. The number of occupied
adjacent pair sites along the diagonal is then

Lo N TV d—7r—1
L o-mnaa=50-ne-q+r {777

=@—D@_®. 9
When p particles are arranged in all possible
ways, a diagonal containing a particular arrange-
ment of ¢ particles will occur(’s ) times be-
cause the p — g remaining particles can be arrang-
ed in all possible ways on the remaining (MN — d)
sites. Thus the number of occupied adjacent pairs
which appear along a diagonal of length d is ob-
tained by summing

d—2\ (MN —d
-1

a-v (523 (3-2)
over all possible values of ¢g. There are three
cases: (i) 0 < g < p,(ii) 0 < ¢ <d, (iil) p — MN
+d < q < d,and all yield®

(@ — (2.
On an M X N rectangular lattice (M = N) there
are (see Fig. 2) four diagonals 1 unit long, four
diagonals 2 units long, four diagonals 3 units long,
four diagonals (N — 1) units long,2(M — N + 1)
diagonals N units long.

Each diagonal of length d (1 < d < N — 1), occurs
four times and the diagonal N units long occurs
2(M — N + 1) times. Thus,n,, the total number
of next-nearest-neighbor pairs occurring when ¢
particles are arranged in all ways, is
MN — 2

n2=2(N—1)(M—1)<p_2>. (10)
The ensemble average number of next-nearest-
neighbor pairs per particle is

-1

MN(MN — 1)

n,/p (Abe_ (2MN — 2M — 2N —2)
(11)

In the limit as M and N approach infinity, the
number of nearest-neighbor pairs per particle
also increases twice as fast as the coverage.
IV. THIRD-NEAREST-NEIGHBOR PAIRS, ng
A. With No Intervening Particle (NIP)

If there are g particles on one of the rows and they
are arranged in all possible ways, then N, the
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number of contiguous vacancies of length v, is
given by?2

n=e+n (7071,

because the v-tuple vacancy plus one of the par-
ticles terminating it can be considered as a unit
containing v + 1 individuals; there are then M —

v — 1 individuals remaining on the row of which

g — 1 are particles and (M — ¢ — v) are vacancies.
These can be arranged in

(51

ways. Distinguishable arrangements can be created
in (g —1) + 2 = g + 1 ways by inserting the v-
tuple vacancy and one of its terminating particles
between and at the ends of the remaining ¢ — 1
particles.

(12)

To determine the number of third-nearest~neighbor
pairs (with no intervening particles, NIP) along a
row containing g particles arranged in all possible
ways, we set v= 2 in Eq. (12). Since the remain-
ing p — ¢ particles may be arranged in the re-
maining MN -3 sites in all possible ways, the total
number of “horizontal” third-nearest-neighbor
pairs (NIP) is

voa(523) (N
MN —

—var—2) (57, .

where again there are the three possible ranges for
g discussed in connection with Eq, (5). The num-
ber of “vertical” third-nearest-neighbor pairs
(NIP) can be obtained by interchanging M and N

S0 that n 4, the number of third-nearest-neighbor
pairs (NIP) arising when p particles are arranged
in all possible ways is

MN —

ng = (2MN—2M——2N)(p__23>. (1)

Thus, the number of third-nearest-neighbor pairs

FIG.2. Onan M= TN =6
array there are four diagonals
1,2, 3,4, 5 units long (only two
of each are shown) and four
diagonals 6 units long.
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(NIP) per particle is
ng  @MN—2M-2N)(p —1) (p—2)
PN MNMN—1)(MN—2)

For large M and N, the number of third-nearest-
neighbor pairs (NIP) per particle varies as 26(1 — 9,
where 6 is the lattice coverage.

15

B. With Intervening Particle (IP)

If there are g particles along a row and these are
arranged in all possible ways, then there are2

q
;_2(1"—- 2)N, (g, M)

q
=D r—2DM—g+1) (M;T_;1>

=(M~2)
units composed of three particles in a row, i.e.,
a third-nearest-neighbor pair (IP). The remaining

P — g particles may be arranged on the remaining
MN — M sites in

(MN -~ M>

P—q

ways so that the total number of horizontal third-
nearest-neighbor pairs (IP) is

(16)

Ry, = N(M —2) (M;" __33) , (17)
80 that 7, the total number of third-nearest-
neighbor pairs (IP), is
MN — 3
ng= (2MN —2M —2N) ("7 "), (18)

or the ensemble average of the number of third-
nearest-neighbor pairs (IP) per particle is

M3 o -1 —2)

(i) = (BMN — 2M = 2N) GO — 1) = )
Thus, the total number of third-nearest neighbors
per particle is [(2MN — 2M — 2N)(® — 1)]/(MN)
(MN — 1).

V. SUMMARY

We have calculated the ensemble average of the
number of nearest-, next-nearest- and third-
nearest-neighbor pairs per particle when par-
ticles are arranged on a two-dimensional array.
In each case, for large arrays, this number varies
as twice the coverage of the array.

The methods described above may be used for
exact higher-order nearest-neighbor statistics.

ACKNOWLEDGMENTS

The author wishes to thank Professor D. Lichtman
for a critical reading of the manuscript and R.
Ristic for the drawings.

1 D.Lichtman and R. B. McQuistan, J. Math. Phys. 8, 2441 (1967).
2 R.B.McQuistan, Nuovo Cimento 58B, 86 (1968).

3 J.Riordan, An Introduction to Combinatorial Analysis
(Wiley, New York, 1958).



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 10 OCTOBER 1971

On the Relation between Master Equations and Random Walks and Their Solutions*

Dick Bedeaux, Katja Lakatos-Lindenberg, and Kurt E. Shuler
Department of Chemistry, University of California San Diego, La Jolla, California 92037
(Received 18 January 1971)

It is shown that there is a simple relation between master equation and random walk solutions. We
assume that the random walker takes steps at random times, with the time between steps governed by a
probability density ¥(Af). Then, if the random walk transition probability matrix M and the master equa-
tion transition rate matrix A are related by A = (M — 1)/7,, where 7, is the first moment of Y(¢) and
thus the average time between steps, the solutions of the random walk and the master equation approach
each other at long times and are essentially equal for times much larger than the maximum of (1,/m !)1/ i
where T, is the nth moment of Y(#). For a Poisson probability density y(?), the solutions are shown to be
identical at all times. For the case where A'= (M — 1)/ 7,, the solutions of the master equation and the
random walk approach each other at long times and are approximately equal for times much larger than
the maximum of (r,/n )1/ if the eigenvalues and eigenfunctions of A and (M — 1)/7, are approximately
equal for eigenvalues close to zero,

1. INTRODUCTION 2. FORMAL SOLUTION OF THE RANDOM WALK
. . ) AND MASTER EQUATIONS

There exists an extensive literature on master

equations and random walks and their solutions.l ~ The general equation for a random walk is

We show in this paper that there is a close rela-

tion between random walks and master equations Plagn +1) =23 M, Pla’;n) = M Pla;n),

and their solutions. We consider random walks?2 o (2.1)

in which the walker takes his steps at random . . .

times #,, £y, -+ and where the random variables yvhere P(a;n) is the probability that the walker is

Ty =t,Tyg =ty —1ty,++-,T,=t, —1 _; have a in state o after the nth step, M, is the probability

common probability density ¥ (7). A random walk  that the walker goes from « to ' in one step, and

with constant time intervals 7, = T,=---= 7be- M s the transition probability matrix. We impose

tween steps is the special case with ¥ (f) = 6(t —r). DO restrictions on the number of states between a
and ¢’,i.e., random walks with nonnearest neigh-

In Sec. 2 the random walk and the master equation  bor transitions are included in our subsequent

are formally solved in terms of Green's functions. analysis. If there is a continuum of states, the

It is shown that a simple relation between the sum over ¢ is understood to be an integral over
Green's functions exists if the master operator A the continuous part and a sum over the discrete
and the random walk transition matrix M are re- part of state space.

lated by A= (M — 1)/7,, where 7, is the first mo-

ment of Y(2), ie., the average timé between steps. To calculate the probability P(a;¢) that the ran-

dom walker is in state o at time ¢, we must specify

In Sec. 3 it is shown that for a Poisson process, the probability that the random walker makes a
characterized by ¥(f) = (1 /Tl)e—t/rl, the solutions step in a given time interval. Wg shall assume?2

for a random walk and the corresponding master ~ that jumps are made at random times ty, t,, 43, -,
equation with A = (M — 1)/7, are equal for all where the random variables T, = (¢; — 1, ;),

times. This is the only time step distribution for t= }, 2, - ‘o with £, = 0, have a common prob-
which this is the case. It is also shown that the ability density Y(T).

random walk equation and the corresponding mas-  Tpe general form of the master equation is
ter equation are identical for a Poisson process.

It should be stressed that this equivalence is valid P ,

independently of the value of the average time be- 57 Qs ) =23 A, Qa’;t) = AQ(a, 1), (2.2)
tween steps, 7,, and that it is not necessary to go to ¢

the limijt 7, — 0. where Q(«; t) is the probability that the system is

in state o at time ¢, A, is the transition rate
from state a’ to o, and A is the transition rate
matrix. The transition 1 te A, ris related to the
more usually employed gain and loss rates B_ /by

In Sec. 4 processes with arbitrary y(t) are investi-
gated. We discuss there the implications of the
main result of this paper which can be stated here
loosely as the following: If A = (M — 1)/7, then the
random walk and master equation solutions approach _

each other at long times,(:md are approximately Ayar =By — 0o g,)B o (2.3)
equal for times much greater than the maximum of

(r,/n)*’ where 7, is the nth moment of the dis-  in which 6, s is the Kronecker 6 for discrete
tribution y(t). For A # (M —1)/7, some additional states and the Dirac 6 function for continuous
conditions must be imposed. These results are states,

stated more precisely in Sec. 4 and are proved in
the Appendix. We also present in Sec. 4 a mathe-
matically precise formulation and a rigorous proof
of the often stated equivalence of the random walk
and master equations in the limit as the time inter- The formal solution of the random walk equation,
val between steps tends to zero. Eq.(2.1),is

We consider only processes which are temporally
homogeneous, i.e., for which M and y/(T) are inde-
pendent of » and ¢, and A is independent of 7.
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P(a;n) =M" P(a;0). (2.4)
The generating function3 for the random walk is
defined by

Pla;z) = i 2" Playn) = (1 —2M)~1 P(a;0), (2.5)
n=0

and the corresponding Green's function is

G () = (1 —2M) 25, (2.6)

The formal solution of the random walk problem
in continuous time is given by2

o0
P(a;t) =25 ®,(n)P(a;n), (2.7)
n=0
where ®,(n) is the probability that the walker has
made exactly » steps at time ¢{. This probability
is related to the probability density ¥, (t) that the
walker makes his nth step at time £, = {,, by

®,(n) = fot v, (7) t_f“’ Y{rdr'dr, (2.8)
where
Yl = [ Ypg(WE~D)dr, 0> 1,

t{/l(t) = lﬁl(f), tp()(t) = 5(”- (2. 9)

The generating function for the random walk as a
function of time is defined by the Laplace trans-
form:

Plo;s) = fom e_StP(a;t)dt. (2.10)

Substitution of Egs.(2.7)-(2.9) into Eq.(2.10)
yields

r N = ——_‘i&s_)_. —_— -1 N
{a;s) <s e (M 1)) P(a,(z)z,- 0
where
Ws) = [ e w(t)at (2.12)

and P(a;0) = P(a;n = 0) = P(a; ¢ = 0). The cor-
responding Green's function is

U -1
G, (8) = (s—;s—v/(.s—)s(M—l)> 0l
—¥ls (2.13)
This Green's function is related to the one in Eq.
(2.6) by

G (2.14)

aa’(

o=0=lg g,

The formal solution of the master equation, Eq.
(2.2),is

Qla;t) = ¢* Q(a;0). (2.15)
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The generating function for the master equation
is defined by the Laplace transform:

Qla;s) = [T ™ Qlastidl = (s — A)~1 Q(a;0).
o (2.186)

The corresponding Green's function is
P

F sy ={(s—A)"15 . (2.17)
R will be shown in the following sections that the
solutions of the random walk problem and the mas~
ter equation are closely related if we make the

identification

A=M—-1)/14, (2.18)
where

7 = [ty (2.19)
is the average time between steps. F__,(s) and

G ,./(8) are then related by
W(s) = [1 _'*P(S)] F

*e Tls{p(s) as

, (L= s) 2.20
<71¢<s>>’ (2.20

while F  ,(s) and G _/(z) are related by

G2y =712 F (1 — Z). (2.21)

T2

It is thus clear that the solution.of any one of the
three problems in terms of Green's functions
immediately gives the solutions of the other two
problems in terms of Green's functions. All
three problems can in principle be solved by the
diagonalization of the same operator.

In terms of the eigenfunctions and eigenvalues of
the operator A, the solutions of the random walk
and the master equation can be written as

Plo;n) =35 (1 + 7,0)" f (@) P(a; 0), (2.22)

Pla;t) = Z_) [_2_715 jc:':” dse® (S — i%st::?)-ljl

x f (@) P{a;0), (2.23)

Qas1) =T e f,(a) Qa; 0), (2.24)
where

Pla; 0) = ;ga(a) P(a; 0), (2.25)

Q(a;0) =27 8,(2) Q(a;0), (2.26)

and a,g (@), and f (o) are the eigenvalues, left
eigenfunctions, and right eigenfunctions of A, res-
pectively. If the spectrum of A has continuous
parts, the sum over a is understood to be an inte-
gral over these parts. The quantity ¢ in Eq. (2. 23)
is any positive constant.
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In order that P(a;n) be a well-defined probability,
0 < P(a;n) < 1, it is clear that the Euclidean norm
of the operator M must be bounded:
Ml = maxliimrll <1,  lall = 1. (2.27)
Because of the relation between A and M in Eq.
(2. 18), the bound on M gives upper and lower
bounds to the spectrum of A:
—-2/1,=ae=0, (2.28)
Since we have made no restrictive statements on
conservation of probability, the results of this
paper are also valid for “open” systems, i.e., sys-
tems where probability is not preserved in that
some or all of the walkers are removed in time
(trapped, absorbed, evaporated, etc.).

The existence of a lower bound on the eigenvalues
of the operator A is crucial to our technique of
relating the solutions of the random walk and the
master equations via their Green's function, Egs.
(2.14), (2. 20), and (2. 21). Since, however, eigen-
values with a large absolute value do not contribute
appreciably to the long-time behavior of the solu-
tions, it is possible to relate the long-time be-
havior of the solutions of a master equation with
those of a random walk equation if the eigenvalues
of A do not obey Eq.(2.28). In that case it is, how-
ever, impossible to relate A and M by Eq.(2.18);
hence it is also impossible to give a simple rela-
tion between the various Green's functions. This
will be explored further in Sec. 4.

3. POISSON PROCESSES

The following question immediately arises: Does
there exist a probability density y/(f) such that the
solutions of the master equation (2. 2) and of the

|

Equation (3. 5) yields:

exp

-

P(a;t +h) —P(a;f) h-1
7 =

=h"1 :exp (;h;(M——l)) — :] exp
— 1 [ exp (;”I(M— 1)> - 1] Pla;?).

UX, ET AL

random walk equation in continuous time (2.7) are
identical at all times for identical initial conditions?
It follows from the Green's functions for both prob-
lems (2.13) and (2. 17) that this will be the case if
and only if A and M are related by Eq. (2. 18) and if

s¥(s)

b= ;1: (3.1)
Equation (3. 1) has the solution

Y(s) = (rys + 1)1, (3.2)
which then yields upon inversion

wit) =77 &M, (3.3)

This is the probability density for a Poisson pro-
cess.4 For such a process, the probability that the
walker has made exactly »n steps at time { is the
Poisson distribution

(3.4)

JORFIG

____)n e‘l/fl .
1

It is possible to show directly that the difference
equation for a random walk with a Poisson density
Y(t) is equivalent to a master equation at all times
t. From the formal solution [Eq. (2. 4)] of the ran-
dom walk equation and the relation (2.7) one ob-
tains

P(a;t) = 7:'70 & (n) M"P(a; 0), (3.5)

00
where 7 &,(n)M" can be considered as an operator

=0
which translates the initial distribution to the dis-
tribution at time ¢.

(G @~ ) —em (0~ 1)) Pes0

(;’: M- 1)) P(a;0)

(3. 6)

i

It is clear from what has been said above that Eq.
(3.6) is valid for all # > 0. In the limit as h - 0,
Eq. (3. 8) becomes

aP(a;t) - (M —

1) pia: 1) = A Pla:
e L Plo; ) = AP(a;1),

3.7

which is the master equation as given in Eq. (2. 2).

The Poisson density ¥(f) of Eq. (3. 3) of time inter-
vals between distinct events is characteristic of a
large class of uncorrelated random processes
developing in time. For such stochastic processes,
where the random walk formulation with discrete
steps is completely equivalent to the master equa-
tion formulation in continuous time for all times ¢,
it is evidently only a matter of personal choice
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which equation one wants to employ in the solution
of the problem at hand.

4. PROCESSES WITH GENERAL DENSITIES y/(¢)

In this section we discuss the conditions under
which the solutions of the random walk in continu-
ous time and the random walk as a function of step
number approach and are approximately equal to
the solution of the master equation at long times.
This analysis is subject to identical initial con-
ditions for all processes, i.e.,

Pla;n =0) = P(a;f = 0) = @(a;0). (4.1)
We will first analyze this problem for A = (M —
1)7, using the solutions of the random walk in con-
tinuous time and of the master equation, Eqgs. (2. 23)
and (2. 24):

Pla;t) = ; 8,(t) f,(a) P(a; 0), (4.2)
Qa;t) = 7 e fy(a) P(a; 0), (4.3)
where
1 perico | o sP(s)Ta\ -1
Ga(t) = 2—1”- fe-ioo dse <S ——_-T—j .
1=V

Let 7, by the nth moment of the probability den-
sity y(1):

.= [Tt ybat (4.5)
0
and let us define
v = sup(r, /n nihe, (4.6)

The following theorem, which is the main result of
this paper, is proved in the Appendix:

P(a,1) — Qa, 1) = Q(a, t) Oly/t) + Oe™7)
(4.7
for t > y,7, of order y,and A= (M —1)/7,.

The order symbol O denotes that if f(x) = O(x),
then f(x)/x remains bounded for all x. This theo-
rem states that the solutions of the random walk
in continuous time and the master equation are
essentially equal for times much larger than y.
Our subsequent discussion in this section explores
the implications of this theorem.

In order for theorem (4.7) to hold for all densities
Y(t), it is necessary to note the following caveat.
For a certain restricted class of sharply peaked
densities Y(t), which are precisely defined in Eq.
(A19) of the Appendix [an example would be Y(f) =
6(t — T)}, it is necessary to exclude random walks
with oscillatory solutions which persist at long
times.% This corresponds to the exclusions of mas-
ter equations with an operator A which has eigen-
values a in the range 0 s a + 2/7; <1/y.
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If the spectrum of A contains eigenvalues which
satisfy the condition
0< —a<1/y, (4.8)

then the theorem implies that the two solutions
are essentially equal before equilibrium is reached.

If any moment of Y(f) is infinite, it is clear from
theorem (4.7) that the two solutions will become
equal only at equilibrium. For probability den-
sities Y(¢) that decay at least exponentially at long
times, all moments 7, are finite, Typical exam-
ples of probability densities y(f) with infinite y are
those that decay with negative powers of ¢ for
large times.

One quite frequently sees the statement that in the
limit as the time interval between steps goes to
zero, the random walk equation becomes equivalent
to a master equation. We now give a mathemati~
cally precise formulation of this statement. We
consider a sequence of random walks characterized
by a sequence of transitions matrices {Mi} and a
sequence of densities {i,(#)} with the property

lim 2 0. (4.9)

00

The meaning of condition (4. 9) is that our sequence
of random walks is so constructed that as the se-
quence index ¢ increases, the moments of the prob-
ability density ¥,(#) all go to zero as specified. If
we now define

P ;1) = 1im P a; ),

i

(4.10)

then P“a; 1) is a solution of the master equation

0

ﬁp““”m;t)=A°'°)P°‘°>m;t) (4.11)
if and only if the limit [see Eq.(2.18)]
A® = lim ™M, —1)/7,, (4.12)

i~»o0

exists, where as before, 7, , is of order y;. There-
fore, the random walk equation indeed becomes
equivalent to a master equation “in the limit as
the time interval between steps goes to zero.”
Equation (4. 12) is an analog of the well-known
Kolmogoroff condition. 6

It should be pointed out that if one considers the
random walk in the continuous time and continuous
space limits, which in general yields a diffusion-
like equation, it is still necessary that Eq. (4. 9) be
satisfied. The conditions on the density y/(¢) for
passage to a diffusion equation are therefore the
same as for passage to a master equation.

It is also possible to relate the solution of a ran-
dom walk as a function of step number to the solu-
tion of the corresponding master equation. This is
easily seen with the choice Y(f) = 6(t — 7,),in
which case P(a;n) = P(a;t = nr,). The use of
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theorem (4.7) yields

P(a;n) — Q(a;nty) = Qa;nry) O(1/n) + 0(e™)
(4.13)

for n > 1, Since the b function is an example of a
sharply peaked distribution as defined in Eq.(A19)
of the Appendix, we must exclude transition opera-
tors M with eigenvalues m such that 0 = m

+1 <K 1.

We will now consider cases for which A = (M — 1)/‘r‘1
As will be proved in the Appendix, our main theo-
rem, Eq. (4.7), and its consequences as discussed
above, are still true, subject to a condition on the
eigenvalues and eigenfunctions of A and M, If we
define
B=(M-1)/1q, (4.14)
then this condition can be stated as follows: For
eigenvalues a,b of the operators A, B which lie
in the range
0<—a<<1/-y, 0<—b <<1/y, (4.15)
there must be a one-to-one correspondence be-
tween the right eigenfunctions f,, %, of A and B such
that

la —bl<K—a, (4.16)

fola) = hyla) =f,(e) O(ya). (4.17)
Theorem (4.7) thus still holds if the eigenvalues
and eigenfunctions of A and (M —1)/7, are approxi-
mately equal for eigenvalues close to zero, This
extended version of theorem (4. 7) specifies the
class of random walk problems which have the
same long-time behavior as that of a given master
equation or vice versa.

The relation between A and M is determined by the
physics of the problem. Consider, as an example,
an open system in which the total probability is not
conserved, due to irreversible trapping or evapo-
ration, The transition rate A can now be written as
the sum of two terms, A = A; — A,, where A, con-
serves probability and A, describes the irrever-
sible loss process. Then the physically appro-
priate choice of M is?

The matrix M of Eq. (4. 18) describes a situation

in which the random walk within the system and the
loss process therefrom are statistically indepen-
dent and hence enter multiplicatively. That this
choice of M is physically more reasonable for open
systems than Eq.(2.18) is easily seen if one takes
the case where A, is a constant, A, = k. Then

(1 +7,A,)"1 = (1 + 7,k)~1 is the probability per

step that the random walker remains in the system.

This probability ranges between 0 and 1 as the
rate % in the master equation ranges between ®
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and 0. If 2 << 1/y, then the conditions of Egs.
(4.15)-(4.17) are satisfied and the random walk
solution and the master equation solution approach
each other at long times.

A number of other examples could be discussed
involving various physically plausible relations
between A and M different from that in Eq. (2, 18)
for simple closed systems. In all such cases,
conditions (4. 14)—(4. 17) determine whether and
how rapidly the solution of the random walk and
the master equation approach each other.
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APPENDIX:
We will now prove the theorem stated in Eq.(4.7).

We begin by considering densities y(¢) for which »
defined in Eq. (4. 6) is finite. If this is the case,
then y(s) is analytic at s = 0 and can be expanded
in a power series:

ToS2  T,s3
2 i-—{--o-,

2T~ 3!

where the first term in the series is unity because
Y(f) is normalized. The 7, are defined in Eq. (4. 5).
Since Y(f) is positive-definite, all its moments 7,
are positive. Therefore the singularity of ¢/(s)
closest to the origin will be on the negative real
axis. The distance R of this pole from the origin
is then the radius of convergence of the power
series in Eq. (Al). This radius of convergence

can be related to the moments of Y/(¢f) by Hada-
mard's formula®

R = l:m (1',1/11!)1/":|_1 =y —1,

n>o0

Y(s) =1—7,5 + (A1)

(A2)

where lim indicates the limes superior, which is
the greatest limit point of the sequence. This
limit exists, since the sequence has the upper
bound y. Since Y(s) is analytic on the real axis to
the right of —R, y/(s) is analytic for all s for which
Res > —R, and for such s it is given by?
(s) = f0°° ¢ % W(t)dt, Res> —R. (A3)
The function 4 ,(¢) of Eq.(4.4) can be expressed in
terms of the singularities of the integrand. Only
the singularities to the right of —R are important
for the times we are interested in. For Res > —R,
the only singularities are simple poles, which, for
a = 0, are the zeros of the function Y(s) —
(ry@ + 1)~1 in that region:

U(s) — 1/(rya +1) =0, Res > —R. (A4)
If a zero s, is of nth order, then
o~
AW o k=1,2, --r ,n—1, (AB)

ds k $%5q
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and the pole in the integrand of Eq. (4. 4) is also
of nth order. For a = 0, it is easy to see that
0,(t) = 1.

Since ¥(s) is real for s real and s > —R, it follows
from the reflection principle!® that

P*(s)

for all s. This implies that the solutions of Eq.
(A4) which do not lie on the real axis occur in
complex conjugate pairs. From Eq. (A3) it follows
that w(s) is a monotonic decreasing function of s
for s real and s > —R. Since ¥(0) = 1, Eq.(A4) has
exactly one solution on the real axis for —R <s

= 0if

Y(s*) = (A6)

0za>77! [(t;")":l —1]=—1771, (A7)
where
ll./ = _!;%1 J(_R + G)’

with € positive and real. This solution is of first
order. From Eq. (A3) it follows that

= 17/'(7’),

where » and I" are real. From this it follows that
the complex solutions of Eq.{A4) do not lie to the
right of the real solution discussed above. If Eq.
(A7) is not satisfied, Eq. (A4) will have neither real
nor complex solutions for —1/7; = a = 0. For
—2/7,<a< —1/74,(1 +7,a)"1 is negative. In
this case Eq. (A4) can only have scolutions on the
real axis left of —R, but may very well have com-
plex solutions to the right of —R, If we denote the
solution on the real axis by s, and the complex
solutions in the upper half-plane by Sg,;=7%,4,; t

iT,, ;,withr, ;and ', ; real, then

Ref(r + iT") < Re{(r) r > —R, (A8)

—R<7,;=s, for —1/7;=a=0. (A9)
The complex solutions in the lower half-plane are
than given by s, ;, =7, ; —i I', ., which follows

from Eq. (AS6).
For t > y, the only contributions to 8,(¢) which
are not of O(e”*’?) come from poles for which

a,j a, j’

Os—sas—ra_].<<1/-y for —1/7,=a=0,

(A10)
0=—7, ;<1 for —2/7;<a<-1/7,.
The function tf/(s) can be expanded in a power
series about any of the solutions s, ;

j
~ 1 ; T
Y(s) =T—1'a—;—f—‘r]1(5 —Sg, ) 3y

X (s — sa']_)z — , (All)
where
= f: £ e et Y(t)dt. (A12)
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It is clear that
m
, - © (—7 .
I7i) = fo"° t"e Tt y(t)dt =mZ=)0 (——"%l)— Trom
+ v
n E (n m) a’jy)m
n d" xml
=Tty AT e (a13)
But
d* 7
T ey S D (A14)
This yields
IPl<1,+4, AL+ (A15)

From Egs. (A15) and (A8) and the fact that

|(1 + 7;a)~1] =1, it follows that poles with real
parts that fulfill Eq. (A10) can occur only for
values of a in the ranges 0 = —a <1/y and
0=a+2/7y <1/y. In addition, we will show that
the complex poles with real parts 7,,; satisfying
Eq.(Al10) occur only in the extreme ¢ase where
Y(¢) is a superposition of very sharp peaks. For
such s, ., Eqs. (A8}, (Al11), and (A15) show for the

real ar:d]imagmary parts of z,l/(zl“ ;) that

0=1 —|f0°° cosT, (t)dt|<<1 (A16)
and

| f7 smr, w(t)dtl <1, (A17)

Since ¥(¢) is normalized to unity, Eqs. (A16) and
(A17) can hold for 0 = —a < 1/y only if ¥(t) is
appreciably different from zero only for

{t — 2mn/T, ;| <2n/T,
n=0orn=1lorn=2o0r:.., . (A18)
with T', ; of order 1/y or greater. For 0 <a +

2/74 << 1, Egs.(A16) and (A17) can hold only if
Y(t) is appreciably different from zero only for

|t —2m(n +1/2)/T, ;| <21/T

a, j°*

n=0orn=1orn=2o0r--. (A19)
with T', ; of order 1/y or greater. It is possible
that a density ¥ (¢) belongs to both of the cases
described above. An example of such a density is
Y(t) = 6(f — At). The values of ¥/(¢) outside of
these peaks must be so small that their contribu-
tion to Y(t)dt is < 1. This proves that com-
plex poles satisfying Eq.(A10) can occur only if
V() is sharply peaked in the manner described
above.

We now proceed to show that the poles correspond-
ing to 0 = — a < 1/y, which lie close to the ima-
ginary s axis, Eq.(A10), are of first order and that
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the distances between them are of the order 27/y.
We first consider the real pole s,. For [sf <« 1/y,
Eq. (Al) becomes

P(s) =1 — 1,8 + O(s2y2). (A20)
For 7, of order y, the third term in Eq. (A20) is
much smaller than the second term. Equation (A4)
then yields

s,=a[l + Oya)), (A21)

ls,—al <~a. (A22)
From the way in which this solution was construc-
ted, with 7, of order y, it is clear that there are

no other solutions of Eq.(A4) fulfilling Eq.(A22),

The poles due to a sharply peaked density Y(f) of
the type described above which lie within a dis-
tance <1/ of the imaginary s axis lie within a
distance <1/y of a finite subset of the poles of
an appropriately chosen superposition of § func~
tions. To analyze the behavior of such sharply
peaked densities, it is therefore sufficient to study
distributions which are superpositions of 6 func-
tions. Consider, therefore,

e
Yit) = 25 ¢, 6t —nat), c¢,=0, (A23)
n=0
with Af of order y or less. Then
- 0
Y(s) =2 c, e, (A24)
n=0
This is a periodi¢ function:
Y(s + 2mi/ at) = P(s). (A25)

Therefore, if s, is the solution of Eq.(A4) on the
real axis, then
(A26)

Sa,j

j =St 2mij/AL

are also solutions of Eq. (A4). Since s, is a first-
order pole, so are the s, Iz The distance between

the poles is of the order 27/y.

The results up to this point can be summarized
as follows. It is possible to divide the probability
densities Y(t) with finite , and r, of order y into
three classes:

(i) Densities which are superpositions of
sharp peaks as specified in Eq.(A19). For
such distributions we will consider only
master operators A which have no eigen-
values in the range 0 = a + 2/7; <1/y.

Densities which are superpositions of
sharp peaks as specified in Eq. (A18)

excluding those which are of the first
class.

(iii) All other densities.
Densities in the third class produce only a single

(ii)
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pole in the integrand of 8 ,(f) which contributes

for long times. This pole is real and of first
order. Densities in the first and second classes
produce, in addition, first order complex poles
which lie sufficiently close to the imaginary s axis
to contribute to 6 ,(¢) at long times for 0 = —a <
1/y. Densities in the first class produce additional
poles in the range 0 = a + 2/7; <1/y. Since in
this class of densities we only consider master
operators A which have no eignvalues in this
range, these poles do not contribute to P(a, t).
This corresponds to the exclusion of transition
matrices M of the random walk with eigenvalues
which cause oscillations in the random walk solu-
tion that persist at long times. These eigenvalues
cause no persistent oscillations for distributions
of the second and third classes and therefore need
not be excluded for these cases.

We will first consider densities which are in the
third class. In this case Eq.(4.4) can be written
as

8,(t) = —7,a(1 + 7,0)"2 531 %

x <d—‘i T(s) Ha) 4 0fe-t/y) (A27)
Via Egs. (A20) and (A21), 6, (f) becomes

8,(t) = e[l + Olya)] + O(e~t/y). (A28)

The only values of a for which the first term is
not of the same order as the second term are
those for which at is of order 1 or less. There~
fore,

8,(t) = e®[1 + Oly/1)] + 0(e™*""). (A29)

We will now show that this result is also valid for

densities in the first and second classes. For
these cases Eq.(4.4) can be written as
-1
)

-1
cos[T, it + n(s, ;)]

0,(8) = —Tja(1 + 7,0)"2 s71¢°¢ (d% P(s)

t
—27ya(1 +7,0)"2 ) e'ai
j

S:Sa l

X g5 7% Vo)

i
+0(e”tM), (A30)
where the phase shifts are
exp[in(s,, ;)]
dy(s) dy(s)
=S¢, gs ,s:sa,j/sa.j ds |s=s,; (A31)

Equation (A30) differs from Eq.(A27) only in the
second term of Eq.(A30):

£,(t) =—27.a(1l + 74a0)2 2] e"a. it
j

4

X sa,j ds

v(s) l susg ‘ o cos[T, jt + n(s, ;)]
J (A32)
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For a density y/(t) which is a superposition of §
functions, we obtain
2A]t

Ea(t) = 2710[1 + O(ya)] Z) 2‘”]1_1 T

= aat[1 + O(ya)] e <% ~ 5+ [Ktt'] )

where [t/ At] is the integer part of ¢/At. Since At
is of order y or less,

£,(8) = O(ya)e™.

If Y(¢) is a superposition of peaks of nonzero width
as given in Eq. (A18) or Eq.(A19), then the poles

e,; Which lie within a distance <1/y of the
1magmary s axis lie within a distance <(1/y of a
finite subset of the poles of the corresponding
superposition of 6 functions. Then

Ee a; d)‘

(A33)

(A34)

£,(t) = 21,a[1 + O(ya)]e”

at, 21m]t
SHIT,

X T, (A35)

where the sum over j is over a finite number of
poles and where #; is the number of the pole of the
corresponding superposition of § functions. Since

7,,; = S, and the sum is a finite sum, this case also
y1e1ds Eq (A34). Substitution of Eq.(A34) into
(A30) again yields (A28) for 9,(¢). Therefore, for

both classes of distributions, Eq. (A29) holds.
Substitution of Eq.(A29) into (4. 2) yields

P(a,?) = Q(a,t) [1 + 04 /t)] + O(e™")  (A36)

for 7, of order y, which proves theorem (4.7) for
dlstnbutlons Y(2) with finite .

For densities with infinite y, the theorem is tri-
vially true and is essentially empty. If y is infinite,
either ¥(s) has an essential singularity at s = 0,
or s =0isanaccumulation point of singularities of
¥(s). In both cases, the integrand of 9 ,(¢) will con-
tribute in every open neighborhood of s =0. There-
fore, 6 ,(t) can never approach an exponential at
any time. For such distributions, P(a, t) and

Q(a, ) will never approach each other even after
long times, and will only be equal at equilibrium.

We will now prove the extended version of theorem
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(4.7). For this case the solution of the random
walk equation can be written as

P(a; ) = T0,(0) hy(a) P(b; 0. (A37)
A consequence of the conditions (4.15)-(4.17) is
that Eq. (A37) can be written as

Pla;1) = 27 6,(1) hyla) P(b;0) +0(e™7),  (A38)
a
where the prime on the sum indicates that the
sum is taken only over those values of a that obey
condition (4,15), and a and b are related by the
one-to-one correspondence between the eigenfunc-
tions f, and k,, Eqs. (4.16) and (4.17). A conse-
quence of conditions (4. 16) and (4.17) is that

8,(t) hy(a) P(b;0) = 6 ,(t) f,(a) P(a; 0) [1 + Olya)],
(A39)
which immediately yields the desired result.

Note added in proof: A quantity that is often of
physical interest is the mean time for a walker to
reach state a for the first time. Let R(a,nla’,0)
be the probability that a walker starting at state
a’ reaches state o for the first time on the nth
step. Then

P(a,nla’,0) = Z)R(a n'la’, 0)P(a,n —n’la,0).

n?’=1

The generating function

o0
R oo, (2) = Le"R(a,nla’,0)
n=1

1s then related to G, (2) by R, (2) = (G ,.(2) —
8 40)/G ,o(2). The mean first passage time to state

ais
= f dtZ‘,ttp (R (a,nla’,0)
d
=TIEZ_Raa' 2=1 =71 (n>aal
where {n)_, = (d/d2)R,,,(2)|,_, is the mean num-

ber of steps to reach state a for the first time.
The mean first passage time is thus the same for
all random walks for which 7, is the same, inclu-
ding the master equation. Higher moments of the
first passage time can be similarly calculated.
The nth moment will, in general, be a function of

Tl’ 72, son ,Tm.
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A general form of the nonlinear wave equation with dispersive and dissipative terms involving small
coefficients has been treated for the transition period when the time is around the breakdown time. In
the first part of this paper, some relations have been established in order to see how the classical over-
taking phenomenon is eventually prevented when the curve has steepened sufficiently. In the second part
of this paper, the growth and damping of solitary waves due to the effects of dispersion and dissipation

have been analyzed.

1. INTRODUCTION

Study of various physical problems (such as mag-
netosonic waves, ion-acoustic waves in plasmas,
turbulence, shallow water waves, and long waves

in anharmonic crystals) lead to a nonlinear partial
differential equation of the general form

u, + P(u) u, = Q[u], 1.1)

subject to the initial condition

u(x,O) = f(x),

where x and ¢ are normalized space and time co-
ordinates, respectively. Here, P(u) is a real func-
tion of u; Q[u] is a linear operator which may con-
sist of dissipative and dispersive terms with small
coefficients, say

Qlu] = pL{u] = 6"u,

where the first term stands for dissipation and the
second term for dispersion.

(1.2)

In many cases, the function P(x) is simply u itself.
When p = 0, (1.1) reduces to Korteweg—de Vries
equation,! where only the effect of dispersion is
considered. On the other hand, if 6 = 0 and L[u] =
%, (1.1) reduces to Burgers' equation,? where
only the effect of dissipation is considered.

In general, the dissipative operator has different
forms for various physical systems. For example,
Ott and Sudan3 provided the expressions for four
cases:

()
(b)
(c)
(d)

According to the numerical computation of Kor-
teweg—de Vries equation, 4 it was observed that the
time variation of the solution u(x, t) can be divided
into three stages, namely, initial, transition, and
final. 'In the initial stage when the time is compara-
tively smaller than the breakdown time {5, defined
as the time when the solution of the equation », +
FP(u)u,= 0 starts to yield an infinite slope, the
effects of dispersion and dissipation are negli-
gible and the classical overtaking phenomenon
occurs; that is to say, u(x, t) steepens in regions
where P'(u)u, <0.

magnetosonic waves damped by electron—
ion collisions,

ion-acoustic waves damped by ion—neutral
collisions,

ion-acoustic waves with electron Laudau
damping, and

shallow water waves damped by viscosity.

After u(x, t) has steepened sufficiently (at ¢ ~ ),
the @ term becomes significant and serves to
prevent the formation of discontinuities. In addi-
tion, due to the effect of dispersion, oscillations of
small wavelength (of order 6) develop on the nega-
tive side of the front. This stage is called the
transition period. The amplitudes of the oscilla-
tions grow and finally each oscillation achieves a
quasisteady amplitude (which varies linearly with
respect to x) and has a shape almost identical to
that of an individual soliton solution. On the other
hand, the dissipative term has an effect to damp
these oscillations.

Existence and uniqueness of solution of Korteweg-
de Vries equation have been proved by Sjoberg.5
Equations of conservation form were treated by
Miura, Gardner, Kruskal, and Su in a series of
papers.6—8

In the present paper, a generalized nonlinear dis-
persive wave equation with dissipation is treated
from the gometrical point of view. Efforts are
concentrated onthe transition period when solitary
waves tend to emerge.

2. ABSENCE OF DISCONTINUITY

The curve representing the solution of (1. 1) in the
(u,x) diagram may be conceived as a vibrating
string, any point of which possesses a longitudinal
velocity V, = P(u) and a transverse velocity vV, =
Qlu), where u is equivalent to the transverse dis-
placement of the string. For the simplest equation

u, + Puu, =0, 2.1)

V, = 0, and the points move longitudinally.

Let a denote the angle of velocity and 6 the angle of
the curve, both measured from the longitudinal
axis. We have

tana Qu] L4
tanéd — Plu)u, Pluu, "

If P(u)Qulu, < 0, the velocity vectors V, and V,
lie on the same side of the curve u(x, ), If
P(u)Q[uls, > 0, the velocity vectors V; and V, lie
on different sides of the curve.

(2.2)

Differentiating (1.1) with respect to x, we get

%:’ = ¢, + P@u)o,= — P'(u) sin®0 + Qu,] cosze,(z )
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where the prime designates differentiation. It may
be written as

%(%92) = — P'(u) sin®p + Q[u,lo cosze, 2.4

where — 37 < §< 37.

For moderate values of u, the Qu, ] term as
assumed is comparatively small. Equation (2. 4)
indicates that the curve steepens in regions where
P’(u)6 is negative. As |u | exceeds a sufficiently
large value, the @[« ] term becomes significant
and counteracts the formation of discontinuities,
provided that the following condition is satisfied.

Necessary condition 1: There exists a large

but finite number K, such that for |« | > K,

Qu, /P (wu? > 1. (2.5)
Equation (1.1) may also be expressed in such a

way that x is a function of « and {. Since u, =
—x,/x,, u, = 1/x,, and

0

12
dx  x, ou’

we have

x, — Plu) = 62—2(’%>uu — p(;—)

u

(2.6)

u

for L{u} = u . Differentiating (2. 6) with respect
to u, we get

62y, u
(2). s (2 1)
u=¢ X Xu/uu

© u

2.7

along constant u lines. A similar condition should
be satisfied.

Necessary condition 2: There exists a small
number %> 0, such that for |x,| <&,
2 3 .
(6%x, /%, + w/x,),,/P'W)>1. (2.8)
It can easily be verified that for curves with shapes

similar to those shown in Fig. 1, conditions (2. 5)
and (2. 8) are true.

The velocity components which affect the shape of
curve are those tangent and normal to the curve.
They may be defined as

[VT] = [ cosf sine} I:P(u)]- (2.9)
Vy — sind  cosddLQ{u]
Since

sing = u /(1 + 1‘12‘)1/2

and
cosgd = (1 + ui)'l/z,

we may write
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Plu) + Qulu,
Vo= 2.10
o+ .10
and
Vy = u,/(1+ u2)', (2.11)

Differentiating (2. 9) with respect to s, where s de-
notes the distance along the curve, we obtain

Dé (av,,) . Ky
pr = \%s/,, KV

1 De v,
o= (39) o KT @.13)

(2.12)

where K denotes the curvature and € the relative
stretching of the curve. The rate of change of
normal velocity along the curve represents the
angular speed with which the curve turns locally,
Equation (2. 12) indicates that the curvature
associated with the tangential velocity also plays
an important role on the change of slope.

3. WAVE PROPAGATION

During the evolution of solitons, it may be assumed
that disturbances propagating along the curve are
small, thus the solution «(x, f) can be approxi-
mately expressed as combination of a translation
and a wave motion; i.e.,

ulx,t) = uy(x, 1) + Alx, t) expli(ex — wt)], (3.1)
where u, (x, ) satisfies

(1), + Pl (uy) .= Quq]

A, ) <uy(x, t).

and

Substituting (3. 1) into (1. 1), we obtain

wk= Plu) — 6°k> + 36%A_ /A — 204 /A,  (3.2)
A+ (P) —36°k)A, + pk®A —A, ) + 6%4,
= 0. (3.3)

In order to shed light on the phenomena of waves
propagating along the curve, we deal with two
simple cases. For Korteweg—de Vries equation,

@ P >0 by Pluy €0

FIG.1 Typical profiles
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(3.2) and (3. 3) reduce to

w/k = Plu) — 6%k% + 36°A, /A, (3.4)

A, + [P) — 367k A, + 8%4,,,=0. (3.5
If Alx,t) is a slowly varying function of x, we may
assume that

A, /A, A, JA, << k2,

xXxx

Thus, from (3. 4) and (3. 5) we have

w/k =~ Plu) ~ 4125 /)2
and
AJA, ~121°(6/20)% — P(u).

It indicates that the wave with wavelengths of order
6 propagates in the negative direction; the wave
grfl)ws if the amplitude is an increasing function of

L. Y. SHIH

Next, we consider Burgers' equation. For this case,
(3. 2) and (3. 3) reduce to

w/k= Plu) —2pA /A, (3.6)

A+ PA, + pk®A—A, )= 0. (3.7)
Assuming that A(x, ) can be expressed in the form
of exp(at + Bx), from (3.6) and (3. 7) we obtain

28 = Pl) — [{P@)}® + au(ur® + ]/?
and
w/k = [{P@)}® + 4p(pk® + o)]*/%

Consider the wavelength A <O(u), o and P(u) < O(1),
then 8 = — O(1/A). It indicates that the wave will
be damped out within a distance of the order of a
wavelength. This explains why Burgers' equation
has no solitary wave as in the case of Korteweg-

x. de Vries equation.

1 D.J.Korteweg and G. de Vries, Phil. Mag. 39, 422 (1895). 5 A.Sjdberg, J. Math, Anal, Appl. 29, 569 (1970).
2 J.M. Burgers, Proc. Acad. Sci. Amsterdam 43, 2 (1940). 6 R.M. Miura,J. Math, Phys. 9, 1202 (1968).
3 E.Ott and R. N. Sudan, Phys. Fluids 13, 1432 (1970). 7 R.M. Miura, C. S.Gardner, and M. D. Kruskal, J. Math. Phys. 8,
4 N.J.Zabusky and M. D. Kruskal, Phys, Rev. Letters 15, 240 1204 (1968).
(1965). 8 C.H.Su and C, S.Gardner, J. Math. Phys. 10, 536 (1969).
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This paper is concerned with the exact calculation of moments of solutions of the stochastic, ordinary
differential equation

2
LT
dz2

where M(z) is an arbitrary, finite state space Markov process and f(+) is an arbitrary, real, single-valued
function of its argument. The process f(M(z)) is in general not a Markov process. The calculation of the
moments is reduced to the solution of a system of ordinary, first-order differential equations. In the
special case where the process M(z) has a stationary transition mechanism, these systems of equations
have constant coefficients, so that the moments must consist of sums of exponentials. A specific example
of such an equation with M(z) stationary is analyzed in some detail. The results obtained provide an
important, nontrivial check of some useful approximate techniques.

1. INTRODUCTION

B3 [1 + nf(M(2))]u =0,

Throughout this paper we use the notation

The subject of this paper is the stochastic, ordinary du_(2)
differential equation v(2) =ul(2) = “‘fz_' m=1,2. (1.3)
2
‘%% + B3[1 + nN(=)]u = O, (1.1) Thus the ensemble of functions N(z) defines, via

Eq.(1.1) and initial conditions (1. 2}, four new
“solution” stochastic processes or ensembles of
functions, {«,,(z)} and {z,(2)}, m = 1,2. Typically
equations of this type can arise in the propagation
of electromagnetic or acoustic waves through
randomly stratified media and in the study of di-
electric waveguides with randomly stratified
dielectric constants.

where 8, and 1 are positive constants and N(z) is a
stochastic process. Each sample function N(z) de-
fines on 0 < z < ® two new functions u,,(2), m =
1, 2, which are the linearly independent solutions
of (1.1) satisfying the nonstochastic initial con-
ditions

#,(0) =u5(0) =1, u5(0) = u,(0) = 0.

(1.2) In most such problems, nN(z) represents a small
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random perturbation, which suggests the use of
perturbation techniques. However, the regions of
validity of most of the perturbation techniques in
current use are unknown, so that exactly soluble
examples, in addition to their intrinsic physical
interest, provide extremely valuable checks. This
paper is devoted to showing that for an interesting
class of processes N(z), to be described below, the
exact calculation of the various stochastic mo-
ments of «,(z) and v, (2) can be reduced to the
solution of a system of nonstochastic, ordinary,
linear differential equations.

In a recent paper! we showed that if N(z) is the
“random telegraph” process T(z), then a phase
space method can be used to calculate exactly the
various moments of the solution processes of (1.1).
This random telegraph process is a zero-mean,
wide sense stationary Markov process. Specifi~
cally, it is an ensemble of square wavefunctions
{T(z)} such that each sample function of the en-
semble, T(z), can assume only the values +1. For
fixed z,a sample function chosen at random will
equal 1 with probability 3 or —1 with probability 3.
The probability p(n,2) of a given sample function
changing sign »n times in an interval of length z is
given by the Poisson process

pn,z) = [(bz)"/n!]e‘bz, (1.4)

n :011327 Ty
where b is the average number of changes per unit
length. In addition,

<T(Z)> =0, <T(x)T(y)> = exp(~ 2 lx —y1), (1.5)

where, here and in all that follows,<> denotes
the stochastic average.

In this paper, we show that the phase space method
can be generalized to calculate various moments
of the solution processes for any N(z) of the form

N(z) = fAm(z)),

where M(z) is any continuous parameter, finite
state space Markov chain2 and f is any single
valued function mapping the state space into the
real numbers. The random telegraph process is
perhaps the simplest example of a continuous para-
meter, finite state space Markov chain. The most
general such process M(z) is in general not station-
ary or wide-sense stationary, and, as is well known,
for arbitrary f(+),f(M(2)) is in general not a Mar-
kov process.3

(1.6)

As will become clear later, the whole technique
can be extended to more general systems of linear,
stochastic differential equations, but we will not
pursue these generalizations here. However, the
damped harmonic oscillator equation of the form

2
M+2a

722 +92[1 + eN(z)]w=0,

7 (1.7

can be reduced by the transformation
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w(z) = e “u(z) (1.8)

to an equation of the form (1.1).

Ideally, one would like to determine all the possible
distribution functions of the four solution pro-
cesses. So far, however, this has been an unobtain-
able goal, and most research has centered on the
problem of calculating the stochastic averages of
various functions of the solution processes. There
are very few exact solutions of even this limited
problem, but a number of perturbation techniques
for obtaining approximate solutions have been
developed. In fact, while Eq.(1.1) is of consider-
able interest in itself, it is also an important exam-
ple on which these perturbation techniques can be
tested.

Most of the approximate techniques developed so
far are either strictly formal or else the known
extent of their validity is quite restricted. Thus
Khas'minskii4 has recently established a limit
theorem, valid for n — 0, which can be applied> to
(1.1) to calculate averages of the form
(gluy,vy,u,y,v,)) for a suitable class of functions
g in the case where N(z) is a bounded stochastic
process.

Another important perturbation technique for cal-
culating moments and correlation functions of solu-
tions of stochastic equations, the so-called smooth-
ing method,® has recently been developed by
Bourret? and Keller® and applied to a number of
problems by various authors.® No error estimates
are available yet for this method.

We might mention a third perturbation scheme
recently developed by Papanicolaou and Keller,10
which is essentially an application of two variable
perturbation procedures. At this time no error
estimates are available for this scheme either. It
has been shown,> however, that the smoothing tech-
nique, the Khas'minskii method, and the two vari~
able procedure yield the same expressions to
order 0O(n2) for the first- and second~order mo-
ments and correlation functions of the solutions
of (1.1).

The preceeding remarks suggest the importance
of having exactly soluble equations on which the
various approximation techniques can be tested.
Bourret!! has shown that if N(z) in (1.1) is a
single random telegraph process, the smoothing
method yields the exact expressions for the first-
order moments. McKenna and Morrison! have
calculated exactly the second-order moments and
correlation functions in this case by the phase
space method and have shown that the smoothing
method, when properly applied, again yields the
exact answer both for the moments12 and correla-
tion functions.13

In Sec. 2 of this paper we outline those properties
of continuous parameter, finite state space Mar-
kov chains which we need.

In Sec. 3 we define the phase space density func~
tions, and discuss their properties and the system
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of partial differential equations they satisfy. In
addition, the equations from which the first- and
second-order moments can be derived are dis-

cussed.

In Sec.4 we consider in some detail an application
of the general theory to the case, where N(z) is a
linear combination of two independent random tele-
graph processes. The results of this example pro-
vide a nontrivial check of the validity of the smooth-
ing method. The example where N(z) is the sum of
n identical, stochastically independent random tele-
graph processes is also discussed briefly.

There are also two appendices in which some of
the details of the derivations and calculations are
presented.

2. FINITE STATE MARKOV CHAINS

In this section we present a brief discussion of
those parts of the theory of continuous parameter,
finite state space Markov chains (finite state Mar-
kov chains or FSMC for short) which we will need
in the sequel.2 For more detailed information we
refer the reader to the references listed. In all
that follows subscripts can take on integer values
only,

In such a Markov chain the sample functions M(z)
are defined on the half line 0 < z < © and can take
on only a finite number N of distinct values a,,

1 =j = N, where the g, are points in some al;stract
space E. The collection of points 4;, denoted by
Ey, is called the state space. An initial probability
distribution vector is given,

(2.1)

a:(al’ e ,an),

where

o; = Prob{M(0) = aj}, 1=j=N, (2.2)

with ¢; > 0, and

(2.3)

The definition is completed by specifying the
transition probabilities

P,j(x,y) = Prob{M(y) = qlM(x) = a},

y=x, 1=i,j=<N, (2.4)
We are going to consider only those processes
which can be defined by means of continuous,
bounded infinitesimal generators. Specifically, we
assume, given an N X N matrix function,

7(z) = (7;;(2)), (2.5)
with the following properties holding for 0 = z < @
and 1 =4, = N:

(1 Tij(z) =0, :*j, Tii(z) =0. (2.63)

A. MORRISON

(2) The 7,.(2z) are continuous, and there is a con-

stant C such that |7,(s)| = C. (2. 6b)
N

(3) ZET”(Z) =0. (2. 6¢)
]:

Feller14 has shown that given a matrix 7(z) with
the properties (2. 6a)~(2. 6¢c), the N X N conditional
probability matrix

Pix,y) = (P;;(x,5)) 2.7
satisfying the initial condition
P(x,x):IN, (2.8)

where I, is the N X N unit matrix, is the unique
solution of the backward and forward Kolmogorov
equations

OREY) - 1P, ), (2.92)
AP Y) _ py, y)r(y). (2.9b)

oy

The random telegraph process described in the
Introduction is perhaps the simplest example of an
FSMC. In this case N = 2, a; =1, a, = —1,and

a=(z3), T =(_Z_2>,
Plx,x +2)= P(2)= e_b'<

coshbz sinhbz
sinhbz coshbz) - (2.10)

Since 7 is a constant and a7 = 0, the process is
stationary. More complicated realizations of
FSMC's will be considered in later sections.

THE PHASE SPACE AND MOMENT
EQUATIONS

We return now to (1.1) and the solution stochastic
processes u,(z) and v,(z), m = 1, 2, defined by
(1.1)-(1. 3), where we assume that N(z) is an
arbitrary function of an FSMC M(z) as defined by
(1.6). Clearly these four processes can be thought
of as the components of the vector solution

3.

w(z) = (u,(2),v4(2),ug(2),v,(2)) (3.1)

(where ¢ denotes transpose) of the first-order vec-
tor differential equation

29z) _ ployw(a), (3.2)
where
B(z) = 0 1 0 0
—B3[1 + 7N(2)] © 0 0
»(3.3)
0 0 0 1
0 0 —B3[1 +nN(2)] O
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and

w(0) = (1,0,0,1)", (3.4)
We remark that the combined process (w(z), M(z))
is a Markov process since a knowledge of w(z ;) and
M(zo) determines the process for all z = z via
the differential equation and the fact that M(z) is a
Markov process. It is, however, also of interest to
note that N(z) = f(M(z)) may or may not be a Mar-
kov process, depending on the function f. If f maps
the N points of E, onto N distinct points of the real
line, f(M(z)) is also a Markov process. However, if
f(E,) consists of less than N distinct points,

f{M(z)) is in general not a Markov process. In
general the problem of determining whether or not
AM(z)) is an FSMC is difficult. However, in the
important special case where M(z) has a stationary
transition mechanism, a theorem due to Burke and
Rosenblattl5 provides a straightforward solution
to the problem.

We now consider the phase space density func-
tions. In all that follows we denote by w any vector
in R, with components
W= (Uy,vq,1,,0,)" . (3.5)
The Euclidean norm is denoted by wl,w = v
means the inequality is satisfied component by
component, lwl = (lu |, lv |, lu,l, lvy1)E,

e=(1,1,1,1)°, (3.6)

and I, will denote the N X N unit matrix.
The phase space density functions g{w, z) are de-
fined, 1 =j = N, by the relations

0i(w, z)d4w = Probi{w = w(z) = w + dw, M(z) = a}.

(3.7)
Since
N
27 0w, z)d4w = Prob{w =< w(z) < w + dw}, (3.8)

i=1

it follows that if we knew the oj(w, z), we could cal-
culate the stochastic average of any appropriately
smooth function of the solution process g(w(z), 2)
from the formula

g(w, z)oj(w, z)dtw. (3.9)

{g(w(2), 2)) = ;‘:31 J,

In general, the o;(w, z) are generalized functions.

Since N(z) can assume only a finite number of
values, it follows that |B(z)ll in (3. 3) is bounded
by some constant C for all z and all sample func-
tions M(z). Consequently, it is easy to show that
every sample function satisfying (3. 2) and initial
conditions (3. 4) has the bound

lw(z)| = V2 exp(Cz)e. (3.10)
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An easy consequence of this is that, for fixed z, the
support of ;(w, z) is contained in |wl| =< V2 exp(Cz)e.
For fixed z this implies in particular that all the
moments of the solution process exist.

The o;(w, z) are determined as the weak solutions
of the system of N, linear, first-order partial
differential equations

a0; N
5—27— + Do, —goi‘rij(z) =0, 1=<j=<N (3.11)
satisfying the initial conditions
oj(w, 0) = a;6(u; — 1)8(v)0(u,)6(v, — 1), (3.12)

1<j =N,
where

2
_ a3 5, 0

and

B2 =p3[1 + nflg)), 1=j=<N, (3.14)

and the a; are the N possible values which M(z) can
assume.

The derivation of these “forward” equations is

very similar to the derivation of the equations in
the special case where N(z) = T(z), given in (1),

and so we do not give a derivation here. We should
remark that Wonham?6 gives the infinitesimal
generator of the joint process {w(z), M(z)}, which
was derived earlier by Krasovskii and Lidskii.17,18
The corresponding “backward” equation may be
derived by means of this generator.

In Ref.1 we considered instead of oj(w, z) the con-
ditional phase space distribution functions ¢;(w, z)
related to the o;(w, z) by

0;(w, 2) = g;(w, 2)R;(2), (3.15)
where
R;(z) = Prob{M(z) = ‘9}- (3.16)
It follows from (2. 4) and (2. 9b) that
dR(z) X
éz = kzz)le(z)Tkj(z). (3.17)

Hence, from (3.11) and (3. 17), it follows that the
g; are the weak solutions of

dq. N (g. — q.)R; .
-5(% + Dy, _izzi (g; qji)j(;(zr)TU(Z) =0, (3.18)

which satisfy the initial conditions, from (2. 2) and
(3.12),

qj(W; 0) = 5(741 — I)G(Ul)é(uz)é(vz — 1), 1=j=N,

(3.19)
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As we will show by examples in Sec.4 sometimes
symmetries in the problem reduce the number of
distinct o;(w, z). Unfortunately, in no case have we
been able to solve the systems of equations (3.11)
or (3.18). The use of Egs.(3.11) seems prefer-
able for the applications we have in mind, for they
do not require a knowledge of R(z).

Although we have been unable to solve Egs.(3.11),
because they are homogeneous in # and v we de-
rive systems of ordinary differential equations
for moments of the solution processes. Define the
N partial moments, 1 <j = N,

<u1() 12U y(2)" 2(Z§> f ufviugvo(w, z)d4w,
(3.20)

where p,q,7,s are nonnegative integers. The
expressions on the right of (3. 20) are well defined
since the o;(w, z) have compact support in R ; for
fixed z. Tﬁen from (3.19)

((2)% (@)% 5(2) v (2)*)

= Zi<u1(z)pv1(z)%2(z) v,(2)°),. (3.21)
]:

If we multiply each of Egs, (3. 11) by all (") pro-

ducts of the form u{vluzv withp +g +7r +s=M
and then integrate over R, with respect to d4w, on
performing seve*ral integrations by parts, we obtain
a system of N(";") ordinary, linear differential
equations involving only the N(M3 ) Mth-order con-
ditional moments. Unless 7 is constant, it is gene-
rally impossible to solve the moment equations
analytically. However, even in the general case

the moment equations are in a form suitable for
numerical solution,

We conclude this section by writing down the equa-
tions for the first- and second-~order moments.
They can be written most compactly in matrix
form. Define the four column vectors

U, (z) = ((u,,,(z»j),
1=j=<N,

V(@) = (W(2)), m=1,2,

(3.22)

where (,,(z)); and (vm(z))j are defined in (3. 20).
Let

B = diag(g?) = 31y + 763 diag[f(@)],  (3.23)
from (3.14). Then the partial first-order moments
are the solutions of the equations

U, (2 —t ~1,][U, (2
i o ( ) + 1;] m ( ) — 0’ m = 1’ 2’
dzly, (2)] |B ~—7|lV, ()

(3.24)
which, from (3. 12), satisfy the initial conditions

U,(0) = V,(0) =a’, U0)=V,(0)=0, (3.25)
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where a is the vector of initial probabilities de-

fined in (2. 11). Notice that the equations for

m =1 and 2 are uncoupled. From (3.21) and (3. 22)
u,,(2)) = E U, (2),

(v,(2)) = EyV (2), (3.26)

where Ey = (E), 1 =j < N, is the row vector with
components
Similarly, we define the nine column vectors
Xm(z) = (Xm(Z)J), Ym(z) = (Ym(z)]))
Z,(2) = (Z,(z)), m=0,1,2, 1=<j=<N,
by
Xo(z)j = (ul(z)uz(z»j, Xm(z)j = <u%n(z)>], (3.28)
m =12
Y o(2), = 3 {(uy(2)vy(2yy + (ugl2v,(2))}, (3. 29)
Y, (2) = (u,,(2)v (z))j, m=1,2, )
Zo(z)j = <‘Ul(2)2)2(2)>j, Zm(z)j = (‘U%(Z»j, (3.30)
m=1,2,
Then X, ,Y, and Z, are the solutions of
X, ()] [—' -2, 0 [X, (2)
d
77| Ym (2)|+|B ! —Ayl| Y. (&]=0,
m (2) 0 2B !t z, (2)
(3.31)

which satisfy the initial conditions

X,(0) = X,(0) = Y,(0)
X,(0) = 2Y,(0) =

= Y,(0) = Z(0) = Z,(0) =0,
Z,(0) = a’. (3.32)
Notice again that the equations for m = 0,1,and 2

are uncoupled. Since for each sample function N(z)

it is a direct consequence of (1.1) that u,(z)v,(z)
—uy(2)v,(2) = 1,it follows that

(u1(2)v(2)) — Cuy(2)v(2)) = 1. (3.33)

Consequently, from (3. 21), (3. 27), and (3. 33) we
have

(u2(z)) = ExX,(2),
W2(2)) = E\Z,(2),
and

(ul(z)uz(z» = EyX,,

(u,(2)v,(2)) =
m=1,2,

E”Y'"(Z)’(& 34)

w,(2)v,(2)) = EyZ,(2),
(3.35)

(u1(2)vy(2)) = E\Yo(2) + 3,
(uz(z)v 1(2» = ENYQ(Z) -
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4. APPLICATIONS OF THE GENERAL THEORY

In this section we illustrate the general theory by
some relatively simple but interesting examples.

A. A Linear Combination of Two Random Tele-
graph Processes

Let T,(z) and T,(z) be two stochastically indepen-
dent random telegraph processes with rates b,
and b,, respectively. If ¢, and c, are real num-
bers satisfying c§ + c% = 1, define

N(z) = c,T,(2) + c,Ty(2). (4.1)
This process is clearly stationary, but, as we will
show, whether or not it is Markov depends on the
relationship between the parameters b,,b,,¢,,
and c,.

In order to fit N(z) defined in (4.1) into the frame-
work of Sec. 2, define the function f(x), which maps
the space R, of real two vectors onto the real line
by

f((x'l,xz))=clx1 tcoxg. (4.2)
Then, if M(z) is the vector-valued process
M(z) = (T(2), Ty(2)), (4.3)

clearly N(z) = f (M(z)).

The process M(z) has the state space E, consisting
of the four vectors

a; = (1, 1)) a; = (ly_l):
4.4
ag=(-1,1), a5=(-1,-1), 4.4
and has the initial probability vector [(2.1)]
a=(i1,1 1) (4.5)

Since T,(z2) and T,(z) are stochastically indepen-
dent and Markovian, it is easy to see that M(z) is
an FSMC and that, for y = x,

Prob{M(y) = (1), (1Y) IM(x)
= (D)% (=)™}
= Prob{T, (v) = (1) |T,(x) = (-1)* Y}
X Prob{T,(y) = (%) 1| T,(x) = (1)}, (4.6)

From (4. 4) and (4. 6) it follows that if P{(x,y)
=P(y —x), j=1,2, are the 2 X 2 conditional
prolnability matrices of T4(z) and T,(z), given by
(2.10) with b = b, and b,, respectively, then
P(x,y),the 4 X 4 conditional probability matrix of
M(z),is

P(x,y) =P1(y_x) X Pz(y—x)- (4.7)
The product on the right-hand side of (4.7) is the
Kronecker product of the two matrices.19 From
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(2.7)-(2.9) it easily follows that then

P(62) =1, + 76z + 0(b2). (4.8)
Combining (2.10), (4. 7), apd (4. 8), we conclude that

T=7, X1, +1, X7,

(b, +b,) by by 0
b,  —by+b,) 0 b,
R 0 —b,+b,) by, |
0 b, b,  —{by +b,)
(4.9)

where 7, and 7, are the infinitesimal generators
of T,(z) and sz), respectively. Since from (4.7)
M(z) clearly has a stationary transition mechanism
and from (4. 5) and (4. 9) a7 = 0, M(z) is stationary.

It is a straightforward matter to apply the theorem
of Burke and Rosenblattl5 to determine whether

or not N(z) is Markovian. We merely state the
results. If ¢; # % c,, then N(z) is Markovian for
any choice of b, and b,. However,if ¢, = + c,, then
N(z) is Markovian if and only if b, = b,.

In general for this problem, there are four distinct
phase space density functions o(w, 2), 1 <j < 4,
However, 0,(w, 2) = 04(w, 2) in the special case

¢y =cCy and b, = b,, while g,(w, 2) = 0,(w, 2) if
c;=—cgandb, =b,.

Excluding for the moment these two special cases,
Eqgs. (3. 24) for the partial first-order moments
consist of two sets of eight, first-order, constant-
coefficient, ordinary differential equations. From
the solutions of these we can calculate the first-
order moments from (3. 26). These calculations
are outlined in Appendix A; we merely discuss the
results here.

All the first-order moments can be obtained from
(u4(2)) by the relations

3(2)) = 052D = 4= (uyle),  @yle)) = & uy (o).
(4.10)
Furthermore,

8
(uy(2)) = Zi L (n) exp[za;(n)], (4.11)
i=

where the lj(n) are constants and the x.(n) are the
roots of the eighth-order polynomial If(s,; 1) given
in (A13). If n <1, D(s,n) has four pairs of com-
plex conjugate roots whose leading terms are
shown in (A14), and all of them have negative real
parts. In this case, from (Al4) and (Al5),

(ug(2) = By exp(— 12 xz) sin[By(1 — n2p)z] + O(n2),

(4.12)
where

K=—|: s S ] (4.13)
8 (6,063 +83) b,(b3 +53)
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B[ c%

2
Z + 88

(4.14)

c3
b% + B3
In the special cases where ¢ =c% = ; and
b, =b, =b, Egs.(4.10) still hold and (u,(2)) is
still given by an expression of the form (4. 11),
but the sum now contains only six terms. The
A;(n), 1 =j =<6, are the roots of a sixth-order
polynomial which is a factor of D(s;7) when
c§=c%= %,bl =b, = b. Furthermore, (4.12)
which expresses {(u,(z)) correctly to order 52 still
holds.

Again excluding the above special case, Eqs.:(3.32)
for second-order partial moments consist of three
sets of 12, first-order, constant-coefficient, ordi-
nary differential equations. Their solution is out-
lined in Appendix B.

The relations
(ugvy) = %d% (ug),
WP = 0P, (upy) =it 0d),
uyeg) = 4 2 (up),
(uyvg) = %(d—dz— (ugvy) + 1)
0 i) = ‘(zdg Gy = 1)

show that all the second-order moments can be
obtained from (v%),(«3) and (v3). But,

(4.18)

12
wp = kZ=)1 my(n) exp[zsy(n)], (4.19)

12
(u3) =k2_31nk(n) exp[zs,(n)], (4.20)

12
w3 = kZ)l pu(n) exp[zs,(n)], ‘(4.21)

where the s,(n) are the roots of the twelfth-order
polynomial A(s;7) given in (B19) and the me,(n),
n,(n), and p(n) are constants. If n < 1, A(s;n) has
one root with a positive real part and eleven roots
with negative real parts. In this case, from
(B22)-(B25),

P = 18% {exp(n? pz) —exp(—n2vz)
x c0s[28o(1 — n2p)z]} + O(n2),

(u3) = w3)/B§ + O(n?)
@% = 3 {exp(n2pz) + exp(—n2vz) cos{284(1—n2p)z]}

(4.22)
(4.23)

+ 0(n2), (4. 24)
where
B3 b b
"= Hb% v 68) ’ cg(b% v B%)]’ (.29
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_ éﬁ[c%(b{ + 283)

Y=
b,(b% + B3)

c3(b3 + 233)]
+
NTET L (4. 26)

and p is given in (4. 14).

In the case where ¢3 =c§ =z andb, =b, = b,
Eqs. (4.15)—(4.18) still hold and (v3), (3}, and
(v%) are still given by expressions of the form
(4.19)-(4. 21), but the sums now contain only nine
terms. The s,(n), 1 =k <9, are the roots of a
ninth-order polynomial which is a factor of A(s; n)
when ¢ =c = }andb; =b, =b. Furthermore,
(4.22)-(4. 24) are still valid.

It is of some interest to compare our expressions
for the first- and second-order moments of the
solutions of Example 1 with the approximate
expressions for the same quantities obtained by
using the smoothing technique. Morrisonl3 has
calculated the first- and second-order moments
of solutions of (1.1) by the smoothing method for
71 << 1 for quite general N(z). His results are
expressed in terms of the Laplace transform of
the correlation function of N{z). From (4.1) and
(1.5)

I'(z) = (N(z)N(0)) = c% exp (~2b, |z])

+ c% exp (—2b2|z|), (4.27)

c

s +2b,

(:2
+—2
s + 2b2
(4. 28)

When y(s) given in (4. 28) is substituted into Egs.
(4. 8)—(4.17) of Ref. 13, it can be seen that the
small 1 approximations to the moments given by
the smoothing method agree with the expressions
in this paper given in (4,12)-(4.14) and (4. 22)-
(4. 26).

It has been pointed out previouslyl1;12 that the
smoothing method yields the exact expressions
for the moments of the solutions of (1.1) when
N(z) is a single random telegraph wave. However,
the smoothing method does not yield the exact
results for the moments in the example considered
in this paper. It can be shown, for example, that in
the special case b; = b, = b the smoothing method
yields the first-order moments as the sum of four
exponentials and the second-order moments as
the sum of seven exponentials. The exponents of
the terms with coefficients which are O(1) are
given correctly through order 52, but none of the
remaining exponents are given correctly through
order n2. We can conclude that Example A of this
paper provides an important, nontrivial check on
the accuracy of the smoothing method.

ws) = fooo e r(z)dz =

B. The Sum of n Identical, Stochastically Indepen-
dent, Random Telegraph Processes

Let Tj(z), 1 =j = n, be n identical, stochastically
independent random telegraph processes with rate
b, and define
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N(z) = 21 Ty(2). (4.29)
]:

We will only set up the equations for the g(w, z) to
demonstrate the importance of making use of avail-
able symmetries. As in Example A, define the vec-
tor-valued process

M(z) = (T4(2), Ty(2), T,(2)). (4. 30)
This Jprocess has the state space E,, consisting of
the 2" vectors of the form (1,1, ,+1), and
has the initial probability vector a = (ozi),

o0,=2" 1=i=2" (4. 31)
Since the T(z) are stochastically independent, it
is easy to see that M(z) is an FSMC. It is not hard
to see that if the elements of the state space are
labeled properly, then P,,(x,y), the 2" X 2 condi-
tional probability matrix of M(z), is

Pyn(x,y) = PP, y), (4.32)
where P(")(x, y) is the n-fold Kronecker product
with itself of the 2 X 2 conditional probability
matrix of the random telegraph process P(x,y)
given in (2.10). Then it follows just as in Example
A that the infinitesimal generator of M(z) is

n~2 . L _
T =T XIF PV 43 (Ig“x Fx I8 1PV x g,
i

(4.33)
where 7 is the infinitesimal generator of the gan-
dom telegraph process given in (2, 10) and I2
the k-fold Kronecker product of the 2 X 2 unit
matrix with itself. Thus, on substituting the mat-~
rix elements of 7,,, from (4. 33) into (3.14), 2"
equations for the 2" quantities o;(w, z) result.

However, with the aid of P,,(x,y) given in (4. 32),
the theorem of Burke and Rosenblatt!5 can be
applied to show that N{(z) = f(M(z)) is also a Mar-
kov process. The state space of N(z) consists of
the » + 1 points on the real line,n — 2r + 2,
r=1,2, ,n+1, and

Prob{N(z) =n — 2r + 2} = 27"(,")). (4.34)
It can be shown that the infinitesimal generator of

N(z) is a tridiagonal matrix whose nonzero ele-
ments are

T =—nb, l=j=n+], (4. 35a)
Tyo1,; = —j +2b, 2=j=n+1, (4.35b)
Tie1,; =Jb, 1=j=mn. (4.35¢)

Thus, of the original 2" quantities oj(w, z), only

n + 1 are distinct from each other, and, substituting
expression (4. 35) for 7 into (3. 14), we obtain the
system of n + 1 equations from which they can be
determined. Thus, in this case, making use of the
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available symmetries greatly reduces the difficulty
of the problem for large 7.
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APPENDIX A:

In this appendix we outline the calculation of the
first order moments for Example A of Sec.4. To
do this, we must solve Egs. (3. 24) with initial con-
ditions (3. 25), where a is given in (4.5),7 = 7 is
given in (4. 9),and, from (3. 23), (4. 2),and (4.4),B
is

B =3I, + np3diaglc, + ¢y, ¢4

—Cg,—Cy +cz,

—cy —Cy). (A1)

We assume initially that ¢, = £ c,.
If w(z) is a 4-vector function, its Laplace trans-
form is

W(s) = £(w()) = fO”e—szw(z)dz. (A2)

Taking the Laplace transform of Eqgs. (3.24) and
making use of (3.25), we obtain

sU, -V, = at, L+ 87, =0, (A3)

sU, —V, =0, BU, +8V, = a!, (A4)
where

8 = sI, —t. (A5)

These pairs of matrix equations are solved rea-
dily:

U,(s) = (B + 82)-18a?,
V,(s) = S(B + 82)-18a‘ ~ at, (A6)
Uy(s) = (B +82)~lat, V,(s) = S(B + 82)-lat.
(AT)
From (3.26) we see that
L, @) = EqU,(5),  &(0,,(2)) = EGV,(5),
m = 1, 2. (AS)

Since in this case E,r = e’ = 0, it follows from
(A5) that

E,§ =sE,, So!=sat, (49)
and consequently from (A6)~(A8) that
£((u1>) = £(<'1)2>) = s"e«uz»;
(A10)

£((w,)) = s&(uy) — 1.

Equations (A10) and the initial conditions imply
Egs. (4. 10).
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To determine (#,(z)), from which the remaining
first moments can be obtained by differentiation,
the inverse Laplace transform of E4U2(s) must be
found. However,E,U,(s) is a rational function of
s with the denominator

D(s;n) = det(B + 8§2), (A11)

which is an eighth-order polynomial in s. If
A(m, 1 =j =8, are the eight roots of D(s;n) =0,
then

8
@y (2)) = El 1;(n) exp[r;(m)z], (A12)
]:

where [;(n) is the residue of Eqﬁz(s) at s = a,(n).
After some algebra it can be shown that
D(s;m) = (s2 + 83)[(s + 2b4)2 + BZ][(s + 2b,)2 +3§]
X [(s + 26, +2b,)2 + B3] — 2n264((c} + c3)
X {[(s +b; +by)% + B3 + b3 +b3]2 — 46303}
— 4(c3 —c3) (b2 —b3)(s + b, +1,)?)
+ n488(c? — c3)2.

If n < 1, the roots of D(s;n) can be shown to con-
sist of four complex conjugate pairs:

(A13)

BEn? c}
— ¥ _ 4 _
Ay =2z =18 [1 8 (bl(bl T8y

¥ by(by 2"’ iﬁo)>] + o,
Ay =My =—2b, —2b, +i8y + O(n2),
A=A} =—2b; +iB, + O(n2),
A=A} =—2b, +iBy + O(n2).

(Al14)

The corresponding coefficients /,(n) in (A12) can
be shown to have the form

Lim =13 =1/(2i8,) + O(n2),
L) =1f,(mM) =0(m?), j=3,5T.

(A15)

In the special cases ¢y =+ ¢, and b, = b, = b,

it is easily seen that D(s;7n) has the factor

(s +2b)2 + B3. It can be shown most simply

in this case by making use from the start of the
symmetry relation 0,(w,z) = 05(w,2) or 0;(w,2) =
o,(w, z) that the roots corresponding to the factor
(s + 2b)2 + g3 do not appear. The expression for
{uy(2)) is then of the form (A12) but with only six
terms appearing. The quantities A,(n) and 1;(n) are
still given for 1 =j < 6 by (A14) and (A15) with
c2=c}=3andb, =b, =b. Equations (A10) are
independent of the specific form of D(s;n) and are
still valid in this special case.

APPENDIX B:

In this appendix we outline the calculation of the
second-order moments for Example A of Sec.4. We
must solve (3. 31) with initial conditions (3.32),and
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with @, 7,and B as in Appendix A. Again assume
initially that ¢, = + c,.

Taking Laplace transforms of (3.31) and making
use of (3. 32), we obtain the three systems of equa-
tions,m = 0,1,2,

8X,, —2¥, =5,,at, (B1)
Bim + Sim - im = %Gm.oat7 (BZ)
2BY,, + SZ,, =0, 0, (B3)

where 0,, is the Kronecker delta, S is defined in
(As)yxm = "e(xm), Ym = “C(Ym)y and Zm = S(Zm).
These equations have the formal solutions

X, = 538a¢, ¥, = 18X,

%, = (B + 182)X, — lat, (B4)
X, =JB +i82)at, ¥, =3}(SX, —a),

Z, = (B + 3$2)X, — i8a?, (B5)

X, =Jat, ¥,=18X,, Z,=(B+}s?X,, (B6)

where

J = (BS + SB + 28%)"1, (B7)
A number of relations between the second-order
moments can be deduced directly from (B4)-(B7)
and (A9), which states that E, and a’ are, respec-
tively, left- and right-hand eigenvectors of S with
eigenvalue s. From (B6) and (3. 34)

L£((uyv,) = E,¥, = sE,8X, = }sE, X,
which implies (4. 15) since U,(0) = 0. In this
example,a = 3E,,and 8, B, and hence J are sym-

metric matrices; hence, from (B5) and (B6), we can
transpose the matrices in the scalar E X, to get

(B8)

EX, = 1EJ(B + 1)} = 1E,(B + }52)JE}

= E422. (B9)
From (3.34), this implies
L) = £(v3)), (B10)

which in turn implies the first of relations (4.16).
Similarly, we have from (3. 34), (B5), (B9), and (B10)

L(uyvy) = E4171 = %(sE@El —-1)= %(SE4i2 —1)
= 18 0p), (B11)

which implies the second of relations (4.16). Next
from (B4), (B6), (3. 34), and (3. 35),
L£(w,u,)) = B, X, = §sE Jat = }sE,X,

= 3sL(uB), (B12)
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E4§0 = %sE4f(o = 5528(w3) = §sL(luyv,)), (B13)

L(v,0,) = B4Zy = 5[E,(B +382)3Sat — 1)

= $(SE,Z, — 1) = $[s£(@3) — 1]. (B14)
Relations (B12)-(B14), together with (3. 35) and
initial conditions, imply relations (4.17) and (4. 18).

We have shown that all ten second-order moments
can be obtained by at most simple differentiation
from the three moments (v3), (43), and (v%). To
obtain these moments, the inverse Laplace trans-
form of E,X,(s),E,Z,(s),and E,Z,(s) must be
found. However, each of these quantities is a
rational function of s with the same denominator
A(s; n) = det(28B + 2BS + 83), (B15)
which is a twelfth-order polynomial in s. If s,(n),
1 <k <12, are the twelve roots of A(s; ) = 0, then

12

(w32) =2

k=1

m,(n) explzs,(n)], (B16)

1

N

&

(u3(2)) = 25 n,(n) explzs,(n)], (B17)

a
[y

-
]

N

(v2(2)) = 27 p,(n) explzs,(n)], (B18)

ar
i
-

where m,(n), n,(n), and p,(n) are the residues, res-
pect1ve1y, of E,Z,(s), E 4X,(s),and E Z ols) ats =
s,(n). After cons1derab1e algebra it can be shown
that

als; )
={s(s + 2b,)(s + 2b,)(s + 2b, + 2b,)(s2 + 4£3)
x[(s + 26,)2 + 4g3][(s + 2b,)2 + 483]

x{(s + 20, + 2b,)2 + 4p8]} + 2584n2
x[c2F (s) + c3F ,(s)] + 28p8n4[(c3 — c3)
x(s + b, +b,)2+bgcg— bzcl2, (B19)
where
Fis)=[(s+b, +b)f, —b,g,]
X[~ (s + b1 +b)f_+b,g ]
t[~(s+b,+b))g, +b,f]
x[(s +b, +b)g —b,f] (B20)

foms+b, + 0 )(s+b, +b,)2+3(,20,)2
+ 483], (B21a)
g.= (b, +b,)3(s +b, +b,)2+ (b, +b,)2

+ 483), (B21Db)

and F,(s) is obtained from F,(s) by interchanging
b and b

For n << 1 and sufficiently small compared to b,
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and b,, A(s;7) can be shown to have one root with
a positive real part, while the remaining roots have
negative real parts:

17 n%g[ (b%b: pg> ’ Cg(bgbfﬁgﬂ +olm),

(B22a)
5, = 51 = 2B, — n2p3 [c%(b1 + 2.130)
4 Lb,0b,+i8y)
+ %} + 0(n4), (B22b)
2V 2 0
sg=—2b,—2b, + O(n2), (B22¢)
sy =s§=—2b, —2b, + 2if, + O(2), (B22d)
s, = s} =—2b, + 2if, + 0(n2), (B22¢)
$g=— 20, + 0(n2), (B22f)
Si0=S¥ =~ 2b, + 2if, + O(n2), (B22g)
$15=—2b, + O(n2). (B22h)

The corresponding coefficients m,(n),7,(n), and
p4(n) can be shown to have the form

m,(n) = 38 + 0(n2), (B23a)
m,(m) = m4(n) = — 163 + O(n2), (B23b)
my(n) = 0n2), 4=k=<12, (B23c)
n,(n) = 1/(283) + 0(n2), (B24a)
ny(n) =n (M = —1/(483) + 0(n2), (B24b)
n,(n) =0(n2), 4=<k=12, (B24c)
p ) = 3 + 0n2), (B252)
pom =pym = 5+ 0(2), (B25b)
pyn) =0(12), 4=k=<1i2 (B25¢)
In the special cases ¢, =+ c,andd, =b, =0, it

can again be easily seen that A(s; n) has the factors
(s + 2b)2 and [(s + 2b)2 + 4B3]. Again by making
use from the start of the symmetry relations

0,(w, 2) = 0,(w, 2) or 0,(w,2) = 04(w, 2), it can be
shown that one of the roots s = — 2b and both of
the roots s = — 2b + 2i8, do not appear in the ex-

pressions for (v2),u2), or (v3). The expressions
for (v2), (up), and (v%) are still given by (B16)~(B18)
a.lthough now only nine terms appear in each sum.
The expressions (B22) are still valid for s,(m),
1=<k=8, whencZ=c3Z=3andb _bbut
Sg(n) = — 2b. The expressions (B?.%) B25) are
also still valid for 1 <%k = 9 whenc§ =c% = i
Relations (B8)-(B14) do not depend on the specific
form of A(s;7) and are still valid.
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We analyze the various classes of local irreducible representations (both finite and infinite-dimen-
sional) of O(3) realized on a linear complex vector space. The well-known finite-dimensional unitary
representations are obtained when the scalar product is positive definite. The infinite-dimensional
representations are realized on an indefinite metric space. The possible applications of these new

classes of representations are briefly discussed.

1. INTRODUCTION

In recent years, various models have been develop-
ed to describe the evergrowing high-spin particles
in a coherent fashion, The construction of a field
theory over the homogeneous space of the Poin-
caré group P which contains the Minkowski space
and which have continuous stabilizer groups is
worth mentioning in this regard.l Another attempt
was made to build up “Majorana-like” field equa-
tions based on the well-known notions of the hydro-
gen atom.2 To us, it seems there are still a lot to
be understood about this quantum mechanical sys-
tem (namely, the hydrogen atom). It has long been
well known that the symmetry of the bound-states
of the two-dimensional hydrogen atom is O(3) and
0(2, 1) describes the symmetry of the scattering
states 3 The postulation of two different groups and
two different representations for describing the
different states of the same physical system is
rather puzzling. One, in principle could invoke a
bigger dynamical group as the symmetry group of
this system describing both bound and scattering
states.? However, this gives rise to additional dif-
ficulty of suitable interpretation of the various
generators and the corresponding representation
space.

Further, in conventional Regge theory, one is con-
fined to a very restricted type of transformation
associated with the continuous nonexceptional
series representation of 0(2, 1), It is possible to
construct scattering amplitudes where the spin

is continued simultaneously with the mass, so that
the particles lie on the same Regge trajectory.
So, one has to consider a more general class of
transformations (generalized Sommerfeld-Watson

transformation) to construct scattering amplitudes
possessing momentum transfer as parameter as
well, Some of these properties were investigated
earlier in connection with the “local representa-
tion” of the rotation group O(3). However, the
analysis makes use of the continuous series re-
presentation of O(3) [analogous to that of 0(2,1)]
and is far from complete, It is the purpose of
this paper to present a systematic analysis of the
various classes of representations of O(3) in addi-
tion to the well-known finite, unitary, irreducible
representations and the continuous series repre-
sentation which is infinite-dimensional. To fur-
nish this, we follow the method outlined by Miller6
and consider O(3) as a group of transformations,
the various representations of it being realized
over a linear vector space. The linear vector space
(in general) is a metric space, spanned by a set of
eigenvectors of the Casimir operator @ and J3.
The dimensionality of the vector space furnishes
the dimensionality of the underlying representa-
tions of 0(3). We have considered the following
classes of representations,

Let ¢ =¢(¢ +1) and E =E, +m (m, an integer)
be the eigenvalues of @ and J3, respectively. In
general ¢ and E will be complex.

Class I. In this case, @ and J3 are self-adjoint
and Q takes integer values on the real axis and
E=—¢,:-+,+¢. Thus, we obtain the well-known
finite dimensjonal unitary irreducible represen-
tations of O(3),namely D(2¢).

Class I: The Class II representation is infinite
dimensional and the Nelson operator @ is not self-
adjoint, and the spectrum of J3 is given by E, =
— ¢ +n,12=0,1,2,3,..- and E, — ¢ # an integer,
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1. INTRODUCTION

In recent years, various models have been develop-
ed to describe the evergrowing high-spin particles
in a coherent fashion, The construction of a field
theory over the homogeneous space of the Poin-
caré group P which contains the Minkowski space
and which have continuous stabilizer groups is
worth mentioning in this regard.l Another attempt
was made to build up “Majorana-like” field equa-
tions based on the well-known notions of the hydro-
gen atom.2 To us, it seems there are still a lot to
be understood about this quantum mechanical sys-
tem (namely, the hydrogen atom). It has long been
well known that the symmetry of the bound-states
of the two-dimensional hydrogen atom is O(3) and
0(2, 1) describes the symmetry of the scattering
states 3 The postulation of two different groups and
two different representations for describing the
different states of the same physical system is
rather puzzling. One, in principle could invoke a
bigger dynamical group as the symmetry group of
this system describing both bound and scattering
states.? However, this gives rise to additional dif-
ficulty of suitable interpretation of the various
generators and the corresponding representation
space.

Further, in conventional Regge theory, one is con-
fined to a very restricted type of transformation
associated with the continuous nonexceptional
series representation of 0(2, 1), It is possible to
construct scattering amplitudes where the spin

is continued simultaneously with the mass, so that
the particles lie on the same Regge trajectory.
So, one has to consider a more general class of
transformations (generalized Sommerfeld-Watson

transformation) to construct scattering amplitudes
possessing momentum transfer as parameter as
well, Some of these properties were investigated
earlier in connection with the “local representa-
tion” of the rotation group O(3). However, the
analysis makes use of the continuous series re-
presentation of O(3) [analogous to that of 0(2,1)]
and is far from complete, It is the purpose of
this paper to present a systematic analysis of the
various classes of representations of O(3) in addi-
tion to the well-known finite, unitary, irreducible
representations and the continuous series repre-
sentation which is infinite-dimensional. To fur-
nish this, we follow the method outlined by Miller6
and consider O(3) as a group of transformations,
the various representations of it being realized
over a linear vector space. The linear vector space
(in general) is a metric space, spanned by a set of
eigenvectors of the Casimir operator @ and J3.
The dimensionality of the vector space furnishes
the dimensionality of the underlying representa-
tions of 0(3). We have considered the following
classes of representations,

Let ¢ =¢(¢ +1) and E =E, +m (m, an integer)
be the eigenvalues of @ and J3, respectively. In
general ¢ and E will be complex.

Class I. In this case, @ and J3 are self-adjoint
and Q takes integer values on the real axis and
E=—¢,:-+,+¢. Thus, we obtain the well-known
finite dimensjonal unitary irreducible represen-
tations of O(3),namely D(2¢).

Class I: The Class II representation is infinite
dimensional and the Nelson operator @ is not self-
adjoint, and the spectrum of J3 is given by E, =
— ¢ +n,12=0,1,2,3,..- and E, — ¢ # an integer,
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This furnishes the D+(¢, E ) class of O(3) (we
are retaining the same nomenclature for these
various classes of representations in the spirit of
Barut and Fronsdal?).

Class T: D~(¢, Ey): Like Class II, in this case,
we obtain an infinite-dimensional representation
of O(3). The spectrum of J3 is given by E; =¢ —
n,n =a nonnegative integer,and £, + ¢ # an inte-
ger.

In Class II and Class ITI representations, the under-
lying space is equipped with an indefinite metric.
The convergence properties in this space can be
examined by introducing Hilbert or Frechet topo-
logies.®

Class IV: D(¢, Ey): This class of representa-
tion is obtained for all complex values of ¢ and
E:¢ + E,) and (¢ — E) being nonintegers.

It is our contention that the class I representation
can be used as usual to construct the bound-state
energy spectrum and Class IV for the scattering
states of the two-dimensional hydrogen atom. We
also suggest that the infinite-dimensional repre-
sentations of the compact groups could as well

be used to build up infinite- multiplet schemes for
the hadrons. We have arranged our material as
follows,

In Sec. 2, we describe the method and obtain the
usual finite-dimensional unitary representations.
Explicit expression for the infinitesimal genera-
tors, eigenfunctions, and matrix elements have
been obtained. Following the method outlined in
Sec. 2, we study the properties of the vector space
when both ¢ and E take complex values, We obtain
the infinite-dimensional representations for
D+(¢,E ), D (¢, £y), and D(¢, E,). This consti-
tutes Sec. 3. Finally, we outline the application

of our new class of representations for studying
the symmetry of the two-dimensional hydrogen
atom in Sec. 4. We conclude our discussion with

a few remarks on the special features of the metric
space,

2, THE METHOD AND CONSTRUCTION OF
FINITE DIMENSIONAL REPRESENTATIONS

A. The Method

Let G be an n-dimensional local Lie-group and
U an open set in C™ (complex fields), Let U x

G £, C™ i.e., the mapping F(z,g) =zg for z € U
and g €G.

G is said to be a local Lie transformation group,
if F satisfies the following conditions.

(1) zg is analytic in the coordinates of z and g;
(2) ze= z;
(3) 2g €U = (2g)g" =2(88"), Vg, 8" €G.

Let G act on an open neighborhood of U of C™, 0 €
U and let JC be the set of all complex valued func-
tions on U analytic in the neighborhood of O. The
local multiplier representation T° of G on H with

21317
multiplier p constitutes a mapping 7% (g) of H
onto H,
[T°(¢) f)(2) =p(z, G)f(z, 8),
zeU,gcGand f €H. (2.1)

The multiplier p(z, g) satisfies the following pro-
perties, namely:

i} p(z,e) =1, VzeU, (2.2)

(ii) p(z,gg") =p(2,8)0(z,8"), g,8' €G. (2.3)

Property (ii) implies the following. We define
the generalized Lie derivatives  Df{(z) of the analy-
tic function f(z) under the one-parameter group
(expat) as

D Az) = 4 [T"(expat)f z)l (2.4)

where a = (d/dt)g(f)|, , is the tangent vector at

=g(0) on the curve g(t). For p =1, we obtain the
ordinary Lie derivative, From (2. 4), we obtain

D f(z) = Zia,P,,(Z) (2) +20;P,(2) f(2),

where
d
?aj%(z) —‘ap(z; expat) \t:O
and

B =32 wo)|, (2.5)

The D s form a Lie algebra under the operation of
addition of derivatives and Lie product

lDw DBJ =D, Dy — DyD,

and is the homomorphic image of the Lie algebra
of G,i.e., &;

Dot+B:Doc +DB’ D[OL,B] :{

Let us define

D,, Dy ]7 D, = ab,

(VI

m
o 9 .
D(8) =2 Pfa) 5= +B(@),  §=1,2,3,--,n

(2.6)

{I) z)} are a set of linearly independent differen-
tlal operators analytic in the open set U € C™and
satisfy

n
[
(D, D) =D, — DD, =55 G0, 2.7

where C,, are the structure constants. A complex
linear combination of D,s spans the Lie algebra of
the generalized Lie derivatives. The action of the
group is obtained by integrating the following equa-
tions;
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@ 2 240) —Z} a,P,(z(t), 2z(0) =z?,
) —1 2,3,-
(ii) p(zo e™) =p(20,e*") T P, (z(1)),
j
p(z%,e) =1,
where

z(t) =z% %,

(iii) [T (e*) ](2°) =p(2°, e*) f(20, e*). (2.8)

B. Construction of Class I representations of O(3)

Let us consider the differential operators®

JT = —2¢z +224

d
3 _ a
J3 = ¢+Zdz’ dz’

SR
JT=—

(2.9)
2 is a complex variable defined in the neighbor-
hood of 0 € C’, and 2¢ is a nonnegative integer,
{J%, J3} satlsfy the following commutation rela-
tions [compare Eq.(2.7)}:

{3, J ) =2 J%, |JF,d7] = 2J3,
and span the Lie algebra of generalized Lie deri-
vatives of a local multiplier representation T"(g)
of 0(3).

To obtain the action of the one-parameter group
€Y% o < C’, 03 being the Lie algebra element cor-
responding to J3, we solve the following equations
analogous to (2. 8), namely

fy—(z) =z, diyp(zO,eW) = — ¢plz9,e? °), (2.10)

with the initial conditions

2(0) = 20,  p(29,e) = 1.

Thus, we obtain from (2, 10)
2(y) = 2%, p(20,e7%) = ™%,

Now

1T%e"°) £)(29) = e™*7f (20€7), (2.11)

for |y | sufficiently small, Similarly, we obtain

0
|T?(e7) f](20) = (— 520 + 1)2¢f(—z—>
— 520 +1
(2.12)

and o

[TP(e"7) f](20) = f(20 — 1), (2.13)
03, 0% are the usual Pauli matrices forming the
two-dimensional representation of O(3) and are
given by

L
N R

TRIPATHY

It follows then,

yo3_[eY/2 sot _ (1 —s
° (o e Tl 1)

ew—_:< 1 0), ‘y,S,tEC

1 (2.14)

Any arbitrary element g € O(3) can be written as

g=< ‘_"3) det lgl = 1,
—b a

(2.15)

Further, in a small neighborhood of the identity we
can write g as

g = exp(sot)- exp(to) exp(yo3). (2.16)

Making use of (2. 14) in (2. 16), we obtain
y/2 _ epmy/2
g = el “(1 +st) se ) (2.17)
—te y/2 e-y/2

Thus

e"?* =4 s=—b/a, t=ba (2.18)
Then,
[T° (&) f](2)

= {T” |exp(so* ) exp(to~) exp(yo3) |1} (2). (2. 19)

Making use of (2. 11)-(2.13) in (2. 19) we finally
obtain

[T (@) f](2) = e™*7(— sz +1)2% (ze’(l +st) = te7>

— sz +1
— (bz +a)2“’f<b - b) (2. 20)
2 a
Thus,
p(z,8) = (bz +a)*°
and _
VAR 2g = b " b (2. 21)
V4 a

It can now be easily checked that (2. 20) and (2. 21)
indeed furnish the local multiplier representation
of O(3) and the differential operators J*, J3 are
generalized Lie derivatives of TP, Alternatively,
given (2. 20) and (2. 21), we can obtain the genera-
lized Lie derivatives of a local multiplier repre-
sentation T° of O(3) from (2. 4).

Wr1t1ng (f2)] =| fE(z)] the action of the operators
J*,J3 on this basis is given by

SNz =

I ) = [ * E)@ + B + D]V (2.

Ef(2),
(2.22)
Note that

JENz) = 0,1.e., f0N2) = 0
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and
JFEN2) = 0,1.e. ,f,,,_l(z) =0,

Thus, an invariant linear-vector space is spanned
by (2¢ +1) vectors(f_,, -+, f,,) . We now compute
the scalar product and show that the vector space
is Hilbertian.
Using

1+2z
la +bz|2

[since, |al2 + |b|2 = 1], We obtain from (2. 21)

az —b 2_
a+bz

1+|

= @ +b2)|72(1 + |2]2). (2.23)

Thus, we define the inner product w.r.t, the invari-
ant measure

ane) = 221 L (1 + 121222 azeaz

as
(1,8 = JAR fpla)du(z)
S20 L (TR A (L + 12122 P ez,
(2.24)

where the integration is carried over the complex
plane arx<if1,f2 € H. Setting f,(2) = 2 ,fz(z) = z!,

k,1=0,1,2,--, 2¢,we obtam from (2, 24)
—2¢ +k — 1)1
(fr. oo = < ¢k ) (2. 25)
In (2. 25) we have used (z* 2) = 5,,. Thus, writing
flz) = E C,2",
we obtain

— . -1
172 =2(7 2 ) ge <. .20

We now construct a complete set of orthonormal
vectors [k,(2)] as

1/2
lal2 = 1, and A(z) = * [ﬂ%] 2

(2.27)

In this basis, the matrix elements of T*(g) [which
also furnishes the representations of 0(3)] are
given by

(T? (&), 1 (2)

2¢
= Z)le(g)h;(z), 0<ks 2¢,

or

Nf@+b2)*" *(az — Z)N,D,,,(g)z (2. 28)

where N, and N, are the normalization constants
given in ‘22 27). Thus,
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l(_ E)k-l F(k + 1) 1
I — ’ Tz +1)

¢ F(—1,—2¢ +k,k — 1 +1;— bb/aa),
f2p=zk=2120,
_Lalz(a)2¢-l(b)l-k

JE20—-2+1) 1
I'—2¢—7+1) TG -2 +1)

(a)2¢-

Dy(g) =

oF(—k,—2¢ +1,l —k +1;— bb/aq),
f20=21=2k=20. (2. 29)
Substituting for N,, N, and using

= (.8 Z‘) a=e 2. cos(p/2),

b =ie” "2 sin(p/2)

(where @, B,y are the Eulerian angles), and making
use of the properties of the hypergeometric func-
tion F(p,q,y;z), namely

Fp,q,y;2) = (1 — 2)?F(p, y-q,7;2/(z — 1))

=1 -2 Fly —p,y —q,v;2), (2. 30)
we obtain
1 (2 — 2¢)T(k + 1)] V2 i¢-#a
Dyle) = z)v[r(z = S Vi B

.ei (‘P-l))‘(cosB/z)Z ‘D-k-l.(sinﬁ/z)k-l

*F(—1,—1+2¢ +1,k —1+1;sin28/2).
(2.31)

(2. 31) is exactly the expression given by Edmond
for the matrix elements of the rotation group
0(3).°

3. CONSTRUCTION OF THE DISCRETE CLASSES
II AND ITT AND THE CONTINUOUS SERIES
REPRESENTATIONS

A. Class II Representations (D*(¢, E ;)

Let the spectrum of J3 beE =(— ¢ +m,m =a
nonnegative integer). Using the differential form
for the operators J3,J* as given by (2. 9) and sub-
stituting £ = — ¢ +m in (2, 22), we obtain

J- (‘p)(?-) —ijmim — 1 — 2¢)]1/2f(¢)(z),
=0,1,2,-

Then,

IF=) =0 = £ (2) = 0.

However, J*ffzfm(z) = 0 has no solution unless

m = 2¢ (compare finite-dimensional representa-

thl%S) Thus the mfmltg system of functions
(1= [£$%=2), F€),(2), - - - | span the infinite-

d1mensional vector space for 0(3).
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We further analyze the properties of this infinite-
dimensional vector space by explicitly computing
the scalar product. Then we obtain the multiplier
representations {which also furnish the represen-
tations gf 0(3)] w.r.t. this basis, As usual, we de-
fine | fE z)]

£ = NP

N,Sp) is formally given by (2. 27) except ¢ is now
complex,
Now,

(f1,f2)e = fmfz(z)d#(z)

or
OXa), 1) = | £+ 2)dp(z)

— 291:' 1 .N1(2‘¢).N1§¢) fim,zn.(l + |zl 2)-2¢-2
‘de-dz. (3.1)

Substituting z = vye'’,
= 3dy *d@, we have

2 =x +iy,dz-dz = dx-dy

Jzm "1+ 1212)2* 2 gz -4z
.2 . "o + -2 =
_ %‘jo ﬂdge"(""”)ejo Ym n/2.(1 +’Y) 29 2d’y

= 7b,,B(m +1,2¢ —m +1),
(3.2)
where B(p, q) is the beta function.

Thus, using f4 =f_, fo = f, we have from (3. 1)

(F.N)e = (26 +1)-N® NP-Blm +1,2¢ — m +1).
(3.3)

Substituting for N5» and NS* and using
B(m +1,2¢—m +1)

=T(m +1)I(2¢ +1— m)/T(2¢ +2)

I'(—2)= TG + 1)’
we obtain from (3. 3)

T(m — 29)}1/2 [I‘(m — 29)]-1’2

(f,ﬂsb‘_ [P(— 2¢) 1-\__2¢

=(-1"¢. 3.4)

Some properties of the metric ¢

(1) m =2¢ =2¢p, (¢ real),thent =1.

This precisely produces the finite-dimensional
unitary representations,

(2) ¢=+1, if2Re¢ = even, m > Red
=—1, if 2Re¢ = odd, m>Re¢.
(3) t=(—1)" ifRe¢ > 0andm < 2 Re.
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Regp >m >—1,

TRIPATHY

We now compute the multiplier representations
T*(g) on the basis

@)y - | _Ln—2¢) Y2
f;‘ (Z)_Z[m*'—lﬁ'—?:ﬂ 2,

. n=0,1,2,---,
ie.,
(T p(g)]w)](z)
= (a +bz)? f( a—) for z € C and g € 0(3)
=2 DRGSR, k=012, (3.5)
or

(az — BY*(@F** - (1 + )2k N &
= @,E, bz /
=2 NDJRX g, 121< 1, 1% <,
=0 a b

Comparing the coefficients of 2 on either side of
the above equation, we get

reE+1)
r+1)rk—I1+1)

F(—1,— 2¢ +kk—1+1;,—bd/aa),
21=0,

Byt

DEg) =4 - d @2 H(— b

I'2¢ —k + 1)

N 201, vk
==a (@) " (b) T(2¢p — 1+ DI —k + 1)

Ny

«F(—k,— 2¢ + 1,1 — k + 1;— bb/aa),

ifl=k=0. (3.6)
We have to note here that the matrix elements

(3. 6) have the same form as (2. 29); however k&,
1,=0,1,2,3,:

B. Class III Representations[D~(¢, E )]

Let the spectrum of J3 be= [¢ — n;n = a non-
negative integer]. We assume further the following
form for the operators J*, J3:

d
3 _z%
J -—(p Zdz)
d
+ - _ 2
= dz’
J—=_2¢z+z2—d—, (3.7

dz
and Q = 3|Jy,J_] +JF = ¢(¢ + 1).

With respect to the expressions $3. 7), we obtain
the multiplier representations T"(g) as

— (g —E2)2% (% 1),
[T (8) f1(2) = (a — b2) f(a—Ez)

(3.8)

(3. 8) could be formally obtained from (2. 18) by
replacing @ > a and b — b. As usual, we consider
the basis | fz (2)] and compute the matrix ele-
ments of J* and J3, For E = ¢ — m,we have
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I A2 = imm — 2¢ — D22 (2),
J'fw)(z) =i[(m + 1)(— 2¢ + m)]1/2
P fE_l(z).

Now, I/ (2) = 0 = f{)(2) = 0,and J = £,9)(2) =

0 has no solution unless m = 2¢ (compare finite-

dimensional representation case). We thus obtain
an infinite set of vectors

(3.9)

L2 (2) = £ %2), f£90(2), - -

spanning the linear complex vector space.

As usual,

fE(¢)(z) Efrsp,Eo)(Z) = Nrsf’)zm

T FDTC 26

On this basis, the multiplier representations (3, 8)
are given by

(T (@) 750 (2) = lzﬁ’ioulgg)ff"”‘o’(z),

k= 0,g€0(3),
or

29-k

(— bz +a) “(az + b)k'Nk

= IZ) Dg)z' N, lb/azI< 1,
=0

or
DY ENg) == (@) ()2 (b) ¥
Ik +1)
"TAFDIE -1+ 1)
F(—1,—2¢p +k,k—1+1;— |b12/|al?),
k=120. (3.10)

C. Continuous Series RepresentationsD(¢, E)

As usual, we construct this representation in the
space of complex analytic functions | fE(¢)(z)] form-
ally given by (2. 27) for arbitrary complex values
of ¢ and E. Thus,

(4.£9) —am I'(E — ¢) 1/2. Egtm~9
= NLPEo) g Bt m® (3.11)
and
[TA10 5 2)

= NSPE0) - (G + bz)?Eom . (az — b)*" 50’ ™ (3,12)

In (3. 11) and (3. 12), we have considered E =
E,+m,and m = 0,+1,+2,£3,.... We now evaluate
the inner product:

50 (@), 05 2)) 4 =

and

J7EE0 ). f8E (2)ap(z)

due) =22 (1 + 1212)2* 2 gz-a7 . (3.13)

1/2
)] 2", m=0,1,2,--
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Following an identical procedure as for discrete
series representations, we obtain

(£ 2), £195(2))

= By 8 E- NOED L B(EG + g + 1,29

+1—-E,—q), (3.14)
where
¢ GE0) = l: Tg+ Eo— ¢) ]1/2
? T(g+Ey+ @+ 1).T(— 29

) (g + Eo — ¢) 1/2
|:I"(q F EZ ¥ ¢0+ 1) -T(— 2¢)] . (8.15)

We then evaluate the multiplier representations
Tr(g) in the basis (3, 11):
]
[TeeV$:EN (2) = ) D(;l’q,Eo)(g)E@,Eo) (2)
p==e0

= Nq(w,Eo)(a + bz)9-Eo-q(gz — b)%P+Eorq

q=0,+12+2,,

(3.16)

After a little simplification we obtain

D©,5g) = %Z—-m(a)w( — Ber
I'(s+qg+1)
Is+p+ DTG p+ D)

F(—s—p,—t+q,q—p+ 1;,—bb/aa), q=p

B 1%_ as*(@)t-+(b)p-a
Lt —g+ 1)
P+ Np—gq+ 1)

p—q+ 15;— [b]2/1al?), p=q.

F(t F(~ s—q,—t+p,

(3.17)

Here,s = ¢ + Ejand { = ¢ — E.

We have to note further that neither s nor ¢ is an
integer. The two expressions can be combined
into one since

F(—s—p,~t+q,q—p+ 1;,—bl2/|al?)/
‘Tlg—p + 1)

is defined even when (g — p + 1) is a negative
integer. Then using the properties of the hyper-
geometric functions, we obtain

(©,E0)
D @)
N, _ -
=L gstp(ayt-a( — b)a-»
P
I'(s+q+ 1)

‘T(s+p+1)-T(a—p+ 1)
F(—s—p,—t+qq—p+1;— [b[2/]a]?)
(3.18)
for all integers p,q.
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Substituting for N, and N, from (3. 11), we finally
obtain

Dg’;-EO)(g) = epq( — 1)a- p(@)-(2E0* p*a)( — p)a-»
“F(—s—p,—t+q,q—p+ 1;bb),q = p,
= em([l)—(ZEO*p*q)( — b)r-¢
F(—qg—s,—t+p,p—q+ 1;bb),
p=q,

where

(3.19)

1 [I"(p+s+1)l"(p——t ]
g—p)! |Tlg+ s+ 1)Tlg— )]
(3.20)

0,, = (d)a-» (

We have to note here that the matrices Dp(¢-E° Xg)
furnish an infinite-dimensional nonunitary re-
presentation for O(3). In place of unitarity, we have

¢[D@]¢-1=D(g Y,
where { is the metric given by (3.15). Thus,

LDy, (@)D, ge™ 1) = 0.
Y

(3.21)

(3.22)

4. THE HYDROGEN ATOM

We will briefly outline the consequences of our
new classes of representations in the context of
the symmetry of the two dimensional hydrogen
atom. A more realistic case of this problem will
be published elsewhere.

The Hamiltonian H of the system is

1 o2 e?
The constants of the motion are
L3 =xpy —¥D1,
Al =—1/2#’32(L31’2 +[)2L3) +X/7, (4-2)

Az = + (%“ez)(l‘spl +p1L3) + y/”,
satisfying the following commutation relations:

[Ly,A ] =iAy, [LyA,]=—iA,
(4.3)

i
[41,45] = soal— 2H)L3.

Since (4. 2) do not close the algebra, we define a
new set of operators as

_ pMe2
17 —amrz TV
1/2 42
Jy =8 4, (4.4)
(— 2H)1/2
Jy = Ly.

It is easy to check that

TRIPATHY

[JL.,J].] =l €udy, 67,k =1,2,3. (4.5)
We now compute the Casimir operator @:
Q=1W,,J) +Jg. (4.6)
Substituting (4.2) and (4. 4) in (4. 6), we obtain,
after a little algebraic manipulation,
_ el 2 ppp_ 1
Q= — 20 [1 + ue4HJ3 + 2“ell.H + J%
_ ket
=—"5f — 1 4.7)

Solving for the eigenvalues, we obtain from (4.7)
pel 1

or
(4.8)

po__—uel __—upet
OES e PR
Substituting » = ¢ + 1, we get (in natural units,

1= 1),

= 212pet  — 272pe4
2o + 3)2 k2 — 5P

(4.9)

This is exactly the expression obtained by Jauch
and Hill3 for the bound-state energy spectrum
of the two-dimensional hydrogen problem, when
n=0,1,2,3,...

We have seen that for ¢ real,or,in other words
forn =10,1,2,3,...,F is aways negative and the
symmetry of the system is 0(3). We make no
secret of the fact that when ¢ is complex, namely
for ¢ =— 3 + i0,0 < 02 < o, ("continuous series
representation™), we obtain,
E = 212pe4/h2g2 > 0, (4.10)
(4.10) gives the energy expression for the scat-
tering state. We just want to emphasize here that,
in case of (4.10),the underlying vector space is
a metric space,whereas the bound-state spectrum
(4.9) is obtained in Hilbert space.

5. TOPOLOGY OF H

We have demonstrated that for the discrete and
continuous series representations of O(3), the sca-
lar product of the vectors f(z) is highly indefinite.
To obtain a positive scalar product on the space

H of functions f(2), let us define

(frf,)¢> = (f+af+’-) - (f_’fl_)’

where f = f, +f_ andfi,f; e Hi.

We have split up the vector f € H into components
/; belonging to the subspaces H; on which the
metric { has a definite sign. The topology of this
space satisfies the following properties (Hilbert
topology):

(5.1)
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(i) The norm |l fll= (f,f)1/2.

(ii) The geometry is given by the distance
af, /) =f-rl.

(iii) A sequence of vectors f, — f if
limv > @l f  —fIl = 1limd(f,,f) = 0.

Alternatively, we can introduce Frechet's topology
on the vector space H having the following proper-
ties.

For any pair of points f, f’, the distance d{f,f’)
satisfies

() d(f,f)=4d(f—5,0);

(i) If £, - 0, then d(f,, 0) > O. (5.2)
Indeed, we can set
2 r—=ri
a(f,f) = — 5.3
UIY= 2 e i -1, e-9

where | Xl is a denumerable set of seminorms.
We can easily check that (5.3) obviously satisfies
(5.2).

6. CONCLUSION

To summarize our discussion, we analyzed the pos-
sible “local representations” of O(3) and demon-
strated that in addition to the finite-dimensional
unitary representations, there are infinite-dimen-
sional representations realized on a more general
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linear vector space, rather than the Hilbert space.
We briefly discussed the consequences of the con-
tinuous series representation in describing the
scattering states of the two-dimensional hydrogen
problem. This could be also used to construct
multiparticle scattering amplitudes with a more
general transformation (generalized Sommerfeld~
Watson transformation) on the complex angular
momentum plane. The formal correspondence with
0(2, 1) could be established by replacing 8 — i3

(the Eulerian angle). Under this case, in fact, we
reproduce the Master analytic representations of
0(2,1) by Kuriyan et al.10 We have also briefly
outlined the possible geometry that could be asso-
ciated with the vector space. Our method is
general, and could as well be applied to study the
infinite-dimensional representations of 0(z). The
richness of the new series of representations could
be useful to build up infinite- multiplet scheme for
the ever-growing high spin particles.
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The Heisenberg Hamiltonian of a ferromagnet with Zeeman term is treated by the method of algebraic
realization of the spin algebra. The general features of this approach are first analyzed. A detailed
calculation with a particular algebraic realization is then carried out by use of two boson operators;
one of the operators is interpreted as the observable spin waves and the other as “spurions” which
carry only spin quantum number without energy. The Bethe—Salpeter integral equation is solved in the
long-wavelength region for the bound states of spin waves. A perturbation calculation yields a leading
T4 correction to the usual T3/2 behavior of the magnetization.

1. INTRODUCTION

In the traditional way of handling many-body prob-
lems, the given Hamiltonians are usually the start-
ing point of an ab initio calculation in the sense
that the original Hamiltonians are divecily res-
ponsible for the final results. However, it is our
opinion that this is sometimes too restrictive
since most Hamiltonians of physical models for
many-body problems are not simple enough to yield
solutions without some rather drastic approxi-
mations or mathematically doubtful operations.
Therefore, it is physically interesting while
mathematically not necessarily worse, to consider
the initial Hamiltonians as absirac! operator
expressions capable of being #ealized by certain
operators satisfying simple algebraic relations.
These operators used for carrying out the alge-
braic realizations canbe given a “particle” inter-
pretation and, for convenience, can be called
“semiparticles” here, when the operators satisfy
simple commutation or anticommutation relations.
More precisely, the criterion of establishing a
“semiparticle” interpretation can be formulated
in the following way. If the operators used for a
particular realization enable us either to solve
the eigenvalue problem of the given Hamiltonian
or to derive an effecl/ive Hamiltonian of a simple
form such that the problem becomes more
manageable, then these operators are called “semi-
particles® if they satisfy commutation or anti~
commutation relations, or even parastatistics.
Such a criterion does not require a perfect
diagonalization of the original Hamiltonian by the
semiparticle operators, i.e., the semiparticles in
our definition may have inleractions. A perfect
diagonalization which makes semiparticles free is
therefore only a fortunate situation; in this case
semiparticles are just quasiparticles in the usual
language. The other feature of our approach is the
commitment to identify the original operators as
simple combinations of fini/e products of the new
operators (i.e., the semiparticle operators), or
possibly in closed forms. This differs from the
usual methodology of expanding Heisenbersg opera-
tors in terms of an irreducible ring of asymptotic
operators. The latter expansion is, in general, an
infinite series whose convergence may often be
questionable. Besides, the most important prob-
lem lies in the truncation of such infinite series
in order to make the calculation manageable. Any
truncation, in fact, imposes conditions that must
be satisfied by the original operators. The intro-
duction of such new auxiliary conditions can, in

general, be either inconsistent or bad enough to
allow only trivial solutions. This point is tradi-
tionally ignored in the expansion of a Heisenberg
operator into an infinite series. Therefore, the in-
consistency may be hidden and thus completely
overlooked. The method of algebraic realization
usually has the advantage of having rather simple
subsidiary conditions whose consistency can be
readily verified.

Finally, one must ask the question of how to choose
the righ! realization among many possible alge-
braic realizations. This question may be answered
in the following tentative way. It is our opinion
that an adequate realization is most probably a
simple one since otherwise the advantage of an
algebraic realization may be lost. Next, the
auxiliary condition resulting from the particular
realization should be both mathematically and
physically consistent. In other words, a realization
should be discarded if the auxiliary conditions
resulting from the realization are inconsistent
either on mathematical or on physical grounds.
Furthermore, the realization should yield either a
simple form of Hamiltonian or a Hamiltonian that
has a simple effective form. The new operators
introduced for algebraic realization should satisfy
commutation or anticommutation relations or
parastatistics. However, this last point is not
absolutely necessary, if one does not insist on
interpretations of semiparticles in terms of bosons,
fermions, or paraparticles. Last but not least is
the expectation that an adequate realization would
lead to some physically reasonable results from
the computation. In our study of the spin-wave
theory with Heisenberg-type Hamiltonian we find
the above set of criteria leaves very little freedom
in choosing a realization. We succeeded in finding
only one,the one that is discussed in this paper.
This particular realization indeed gives a satis-
factory result.

We first analyze the two most important papers in
spin-wave theory, the work of Holstein—Primakoff!
and that of Dyson,? from the viewpoint of algebraic
realizations. By considering a different realization
we rewrite the Hamiltonian in terms of two new
operators. These new operators are boson fields.
It is shown that one of them is, in fact, a “Goldstone
particle,” which carries no energy and can be in-
terpreted as the existence of “condensation.” The
other boson operator can be interpreted as the
existence of “spin waves” or “magnons.” In other
words, we have two kinds of semiparticles: One
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takes care of the bookkeeping of the spin-projection
quantum number and the other takes care of the
spin-wave dynamics. The resulting Hamiltonian
actually does not have a simple form. However, by
means of the energy eigenvalues, we can write
down an effective Hamiltonian which is of a much
simpler form.

For long wavelengths, we show that there exist
bound states of spin waves. Further, the Bethe~
Salpeter integral equation leads to a relation be-
tween the spin-wave energy and the bound-state
binding energy of two spin waves.

2. ON THE HOLSTEIN-PRIMAKOFF AND DYSON
APPROACHES

In this section we consider the classic papers of
Holstein~Primakoff and Dyson from the viewpoint
of algebraic realizations. The Hamiltonian to be
considered here is the Heisenberg model of ferro-
magnetism:

3 =~ 2 4,8, S, ~ HDS,”, (2.1)

where 8, is the spin operator of the atom at the

Ith site, J,,, is the exchange integral between atoms

at the /th and mth sites, and H is the externally

applied magnetic field. The spin operators satisfy

the algebraic relation

[, S = 20,50, [s9, 5] = = 6,50,
(2.2)

where S{ =89 + 50, §0 = 59 _ i5(3); ang
S%T), S(ly), ng)
at the site [.

are x, vy, z components of the spin

Holstein—-Primakoff actually started from a more
complicated Hamiltonian than Eq. (2. 1); their
Hamiltonian includes the dipolar and pseudodipolar
terms. However, their approach is equivalent to
the following choice of the realization of the alge-
bra, Eq. (2. 2):

Sl("’ = (25)172g3(1 — (1/2s)ata,)1/2,
SO = (25)1/2(1 — (1/25)ata) a,,

F) J
s(z):s aja,

(2.3)

where @, and af form the commutator algebra:

[au a;] = 8 s [ap am] = 0. (2.4)
Under the realization, Eq. (2. 3), the Heisenberg
Hamiltonian of Eq. (2. 1) splits into two parts: a
quadratic part and a nonquadratic part containing
an essentially infinite formal series in ata, [due to
the square roots appearing in Eq. (2. 3)]. The
quadratic part gives a result identical to Bloch's
linear approximation. The other nonquadratic

part is then interpreted by Holstein-Primakoff as
scatterings of spin waves. Thus, if the nonquad-
ratic part could be neglected, then the leading term
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of the Holstein—-Primakoff result would agree with
the experimental situation just as Bloch's3 does.
There was virtually no significant theoretical pro-
gress in this direction from then on until the
appearance of Dyson's two papersin 1956. Dyson
criticized the work of Holstein—Primakoff by
pointing out that their nonquadratic term was
actually too large to be neglected, so that the cal-
culation was not really too useful. He attributed
this to their improper choice of state vectors in
the calculation and he proposed to use a different
set of state vectors, though nonorthogonal among
other things, to span the Hilbert space. His pro-
cedure consists of constructing, by means of his
state vectors, an equivalent Hamiltonian from
which his calculation proceeded. His result leads
to a T4 modification of the magnetization. Besides,
he argued that there could not be any bound states
in either two- or three-dimensional cases while
Bethe4 has shown the existence of bound states in
the one-dimensional chain. This aspect of Dyson's
paper was however shown to be false by Wortis.5
Our results show that not only bound states do
exist, but, in fact, two-particle scattering states
can be ignored in the long-wavelength range. This
is rather different from the conclusion reached by
Wortis, who showed the presence of a threshold
below which the bound states appear. Dyson's cal-
culation can be considered as a result of the alge-
braic realization of the algebra®

25)1/2q%,
2s)1/2[1 — (1/2s)ata,)a,,

—_ gt
S alal.

(2.5)

N,\N,\
L
il
—_~ e~

At this point, we note the interesting fact that the
realizations corresponding to the Holstein-
Primakoff and Dyson solutions both satisfy the
relation

S2 =s(s + 1), (2.6)
which is the usual eigenvalue equation if Eq. (2. 6)
is applied to an eigenstate of §2. Thus Eq. (2. 6)
should be considered as an “auxiliary condition”
resulting from the particular realization. In other
words, Eq. (2. 6) is valid when applied to an eigen-
state of S2, This is not at all a drawback; because
the eigenvalue s is fixed for a given problem and
because the Hamiltonian is expected to commute
with S? on physical grounds, it is natural to use
simultaneous eigenstates of 3¢ and S2. Under these
circumstances Eq. (2. 6) is consistent if one keeps
the preceding choice of eigenstates in mind. Since
every realization will result in some sort of con-
dition (or conditions) like Eq. (2. 6), it therefore
provides a useful guide in the selection of realiza-
tions (i.e., the realization should be discarded if
the condition is inconsistent on physical or mathe-
matical grounds) and it also tells what kind of
eigenstate one must employ in the particular cal-
culation. From the purely algebraic viewpoint, a
drawback of the realization corresponding to the
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Holstein-Primakoff solution is the appearance of
square roots of operators which have to be interp-
reted mathematically as formal infinite series of
operators. On the other hand, the realization
corresponding to the Dyson's solution forces Sl('*)
and S© is not to be related by Hermitian conjuga-
tion; this is also an uncomfortable situation since
the resulting Hamiltonian is no longer Hermitian.
Therefore, the question is whether one can find a
simple enough realization, in terms of commutator
or anticommutator algebras, if possible, of Eq. (2. 2)
without the drawbacks (either mathematically or
physically) of the Holstein—Primakoff and Dyson
approaches.

3. AN ALGEBRAIC REALIZATION AND SEMI-
PARTICLE INTERPRETATION

Our calculation in the rest of the paper is based
upon the following realization in terms of two

boson operators:

Szw = Bsz’
SO =b78, (3.1)
S(ZZ) = %(Bfﬁz - birbz)’

with
[Bl’ B;;] = 51",’ [B[; Bm] - 0’
[bl,b;;] = O [bl,bm] =0, (3.2)
[Bl’br-;] =0, [Bl; bm] =0,

It is important to note that if the operators 8 and
b are subjected to the transformation of a c-number
addition,

(3.3)

B B te bbtc

the algebraic relations Eq. (2. 2), are still satisfied.
We shall make use of this property in what follows.

It is also easy to verify that the realization of Eq.
(3. 1) yields the following auxiliary condition:

BB, + b, = 2s, (3.4)
by which we can write Sl“e) into
sP = s b, = —s + BB, (3.5)

In virtue of Eq. (3. 3), we consider the following
transformation:
b~ b (3.6)

B (25)172 + g, ,

and define the Fourier transform for g, and b, by

_ 1 s ixa
By nge B, (3.7
(3.8)

1 .
b, = —> eik"lp ,
¢ m? !

Y. CHOW

The Hamiltonian of Eq. (2. 1) now becomes

% -F, + );J{H + 2s[J(0) — J(k)]} Btb,

25\ 1/2
(8) "B i, s gahp)

1 +
le?;;,an (k,) b{; leks- klbk53b2
1 AN
N—klzilz'k3J(k1)bk2+ klb'{:‘_ kl bk2 b"a’ (3 : 9)
where
Ey = — NSH — NS2J(0). (3.10)

At this point, it is reasonable to expect particle
interpretations for both operators g and b since
they satisfy commutation relations. They are
called semiparficles,whose physical properties
are now to be analyzed. First, from the fact that
there is no quadratic term for g particle inJC it is
obvious that

5(:3{1 . (3.11)

BEI0O> =Eoff - BEIO>

for arbitrary n. In other words, the semiparticle 8
actually carries no energy. Hence the g particle
can simply be considered as a “spurion” which
does nothing besides shuffling the spin-quantum
numbers. It is clear that

(3.12)

oo 810>, m=12..

are not eigenvectors of JC. Since the number opera-
tors of the & particles

®
N

it

Ep g, (3.13)
commute with 3C, the eigenvalues of 3¢ and Rn? can
be used as simultaneous labels for state vectors.
Let us denote by |p;, -*:,p,) a simultaneous
eigenvector of JC and N Y with b particles of
momenta p,, ..., D, Next,let us evaluate the ex-

pansion:
2SN o
D1y -+ P, = A > ;b5
n= ql. DY %%
x [1/(m!n!)1/2](6’5)%:;1 . -b;mw), (3. 14)

where the amplitude C(")(p1 © Pyt G,),to be
determined, is the probability of finding m b par-
ticles of momenta q --- q,, together with »n 8
particles of zero momentum. By orthonormality,
Eq. (3. 14) yields

c (n)(p1 Py )
= [1/(mn!)2/2](0| (Bo)anl b

m

P,
(3.15)

1Pyse--
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Now, if | p;,...,B,) is an eigenvector ofJC with then C(")(p1 ++ P,;qy * - q,) has to satisfy the
eigenvalue J (p, - - p,), i.e., following difference equation:

Xlpy,....p,) =4,/ - p)IP, .- B, (3.16)
1

J,py - B,)Cpy - P4, "q,) = (EO +iZ’:){H + 2s[J(0) —J(q,.)]})c‘")(p1 cepdy e )

_ (%‘3—")1/2 E I C(n ‘)(p “Pndy cr-q,)— <3_s_(’lﬁi_ll> EJ (p1 cee Py e qy,)
—ﬁéJ(qi)C""(pl gy g, — 2 i:i?”‘ ) C®py - By < Gy Gy — K,
Qs> 99 T Ky, .00,Q,,) (3.17)
To solve for C ™ let us use the ansatz
¥y Bty ) = (- ppyre) o FOW Bty 4,00(E-0). @19

The & function in Eq. (3. 18) corresponds to momentum conservation.
If one chooses F(n) so that

Fn +2) =+ 1)F(n + 1) + 25N(n + 1)F(n) = 0, (3.19)
then Eq. (3. 17) becomes

TalDy - BIW - Biy -+ 4) = (Eq + 4 + 251700 HQ)L) Wy - By - 4

i-1

EZQ J(k W(pl ct pm; ql v qj_p q] - k’qj+1y vy qi-p q{ + k: qiﬂ te qm)' (3'20)

=1

L\js

_2
N

i

1)
-

Since Eq. (3. 20} is entirely equivalent to the eigenvalue problem of the following Hamiltonian

¥y =Eq + %}{H + 2s[J(0) — J (p) ]}, — Z; J(pl)w XY (3.21)
we shall use the above 3C,, as our “effective Hamiltonian” for carrying out the rest of the computation.
We now define the eigenvector |p,,...,p,)’ by the following expansion

“m
P = B e pe 4,009 B (6, ~a)| % -+ . 10", (3.22)
qm $=1
[
where Since the operators g and b both satisfy the same
algebraic relation, namely the commutation rela-
[0) = VR fo < _“(ZSN)l/Z) = F@n)(B3)" 10). tion, they can be considered as a doublet like the
n!

(3.23) proton and neutron in nuclear physics.7 In this
case, one can interpret the operator g as the con-

By the normalization condition (0|0)’ = 1, we have  densed particle while b is the actual spin wave

observed physically.8 The doublet feature can be

2n /1 1 made more elegant by introducing the notation
1~ |zl 2
R1-= Z(}) (28N> n!F (n). (3.24)

& = <3z>, (3. 25)

It is an important feature of the effective Hamil- b,

tonian JC_, that the g particles are no longer

present; they “dressed up” the b particles. Con- then Eq. (3. 1) becomes

sequently, the dynamic properties of spin waves

are entirely due to the b particles which are the §P = #fad,

only semiparticles in the Hamlltonlansq Thus, Y sl(_) = to_a,, (3. 26)

from now on we shall call b particles “spin waves
or “magnons.” Sl(” = &to,0,
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with

0 1 00 (1 o
0+ =\o o) 9-=\1 o)y O, =3\g-1/ (3.27)

Thus, the doublet formalism yields a symmetric
form which is very appealing.

4. THE BOUND STATES AND THE BETHE-
SALPETER EQUATION

In the long-wavelength region, i.e.,ka<€ 1 (a = the
lattice constant), the effective Hamiltonian becomes

- LI
X =E, +Zk)<H+2mk>b‘{bk

_J9

4.1
N klk2k3 2 17371 2 ( )

where

1/m = 4SJa2. (4.2)

(For simplicity we consider only the simple cubic
case.) Defining the Fourier transform:

1

y = > b Hex 4.3
therefore,
[W(x’ t)y 1P+ (X', t)] = 6(X - X'),
and (4. 4)
W, t), y(x, t)] = 0.
The equation of motion, in terms of Y(x, ¢), is
(1= g w2 + 2 2)wte) = 27O oo,
(4.5)

Define now the Bethe-Salpeter wavefunction:®

ka(xly x2) = (0‘ T(‘P(xl)d/(xz))‘k,E’ a)y (4 6)

where T(y(x;)¥(x,)) is the time-ordered product of
Y(x;) and Y(x,). From the equation of motion and
the commutation relations of y, it is straight-
forward to obtain the Bethe-Salpeter equation:

( V% 7 atz)

1 12
x <H “mitT W) Xrza (%1 ¥2)
= 12J(0)6(¢; — £5)6P (Xy — X)Xk pa(*1> X2)-
(4.7)

In order to write Eq. (4.7) as an integral equation,
let us introduce the propagator function

Selxy — %) = (OIT(Y(xy W (x,))10). (4.8)

Y. CHOW

By Eq. (4. 5) we obtain the equation for the Green's
function:

H— 21m % >SF("1

= — i6(t; — £5)0 Ox; —x,). (4.9)
Equations (4.7) and (4. 9) lead to the Bethe-
Salpeter integral equation:
XkEa(¥1 X2) = X@pa(r1, %2) — iZJ(O)Zy)fdty&*(xl —9)

X Xz oW VIS — x5), (4.10)
where the inhomogeneous term satisfies
(-t 318

X Xpalry, ¥2) = O. (4.11)
For x, = x,, Eq. (4.10) becomes
XkEa (%) ¥) = XgEa(x’ X))~ fdtyQ(x ~ )

X xgea () ¥) Y (4.12)
where

Q(x) = i2J(0)Sp(x)Sp(x). (4.13)

It is useful to write the propagator function in the
integral representation:

dE 1 iOgox—
50 = 3D G prgwe e w1
where
E,= H + (1/2m)k2, (4.15)

By use of Eq. (4. 14), the kernel Q(x) takes the form

Q) = 12 [ E Qs E)e =B, (4.16)
K m
where
4J(0) 1
E) = 4.17
o, B) = =3 L 5= E, B (4.17)
Introduce now the two-particle state
xeEal®®) = y (b, qle’ L@V x-EprEpit], (4.18)

Substitution of Eq. (4. 18) into the Bethe—Salpeter
equation yields

1
Xa(Py@) = 1 TQ® v q,E, B

(4.19)

Using Eq. (4. 17) and replacing the summation by
integration,

(4. 20)

J& d3q,

1, 1
N? (2m)3
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we have
J(0)
4728 J

X tanh’l————a|p —al
27 '
Since the left-hand side of Eq. (4. 21) depends on

(p + q), while the right-hand side depends on
(p — q), there are only two possibilities:

Qp + ,E,+E) = — <2fr—alp—ql

(4.21)

i) p=aq, (4.22)
(ii) peq=0.

Case (i) implies y ,(p,q) = cons. Consequently,
the particles are free in this case. On the other
hand, case (ii) leads to an inconsistency. The
argument is given in Appendix B. Consequently,
two-particle scattering states may be ignored in
the long-wavelength region.

The bound states may be written in the form

XBkzal®r %) = Xpolkle X %) (4.23)

Substitution of Eq. (4. 23) into the homogeneous
Bethe-Salpeter integral equation leads to

Qk, w,) =— 1. (4.24)
Hence Eq.(4.17) is reduced to
4J(0) 1
N

e 1
M+mq

=1, (4.25)

with

w, = 2H + (1/4m)k2 — M. {4. 26)
By changing the summation of Eq. (4. 25) into an
integration, according to Eq. (4. 20), it yields a
relation between the cutoff A of the integral in
terms of M:

2
A — VM tam-lJ447 - %Tm (S)3/2. (4.27)

In the case of § = 3, Eq. (4. 26) leads to

w, = 2H + ;a2Jk2 — M, (4.28)
which is exactly the leading term found by Bethe.4

The M defined by Eq. (4. 26) is just the binding
energy of the bound state.

By restricting ourselves only to two-particle
states the Hamiltonian now takes the simple form

3 = B + LEHD, + 2w BB, (4. 29)
k k

where B, and B} are the annihilation and creation
operators of the bound states.
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From the Hamiltonian of Eq. (4.29) we can write
down the thermodynamic free energy of the system:

F = Eq— Ng[Zs 5 (HP) + 23/2Z 5, (2HB) 6372,

(4. 30)
with
2 = 5L e, (4.31)
=1 v
9 = [§785J(0)] 2. (4. 32)

The spontaneous magnetization is therefore given
by

M =N[s — (1 + 25/2)¢)93/2], (4. 33)

where £3) = Z 5 ,5(0).

5. DISCUSSION

In the long-wavelength region, the bound states
should appear from the preceding analysis. This
conclusion is different from those of Dyson and
Wortis. Dyson ruled out the existence of the bound
states, while Wortis derived a bound-state condition
(in three dimensions) which requires that the total
momentum of the pair of particles be larger than

a certain threshold value.

The existence of the bound state makes the Born
approximation ineffective. Hence, we cannot
simply take the interaction part of the Hamiltonian
JC of Eq. (3. 21) as the perturbed part. However,
this difficulty can be easily resolved by arranging
the Hamiltonian of Eq.(3.21) in the following way:

I =(Ey+ XKy +3C) +X,, (5.1)
where

3, = %}{H + 2s[J(0) — J(k)]} 5D, (5.2)

g, = — J_ﬁ\,?llﬁgk 3b’,§'2+,ib‘{3_,i b, by (5.3)
3, =% R2CREL UL P LR

3

By so doing we can take C, +C;) as the unper-
turbed part and 3C,; as the perturbation. A per-
turbation calculation in this way gives the spon-
taneous magnetization (details of the perturbation
calculation will be published in another paper by
C.J.L.):

M = N(S — ay83/2 — a,05/2 — a,07/2

— az64 + ces), (5.5)

where 9 is defined by Eq. (4. 32).
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APPENDIX A: ON THE VALUE OF R
The R defined by Eq. (3. 24) is given in terms of
F{n) which satisfies the equation

Fn+1 1 Fn+2)

) _
Defining
D=2 (g5)" mFH, (a2)
we have
R-1 < D. (A3)

To find whether D is convergent, it suffices to find
the asymptotic solution of Eq. (Al) for F(n) at
n = 8SN. Using the ansatz

F(n) ~ (2SNY#1Vnl  for n>> 1 (A4)

we have, therefore,
F(n + 1)/F(n) = 4SN, (A5)
1 F(" *2) _ 4N, (A6)

when » = 8SN. Thus it verifies that the asymptotic
solution of Eq. (A4) does satisfy Eq. (Al). By Eq.
(A4) we obtain

1).1
2SN/ nl

which implies the convergence of D,i.e.,R # 0.

1

— (A7)
6452N2’

F2(n) ~

Y. CHOW

APPENDIX B: THE INCONSISTENCY OF THE
CASE p*q=0

Equations (4.19) and (4. 21), under the condition
peq = 0, lead to

P +q) = x,(P—9q)

_ J(0) aalp ql)]*l
’[1—4-”2&] <21r—a|p q]tanh 1——2—— .

(B1)
On the other hand, a two-particle state can be
written as
Xa(® 8) = ) xo (0 + Qe [PrP=-Fpetl (2
P
or
Xa® ) = 2 xo (@ — @) P'P=Epgl (B3
pPa
Write 1 = p + q;then we have
Xal® ) = 2 g e 0=, (B4)
Dq
or
x t) E Xa(l _ zq)ei[l'x-glt] (BS)
ie.,
Xal) = %o (1 — 2q); (B6)
hence y, (1) is a periodic function. Comparison of

Eq. (B6) with Eq. (B1) leads to the inconsistency.
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We show that a field which transforms irreducibly under the homogeneous Lorentz group admits four

kinds of covariant derivatives—gradient, divergence, and two species of curl. We construct these deriva-
tives explicitly for both finite- and infinite-dimensional representations. Physical applications are

discussed.

I. INTRODUCTION

Although the linear representations of the homo-
geneous Lorentz group have been exhaustively
catalogued by mathematicians,! most physicists
are reluctant to stray beyond the finife-dimen-
sional (tensor and spinor) representations—except,
perhaps, for an occasional look at an infinite-
dimensional unitary representation. There is good
reason for this wariness. A glance at the standard
references? reveals that, while the theory is ele-
gant, the notational complexity can be formidable.
For finite-dimensional representations, Lorentz
transformation behavior is absorbed into the ten-
sor (or spinor) notation itself;and well-known
tools and tricks (involving the use of £,,,€,,,,
Yy ,au,contraqtion of indices, symmetrizing, re-
moving the trace, etc.) are available, which reduce
most group theoretical problems (Clebsch—Gordan
decompositions, formulation of covariant field
equations, construction of scalar Lagrangians,
etc,) to triviality. Unfortunately, there is no easy
way to extend or generalize tensor notation to
describe infinife-dimensional representations.
Hence, these same group theoretical problems
become extremely difficult calculations.

OQOur purpose in this article is to present a simple
and general treatment of one such calculation one
faces when attempting to. formulate covariant field
equations3: How does one covariantly differentiate
an infinite-dimensional field ?

II. COVARIANT DERIVATIVES OF FINITE-
DIMENSIONAL FIELDS

We tentatively define a covariani derivative as
follows: Given a field which transforms irreducibly
under a group, a covarian! derivative of this field
is a new field which also transforms irreducibly.
This new field is obtained by differentiating the
original field in a way to be described later. We
shall generalize this definition somewhat in Sec. IV.

A. The Rotation Group SO(3)

All irreducible representations of SO(3) are finite-
dimensional,and can be labeled (/) where / = 0,1,
2,... . Afield which transforms like (/) may be
represented in tensor form as @, ..., (x). (From
heire on, we suppress the space coordinate x.)

€, . istraceless and symmetric in its 3-space
indicés a;, has (27 + 1) independent components,
and is said to carry spin /.

Thelze are precisely three covariant derivatives
of Q‘li' . These are the divergence

NN A l
div(Q') = v, Qkal' cegpys (1a)
which carries spin / — 1, the curl
l
Lo H
curl(Q ) = t:Zi €aijk Vanl...Ei ceeapk (lb)
which carries spin /,and the gradient
i Ll l 1
grad(Q) =i§ Vo, 9 ...3,. 00, ~ [79 Va
i+1 !
X - _
i,j:lz,z;#] 6aiaj Qal...ai...a]-...alﬂk’ (1c)

which carries spin ! + 1. In Eq.(1) the overbar

a; indicates that this index is absent from the
sequence. The derivatives in Eq.(1) are covariant
(transform irreducibly) because they were con-
structed to be explicitly totally symmetric and
traceless.

The derivative operator v, is a vector (carries
spin 1). We can interpret Eq. (1) group theoreti-
cally as the Clebsch~Gordan decomposition
VHed)=(—-DasDa(l+1). (2)
There is one exceptional case. A scalar,! =0,

allows only one kind of derivative, the gradient,
because (1) ® (0) = (1).

B. THE HOMOGENEOUS LORENTZ GROUP
0(3,1)

Irreducible representations of the Lorentz group
are characterized by a pair of numbers, (/,, /;).2
Iy is the lowest spin (that is, the smallest repre-
sentation of the rotation subgroup) contained in
(Zp, 1;). Thus, I, must be an integer or half-integer.
Each higher spin, (I, + 1),(; +2),(l, +3),...,
is contained exactly once. If either /; or — [,
occurs in this sequence,then it and all higher
spins are absent from the representation. The
representation is then finite-dimensional, with
dimension [,2 — [,2, For all other values of /;,
real or complex, the representation is infinite-
dimensional.

Following subsection II A, we observe that the
derivative operator 9, is a vector [transforms

2151
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as the representation (0, 2)]. Thus, to identify the

covariant derivatives of the representation (i, ,),
we must examine the Clebsch—-Gordan decomposi-
tion of (0,2) ® ({y, {,). For finite-dimensional rep-

resentations,? we obtain four covariant derivatives:

BENDER, D.GRIFFITHS

(0,2) ®(1y, 1) = (g, I
® (ly, !, + 1),the “gradient”,
® (I, —1,1;),the “curl™”

@ (I, +1,1;),the “curl*”.

; — 1), the “divergence”,

3)

There are three exceptional casesS: (i) If 7, = 0
and /; = 1, then only the gradient (0,2) occurs.
(i) If I, > O and I; = [, + 1, then only the gradient
and curl occur. (iii) If l0 =0and [, # 1 then
curl”™ is (1,—1,);if I, = 3, then curl (2, ).

Examples of covariant derivatives of finite-
dimensional representations (including some ex-
ceptional cases) are given in Table 1.

Observe that exceptional cases (i) and (ii) ensure
that differentiating a finite-dimensional represen-
tation will never yield an infinite-dimensional one.
The converse, as will be seen,is not merely
possible,but esseniial to many physical applica-
tions. Exception (iii) explains how to avoid an
(unacceptable) negative value for [.

II. COVARIANT DERIVATIVES OF INFINITE-
DIMENSIONAL FIELDS

We describe infinite-dimensional representations
by the following notation: Let

Q=1Q.. o,

belong to the 1rreduc1b1e representation (), ;).
The spin-N entry, @Y . . .ay>» 1S traceless and
symmetric in the 3- space indices a,. An infinitesi-
mal Lorentz boost generated by J* gives

1+l
,Q°..

i,*2

al w1’ al...a1+25"'}

oo~ Ok k.0 N
- Z[Qal- . .aN7J ] = (x 0 _xovk)Qal- ey
(N+1)2'—l(2) N+1
_(N+1—l1)_—(N—:i—_1)T— Qal"'aNk
ll N
2 ea k N e
2N(N+1 7@y, Ty
N+ o 1
+___
9N + 1 zzk ...a...aN 2N‘—1
N N-1
XE 6ag.Qal. Ei"'zj"'ax\lk (4)

The choice of basis is, of course, arbitrary. We
prefer a tensorial basis,because it treats all three
directions symmetrically, and it permits easy
connection with 4-tensors. For example, the nor-
malization of Eq.(4) is such that if T, per-p, I8

a traceless symmetric tensor, then "

1
Qi:Too---oi’
1
361‘]‘ Too

o
Q :Too...o)

2
Qij =Tg,... 0ij
and so on. For another choice of basis, one could
use the eigenstates of the z-component of the
angular momentum, &, ,, . %

sokk>
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TABLE 1I. Explicit formulas for the curl*, curl™, div,and grad of an irreducible representation. The values of @, 8, v, 6 are to be
inserted into Eq.(5).

Derivative (I,,1,) a(N) B(N) ¥(N) B(N)

div (oly—1) 1 (N +1)2 1,2 — 1, 1

grad Ugly 1) (N—I)N +1+1) (N—INV + 1~ L) (VN +12=02] (N— )N +1+1)g (N+IYN+1+1)
curl* (I, +1,1) N—1, (N—I N +1—1)N+1—1)) (N -1, N+l

curl” (Iy,—1,1;) N+1i, (N + 1N+ 1+ 1N +1—1,) ~ (N + 1)1 N+l

We now proceed to construct the covariant deriva-~
tives of Q. Let R = {R"} be a covariant deriva-
tive of ¢. The most general spin-N 3-tensor that
one can construct by combining one derivative
with the tensors {@V} is

B

N N N+l
Ral- ceay = O‘(N)aoQa1 vesay +

VkQal'-oaNk

; (N+1)2

+N(¥\(Iﬁr-)1) ;2 i€, mvagl..-ai...aN‘I
o) g ;

+ 5N Z_‘{ Vo, Qo oo ogenay ~ 5N 1

S T SO S
ijol imy ! ' ! ¥

a(N), B(N), y(N), and 6(N) are as yet unspecified
coefficients. (In defining the last three, we have
extracted various functions of N to simplify later
results.)

That R = {R"} is a covariant derivative (trans-
forms irreducibly) means that

1, +2
0 _
alo+lyRal...alo+2) }

i i0+l
R = {Raol;. -a'l;Ral... 7
0o

belongs to the representation (I, /,) for some

new parameters i, and I; or equivalently that
— JRY ,J°*] is compatible with Eq. (4).

al' s
This compatibility condition gives simultaneous
difference equations satisfied by «, 8, y, and 0§,
which we have solved. We find that for both in-
finite- and finite-dimensional rvepresentations,
there ave just four allowed values of (1,1

and hence just four kinds of covaviant dervivatives.
The explicit derivatives, that is, formulas for
a(N), B(N), ¥y(N), and §(N), are given in Table II.

Fig. 1. Schematic diagram of
irreducible representations
(/s 1) having integers [, and . o
/,. Each dot corresponds to

a representation. The arrows
show the results of taking a
covariant derivative: curl®,
curl™, grad, or div. Exceptional
cases (i), (ii), and (iii} are shown.
The line |7y] = [1,| is the .
threshold between finite- and
infinite-dimensional represen-
tations,

.
INFINITE-DIMENSIONAL

. . . . .
REPRESENTATIONS

On Fig. 1, we exhibit these four covariant deriva-
tives by graphically illustrating their effect upon
the subclass of irreducible representations having
integer /,. We also illustrate the three exceptional
cases for finite-dimensional representations.

On Fig. 1, we expect I, = I; = ! to be a special
case because (!, /) stands at the threshold of the
finite-dimensional region. At this threshold,we
can hope to produce finite-dimensional represen-
tations by differentiating infinite-dimensional
representations. However,a glance at Table I
reveals that the four derivatives of (I, ) are not
linearly independent. In fact,in a self-explanatory
notation,

curl™ (L, ) = (N + D) div (1, ),
grad(Z,l) = (N + 1 + Deurl* (L, ). (6)

This is a startling result because div and curl™
(and grad and curl™) are supposed to transform as
different representations of the Lorentz group.
How can (I — 1,!) be the same representation as
(L,1—1)?

To answer these questions we must introduce the
concept of indecomposable representations.

Restated, this question is even more perplexing.
We may think of R" as a four-dimensional “vector,”
with “components” a(N), B(N), »(N), 8(N). Then
Table II gives a convenient choice of basis in the
four-dimensional space of derivatives. By resolv-
ing an arbitrary vector R along the four “direc-
tions,” div, grad, curl™, and curl™, we have identi-
fied the representations of the Lorentz group it
contains. However, when [, = I, = [, Table Il no
longer provides us with a complete basis—it gives
only two linearly independent vectors—leaving two

fo

FINITE -DIMENSIONAL
. . .
REPRESENTATIONS

. . . . . . . .

. «9rady . .

Exception(ii} curl+
* o o o

curl-

. . . . ¢ div w—e—e grad

curl+
e * o
curl-

grad div// grad

Exception(i} _~»" Exception (it}
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basis vectors unspecified. There must be two
olher kinds of derivatives belonging to represen-
tations of the Lorentz group which are not com-
patible with Eq.(4), and are thus not irreducible.
How, then, do these two extraordinary derivatives
of (1, I) transform ?

IV. EXTENSION TO INDECOMPOSABLE
REPRESENTATIONS

A. Description of Indecomposable Representations

In Sec.Ill we treated infinife-dimensional irvedu-
cible representations of the Lorentz group. How-
ever, the fundamental transformation law in Eq.
(4), and hence also the derivatives in Table 1,
actually apply to a somewhat broader class of
representations. Since the Lorentz group is not
compact, it possesses representations which are
indecomposable (cannot be decomposed into direct
sums of irreducible representations), These in-
decomposable representations consist,in the
colorful terminology of Gel'fand and Ponomarev,?
of various compatible irreducible representations
“glued” together. For example, when [, is an
integer, one can “glue” a finite-dimensional rep-
resentation (/,, /,) onto its infinite-dimensional
“tail” (I;,1;). 7 Moreover, this gluing can be done
intwo ways: One way contains (I, !,)as an invariant
subrepresentation; the other way leaves the fail
invariant.8 Both species are described by Eq. (4).

If [, is a positive integer greater than [j,then the
first term on the right side of Eq.(4) exhibits a
cutoff at N = (I; — 1). This gives, as expected,a
finile~dimensional representation, and no compo-
nents with spin /; or higher can be generated from
the lower-spin components. However, if we start
with a component carrying spin =,, then we
generate all spins including those below /;. Thus
Eq.(4) describes not only the finite~dimensional
irreducible representation ([, /,), but also the
indecomposable representation consisting of

(1o, 1;) glued onto its tail and containing (1, /)

as an invariant subrepresentation.

If 7, is a negative integer and — I; > [, then the
las! term on the right of Eq.(4) has a cutoff at

N =-—1,. f we start with some component carry-
ing spin > — [, and work our way down,we never
generate spins smaller than — /,: This is the
infinite-dimensional representation (— I, — [).
On the other hand, if we begin with a lower-spin
component and work up, we recover all spins.
Evidently, in this case, Eq. (4) describes the in-~
decomposable representation consisting of (I, ;)
glued onto its tail (— [, — [;) and containing the
tail as an invariant subrepresentation.

Observe that,as it stands, Eq. (4) cannot handle
the finife-dimensional irreducible representation
({y, 1,),when [, is a negative integer and — 1, > [,
(nor the indecomposable representation which
invariantly contains it). But this defect is easily
remedied by noting that (I,,— ;) is the represen-
tation conjugate to ({,, [,). Thus,to get the trans-
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formation rule for (1, — 3), say, we merely write
Eq.(4) for (1, 3), and then change the sign of 7 in
the middle term (formally, we switch the sign of
o)

B. The Special Case [, = [, = Integer

We can now answer the first question that we posed
in Sec.IIl: How can (I,! — 1) be the same represen-
tation as (I — 1, {) ? In this one peculiar instance,
the difference between these two is illusory.

div(l, ) = (I, 1 — 1) is the tail part of curl™ (!, I).
The latter, as we have just found, normally con-
sists of (I — 1, ) bound indecomposably to its tail
(I, 1 —1). Since,however, 3(I — 1) happens to vanish
in this case, only the tail remains. Apart from
normalization, then, div(l, /) and curl™ (!, ) are
identical, and both belong to the irreducible repre-
sentation (I, I — 1). Similarly, curl* (!, ) and

grad(l, [} differ only in normalization, and both
transform as (I + 1,1). Group theoretically, there-
fore,

div(l, 1) ~ eurl= (1, 1) ~ (I, 1 — 1), o
grad(l, ) ~ curl* (L, )~ (1 + 1, D).

C. Extraordinary Derivatives of ([, [)

The examples of indecomposable representations
we have described thus far are rather simple.
More complicated indecomposable representations
are constructed by “gluing” any number of replicas
of a representation to any number of replicas of

its tail.l The particular structure of subrepresen-
tations and subsubrepresentations is also somewhat
arbitrary.

We can now answer the second question posed in
Sec.lII: What are the two extraordinary derivatives
of (1,1)? Let

4 408 b2
Dz{Dal---al’ @ apya; . ayy? }
and
I+l 2 B3
G:{Gal...am’cal...a“z’ @y oy’ }

represent the divergence and curl* of (I,1). With
each of these “ordinary” derivatives, we associate
an “extraordinary” derivative

-1 1 1+1
V= {Val. ceagp Val. . eqp V“1' ceapy? . '}
and
_ i 1 L2
W= {Wal. ceap Wal. ceagyy? Wax’ celg "t '}:

respectively. The coefficients which specify V
are a(N) =1,B(N) = (N +1)(N + 1 + [),¥(N) =0,
and 6(N) = N(N + I)"1,and the coefficients which
specify W are a(N) = 1,8(N) = (2N + 1)(N+1—1)2
(N+14+ 1)1 y(N)=N,and 6(N) = 0.

We have found that D and V and G and W each
combine to form indecomposable representations.
The infinitesimal Lorentz transformation laws for
V and W are
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. N+1+1 1 N+l
—i[Ve I = (" "0V, .,,N—m[( N+2—DN+1=-0V; 0 4+ 0370, ]
1
N(N+1) E 6a‘)aq[(l VNI...Zi...aNq +Da1...3i...aNq] +T—{E Ga kl:@l-"l""l)VN ';i"'uN
+ o DY A D s, kN+I—nVL
N+l a, . Qje QN 2N‘_1 i,j=I,i7éj 1] -..ai...aj...aNk
i N-
+N+l Dal.l..ai...aj...aNk:I}: (83.)
. ok k0 o N+l
—i[Wa.. 0y, I = (270" —x v,,)W,,l,,,aN—(N—+—-1-);[(N+1—1)(1\7—1)(N+2+1)W,,l,_,,,N,e
[N +1)2 + Yl +1)] N
+ N+l+ 1 al...aNk] N(N+ 1) 2 Ea kq[l(l+ I)WN.-.ai-..aNq+ Gal...ai..-aNq]
N+1 1 N1 _ _ }
2N+1{Z> 6"” cecay T INZ1 i, jo1i% GlajWal...ai...aj...aNk (8b)

Equation (8) is somewhat complicated, but it is
easy to summarize schematically (see Fig. 2) 9
The arrows indicate a commutation with J°*

From Eq.(8) (or Fig.2) we observe the following:
The transformatmn law for V¥'1 gives D® unly,and
no V!, Hence, V*"! is indecomposably “glued” to
D. The other components of V are indecomposably
joined to this combination. In other words, the
divergence [the irreducible representation (I,

1 —1)] is imbedded in an indecomposable repre-
sentation consisting of D joined to V*"!;and this
combination is,in turn, imbedded in a still larger
lndecomposable representation which includes
{vi, v y¥r2 | G and W are indecomposably
united in an analogous way.

There are important instances in field theory
(see Sec.V) when the divergence D vanishes. In
such cases (only), V"~ constitutes the irreducible
finite-dimensional representatlon ({—1,1). Simi-
larly, if curl® vanishes, then wt becomes the
finite -dimensional representatlon (L,1+1). Itis
precisely in these two ways that we can obtain
finite-dimensional representations by differentiat-
ing infinite -dimensional representations. This
mathematical curiosity is intimately connected
with the construction of field-strength tensors in
massless field theory.

D. Analogy to a Multisheeted Riemann Surface

There is a remarkable analogy between Fig.1 and
a Riemann surface. Let us think of the line

[ZIgl = |2, ] (the threshold separating the finite-
and infinite-dimensional representations) as a
“branch cut” and the operations of curl*, curl™,
div,and grad as “analytic continuation” from one
point to another in the “complex plane.” The
“points” on Fig. 1 are all irreducible representa-
tions. We imagine an infinite stack of planes
similar to Fig. 1, whose points are indecomposable
representations of increasing complexity. When
we analytically continue through the threshold, we

jump to the next higher Riemann sheet. This jump
always occurs except in the special instance des-
cribed at the end of subsection IV C,

V. APPLICATIONS

As Bender first demonstrated,10 free massless
quantum fields in the radiation gauge belong to
infinite-dimensional representations of the
Lorentz group. In fact,the field C(L) associated
with a free massless particle of spin L trans-
forms according to the representation (L, 1).
These fields obey complicated field equations.11
In our present notation, these equations assume
the delightfully simple form:

divC =0,
curl*C =0,

9
curl=C =0,

grad C = 2(L2 — 1)(3,,0).

Eq.(9) is the infinite-dimensional analog of Max-
well's equations.

S O

.H.H.H-H-H.H AU AR S

.M.H.H.._..H.H PUBDRPST SR

L e L ey Sumpey SNy D SRy S (U .

(l) (1) (+2) (£63) (1+8) (2+5) (21+8) (2+7) {£+8) (1+9) lloIO)

W

Fig. 2. Schematic view of the transformation law
in Eq.(8). The invariant subspaces of the inde-
composable representations, V and D,and W and
G,are shown. Each arrow represents a commu-
tation with J°% the generator of pure Lorentz
transformatlons
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From the last equation, it is clear that (9,C)
belongs to the representation (L, 2). Indeed,
Bender found that the Pth time derivative of C
[which we shall call (P) for short] belongs to the
representation (L,1 + P), and obeys field equations
which read, in our notation:

div(P) = 0,
curl*(P) = 0, (10)
curl~(P) = 0,

grad(P) = 2[L2 — (P + 1)2](P + 1).

When P = (L — 1),the gradient vanishes. This is
expected because we are now computing grad(L, L)
which, as shown in Sec.IV,is proportional to
curl*(L, L). As curl*(P) is always zero, it is not
surprising that the gradient al/so vanishes at this
stage. However, what about the two anomalous
derivatives of (L, L) ? Explicit calculation gives
V=0and WN=2(N +1— LYN + 1+ L)"1(L)¥,
In particular, since curl® (L, L) vanishes, Wi =
2/(2L + 1) (L)L belongs to the finite-dimensional
irreducible representation (L, L + 1). Thus, the
Lth time derivative of C(L) belongs to a finite-
dimensional representation (this,also,was noted
by Bender) called the “field-strength tensor.”
For spin 1 (electrodynamics) this is F#¥;for spin
2 (linearized gravity), it is the free Riemann
tensor.

In a recent paper,12 Bender and Griffiths demon-
strated that the energy density (and, in fact, all
the local densities of the Poincaré generators)
for a massless field carrying spin >1 belongs

to an infinite-dimensional representation of the
Lorentz group. This result contrasts with the
massive case (or massless spin 0, 3, or 1) where,
of course, there is a second-rank stress tensor

C. BENDER, D.GRIFFITHS

Tw», The ordinary finite-dimensional stress
tensor transforms as

(0,3)9 (0,1),

whereas the massless infinite-rank stress “tensor”
transforms as12

(0.3)" &(0,1)".

The prime in (0, /)’ indicates that this is the
infinite-dimensional representation consisting of
(0, 7) glued indecomposably onto its tail (/, 0) in
such a way that the fail is the invariant subrepre-
sentation.

T" satisfies a local conservation law
3, T" =0,

or,in the terminology of this paper,
div T(O’s).oc grad T(o,1)'

The divergence of the (0, 3) part and the gradient
of the (0, 1) part both transform as (0, 2); the local
conservation law says that they are in fact pro-
portional.13 The infinite-dimensional stress ten-
sor was also found to obey a pair of local conser-
vation laws which now read:

div 7o,y *grad Tg, 1y » (11)

div T(O,l)’ =0.

These equations as stated here are much simpler
than their original form,12 and reveal in an elegant
way the striking parallel between finite- and
infinite-dimensional stress tensors.14

* Work supported in part by the National Science Foundation.
I. M. Gel'fand and V. A. Ponomarev, Usp. Mat. Nauk. 23, 3
(1968) [Russian Math. Surveys 23,1 (1968)].

2 I.M. Gel'fand, R. A. Minlos, and Z, Ya. Shapiro, Representa-
tions of the Rotation and Loventz Groups and Their Applica-
tions (MacMillan, New York, 1963), hereafter, GMS; M. A.
Naimark, Linear Representations of the Loventz Group
(MacMillan, New York, 1963).

3 Some of the results of this paper are to be found, in rather
different form, in the last chapter of either work in Ref. 2.

4 See,for instance, GMS, Ref. 2, p. 264.

Equation (3) does not hold for these exceptional cases.

6 The explicit connection between our Q% and £, ,, of
GMS is fercaN

w

Eon = BLM DO (@11 1 2202 33,000

o
n m-n -m

where § is given by

i [y = (R = gKaE — 1)1
_[[ (15 + (2 —m2) ]

B(1,m)
B(I —1,m)
With this translation, Eq. (3'), p. 189, of GMS reduces to our

Eq.(2). The same applies to Eq.(54), p. 117, of Naimark
(Ref. 2).

7 If 1, is negative, then the tail is (— [, — /).

8 These representations are sometimes called “integer point”
representations. See I.M. Gel'fand, M.I. Graev,and N. Ya.
Vilenkin, Generalized Funclions (Academic, New York, 1966),
Vol. V,Chap.IIl.

9 An arbitrary admixture of D in V (or of G in W) will neither
affect the fundamental structure of the transformation law
nor its group theoretical interpretation. In defining V and
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coefficients and transformation laws.

10 C.M.Bender, Phys. Rev. 168, 1809 (1968); see also Y. Frish-
man and C. Itzykson, ibid. 180, 1556 (1969); 183, 1520E
(1969).

11 Bender (Ref.10), Eqs.(11)—(14). The normalization conven-
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translation is

Q" = o(N)C(L)Y, with o(N + 1) = — [(N + 1)/(2N + 1)]o(N).

12 C, M. Bender and D.J. Griffiths, Phys. Rev.D 1,:2335 (1970).

13 We do not specify the proportionality constant because it
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“ordinary” stress tensor admits a simple interpretation:
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Second sound in a weakly interacting Bose gas at low temperatures is described from a purely micro~

scopic viewpoint. The simplicity of the model, which is specified by a single scattering length, allows a
precise field theoretic analysis within the framework of equilibrium statistical mechanics in the weak

coupling limit, The dispersion formula » = ¢,q — i7q2 + O(g3) for the frequency of the second sound v
in terms of its wavenumber g is established. The leading terms in the low-temperature limit of the

constants ¢, and 7 are evaluated exactly.

1. INTRODUCTION

A weakly interacting Bose system at low tempera-
tures may be viewed as a dilute gas of phonons.
Analogous to the sound waves in ordinary gases,
there is second sound in this gas of phonons, With
this physical picture in mind, we present in this
paper a purely microscopic description of second
sound based on a simple model.

The purpose of such a microscopic description is
to gain qualitative understanding in a clear-cut
manner as simply as possible. We do not expect
the simple results obtained here to be applicable
to observations on He II. Second sound in He II
has been very extensively investigated theoreti~
cally, especially by Khalantnikov.? In the absence
of any tractable microscopic theory of He II, these
investigations are necessarily phenomenological.
They are complicated since they must include
many effects to have a realistic description of

He II. When the parameters are many, one may
easily lose track of the basic physical features.
An idealized microscopic model study can thus
serve pedagogical purposes better and, being
rigorous, it may offer clues for improving existing
phenomenological theories, where ambiguities are
still present.

A purely microscopic study of second sound is
very important from a more theoretical viewpoint.
Description of collective phenomena from first
principles has always been a challenging problem,
The weakly interacting Bose gas model has been
one of the few which exhibit interesting physical
features and allow some clear-cut calculations. It
is responsible for much of our understanding of
general characteristics of Bose systems. Pre-
vious field theoretic investigations of this model
have been mostly concerned with zero-tempera-
ture properties,2:3 Only recently has there been
more extensive study on low-temperature fea-
tures,4:5 but not on second sound. It is of great
interest to accumulate information about this
model. A study of second sound is a step toward
a more complete understanding of not only the
model but also the phenomenon of second sound
itself and related phenomena.

Second sound can also appear in a very different
system, i.e., a crystal lattice, and has received
much investigation. At low temperatures, a crystal
lattice also behaves like a dilute gas of phonons,
Several authors, notably Krumhansl and Guyer,®©
have studied the collective behavior, including the

second sound, of these phonons via a kinetic equa-
tion. The first microscopic approach was due to
Sham,” who derived the kinetic equation assumed
by previous authors, and elucidated many basic
features. The Krumhansl-Guyer solution to the
kinetic equation was a very important step toward
a general understanding.6 It however requires
phenomenological relaxation times. This is inevit-
able owing to the complex nature of any lattice
model. The phonons needed to be described pheno-
menologically to start with, in any case.

A microscopic theory of second sound in a Bose
gas must describe the phonons, which appear as a
result of the interaction between bosons making up
the system, from first principles and then describe
the propagation of the second sound. The damping
of the second sound must be also calculated in
terms of microscopic parameters describing the
bosons. In this respect, it is a more complicated
problem than the one in solids mentioned above.
On the other hand, the weakly interacting Bose gas
model is probably the only one which is simple
enough to allow a purely microscopic and tractable
description of second sound.

We give an outline of the paper and summarize the
results, In Sec, 2, we define the model, identify the
small parameters, and give a qualitative discussion
of the problem, emphasizing the distinctive features
of the second sound in contrast to the zero sound.
The small parameters in the theory of a weakly
interacting Bose gas at low temperatures are

& = 4nams,, t= T/msZ, (1.1)
where m is the mass of a boson, ¢ is the boson-
boson scattering length, s, is the speed of a phonon
in the zeroth (Bogoliubov) approximation:

So = (4man)t/2m=1, (1.2)

and 7 is the average density.

Following the hints of the qualitative discussion,
the small-g limit of the Bethe—Salpeter equation
for certain vertex functions is obtained using the
usual field theoretic finite-temperature perturba-
tion theory. This small-g limit turns out to re-
semble a Boltzmann equation when we take into
account emission and absorption of phonons. It is
an integral equation with free phonon energy and
on-shell absorption—emission amplitudes as inputs,

Some general features of the integral equation, as
consequences of energy-momentum conservation,
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space-time inversion, and rotation invariance, are
discussed in Sec. 4.

The eigenvalues and eigenfunctions of the kernel
of the integral equation are investigated in Sec. 5.
Singular solutions with poles near the real fre-
quency axis are identified as the second sound. We
establish the dispersion formula for the second-
sound frequency v as a function of its wavenumber
q:

(1.3)

for small g, and, in the low-temperature limit, we
evaluate the leading terms of ¢, and 7T exactly and
find, in terms of the small parameters g and ¢
defined in (1.1),

v=cyq —iTg2 + Og3)

cp/so = 3~V/2(1 + 10,5712) + O(#4) + O(g),  (1.4)

™m = 0,003314g71¢9 + g~10(t~7) + O(1). (1.5)
The quantity ¢, is the speed of second sound and
7/s% may be regarded as an effective relaxation
time, Equation (1, 3) is valid at low temperatures
provided g is very small,i.e.,

q/msy, K gt9, (1.86)
The temperature dependence of the O(g) term in
(1,4) and 0(1) in (1. 5) is not known.

Physical interpretation in terms of oscillations in
phonon distribution is sketched in Sec. 6. Further
discussions and remarks are made,

The results of this paper may be viewed as the
leading terms in a systematic expansion in powers
of gand {. There is neither an assumption nor any
input other than g and {. As will be seen in the
text, the picture of the second sound in this model
is very simple indeed. A detailed analysis of the
relationship between our description here and

that of the two-fluid hydrodynamics has not been
made. Such an analysis will undoubtedly be very
fruitful.

We want to emphasize that the purpose of this in-
vestigation, like most of model calculations, is not
to obtain exact numbers such as (1.4) and (1. 5),
but to extract qualitative features in a rigorous
way and demonstrate new approaches.

The notation in this paper follows closely to that
in Ref. 5, and the model is identical. For complete-

ness, we shall redefine the model and notation here.

The reader is assumed to be familiar with the ele-
mentary features of a Bose gas and the Bogoliubov
approximation. Detailed discussions on the formu-
lation of the perturbation theory and characteris-
tics of phonons can be found in Refs, 2-5.

2, BASIC NOTION AND SIMPLE FEATURES
A. The Model

We are interested in a weakly interacting gas of
spin-zero, mass-m bosons at temperature 7 and
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density n. The two-body force between a pair of
bosons is assumed to be short-ranged and sum-
marized by the s~-wave scattering length a, These
four quantities, m, T, », and a are the input para-
meters of the theory. As will be seen shortly,
there are effectively only two parameters in the
theory after properly choosing the units.

We construct a grand canonical ensemble at tem-
perature T, chemical potential p, with the Hamil-
tonian

H—uN =:§(ek—u)a§ak+ E}(pkpgf — N (2.1)
and the grand potential

Q=—TInTrexp[— (H—uN))T, (2.2)
where

€, = k2/2m, 2.3)

Py = ?agap+k. (2.4)

The volume of the system is taken to be unity, We
have used a point potential as the model interaction
so that v is a constant. This parameter v can be
eliminated, to the orders of approximation of in-
terest, by using the perturbation expansion for the
scattering length a in powers of ».

To describe the condensate, we let

ay = al = Vn, (2.5)
where n,, a c-number, is the condensate density.
Substituting (2. 5) in (2. 1), we have a model inter-
action with terms shown in Fig. 1., The condensate
acts as a classical field. Bosons having nonzero
momenta now have the Hamiltonian H — u N’ and
the grand potential

Q' =—TinTrexp[— (H—pH)|/T = + ung,
(2. 6)
2.7

where

N = 3 aja,.
k=0

The new parameters 7, and p can be eliminated by
requiring asz/ano = 0 at the correct n, i.e.,

r _

= |, (2.8)
ang
and the condition
n=mny +n, (2.9)

, s v \
\ll / / \ Y / \

e b Y

Fy \ VTV

/ A 4 [ \ .

FIG.1. Interaction terms. Dotted lines represent

a factor ‘/"-o for the condensate particles. Solid lines
represent particles of nonzero momenta, Wavy lines
denote a factor v.
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where

n={N), w =<{N).

We have thus defined our model completely. The
standard diagrammatic perturbation theory will be
our method of analysis.

B. Bogoliubov Approximation and Small
Parameters

The well-known Bogoliubov approximation is

obtained by ignoring the last three of the inter-
action terms shown in Fig. 1 and setting n, =n.
The excited states under this approximation are
described by noninteracting particles, which we
shall refer to as phonons, each having an energy

w, = [sZp2 + (p2/2m)2]}/2, (2.10)

where p is the phonon momentum, and

sg = 4man/m?, (2.11)
For small momenta, we have w, = s; p. When the
last three terms in Fig. 1 are kept, one effectively
switches on the interaction between phonons in
addition to modifying the characteristics of indivi-
dual phonons, At low temperatures, our model then
describes a weakly interacting dilute gas of phonons.

Precisely, by “low temperature” and “weakly inter-
acting” we mean that the dimensionless parameters
! and g, defined by

T

T __ T
dnan/m’

2
mS§

t= g = 4mams, = (4na)3/2p1/2

(2.12)

are small. Taking the Bogoliubov approximation as
the zeroth approximation, we naturally define ms,
and msg, as units of momentum and energy, respec-
tively. In these units, we have

m=s,=1, 4dma=nt=g t=T (2.13)
We shall work in these units from now on. The
usual perturbation theory can then be written in
powers of g by systematically expanding the para-
meters v, 1, and u in powers of g. In the zero g
approximation the system is described by the

Hamiltonian of free phonons:

Eag opw, + const, (2.14)
3

where @, is related to the boson annihilation opera-

tor via the linear combination

op = Aya, + Byal,, (2. 15)

and
A, = DUz +,), B,=3AP2 (-2,
X, = p2/2w,  wE=p2 + 3pt. (2.16)
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C. Zero Sound and Second Sound

Before going into mathematical details, we briefly
review some simple qualitative features.

A phonon is a particle, i.e., a discrete excited

state of the system. (See Refs.3-5.) The damping
of a phonon at low temperatures is interpreted as
due to absorption and scattering by other phonons.
The very-low-frequency phonon is usually re-
ferred to as the “zero sound,” It has little resem-
blance to the sound wave in ordinary gases. On the
other hand, the second sound in a Bose system is
analogous to the sound wave in ordinary gases. At
low temperatures, we have a dilute gas of phonons.
By virtue of the interaction between phonons, it is
possible to propagate sound waves in this gas.
This sound wave is the second sound, which is, as
usually referred to, the “collision-dominated sound
wave,” The physical picture of a second sound is
thus entirely different from that of a zero sound.

From a more mathematical viewpoint, the second
sound like the zero sound appears as a nearly dis-
crete singularity of certain response functions,
which are functions of the complex frequency vari-
able v. The response functions are defined by the
Fourier transform of retarded commutators:

F(X,, X)) = — iate 8 ([X (1), X" )6(1),

where X;l,X;1 are dynamical variables such as
density and current, and q, the momentum, specifies
the transformation property of the operators under
translation, Writing F as a sum over matrix ele-
ments of X, X’ between energy eigenstates, we have
in an obvious notation,

(2.17)

F= 20 n(m (X [n){n|X g |m) (A — e PEy my
x—L E, =E,—E,, (2.18)
v—E

nm

and Z is the partition function. As a special case,
at zero temperature we have

Fro= E<0|Xq|n><n IX’_q|O>

( ).

where |0) is the ground state, with zero energy.

We see that F,_, has poles at the energies of ex-
cited states. The zero sound will appear -as a pole
in Fj_, but the second sound will not. At a finite
temperature F is singular at energy differences
E,, (including E ,, of course) owing to transitions
among states. The zero-sound pole will stay., The
second sound now appears as a singularity result-
ing from specially favored transitions between cer-
tain sets of excited states. One must keep in mind
these qualitative differences even though both the
zero sound and the second sound appear as singula-
rities of the response functions.

11

(2.19)
v— EnO v+ EnO
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In determining the dispersion of zero sound, it is
sufficient to use a straightforward perturbation
expansion in powers of £.5 This is because the
phonon is a particle and is only slightly disturbed
when a small g is switched on. It becomes un-
stable but the decay rate is small. At low tempera-
tures, the phonon density is small and a phonon will
feel only a small disturbance from other phonons.

In determining the dispersion of the second sound,
the situation is reversed. As was mentioned above,
the second sound owes its existence to the inter-
action among the phonons. There would be no
second sound if g = 0. Also, there can be no second
sound if T = 0 because there would be no phonon
gas. In fact the temperature must be high enough
to assure a high enough density of phonons for
second-sound propagation. We thus expect the
damping of the second sound to be a singular func-
tion of g and T. The mathematical approach will
therefore be very different from a straightforward
perturbation expansion in g and T,

Finally, we note that the range of frequency of the
zero sound is large, i.e.,anywhere from O up to 1
[in our units (2.13)]. On the contrary, the frequency
range of the second sound is restricted to be very
low. It must be much less than the “mean collision
frequency” by analogy to the situation of sound
waves in ordinary gases. This mean collision fre-
quency may be estimated by the phonon damping
rate, which is proportional to wgT4, where w is the
phonon energy (see Ref.5). Since w ~ T, we should
have

0< v gT5. (2. 20)

This estimate for the upper bound is wrong, how-
ever, We shall see later that, owing to the near
proportionality of phonon energy and momentum,
the condition turns out to be v < gT9,

Thus, to describe the second sound in terms of
interactions between phonons, it is necessary to
describe multiple scattering events since the time
interval of interest is very long. Mathematically,
multiple scattering amplitudes as functions of ener-
gies and momenta of the particles involved have
many singularities. The worst ones correspond to
long-lasting intermediate states, or to the interme-
diate particles becoming on-energy shell. In the
low-density limit, it is possible to sum the contri-
bution of these leading singularities to various
physical quantities. In the intermediate stages of
calculation, an integral equation, which is essen-
tially a Boltzmann equation, is often obtained and in
it the on~-shell amplitudes of simple events appear.
What we shall accomplish in the next section is just
the summation of leading singular terms using the
techniques of finite-temperature perturbation
theory. We emphasize this fact at this stage be-
cause it will not be very conspicuous when we go
through the mathematics.
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3. THE INTEGRAL EQUATION

Guided by the above qualitative results, we proceed
to the mathematical details. The program is to
look for singularities of response functions which
can be identified as the second sound.

A, Definitions

Instead of using the operators a,and a{,, we shall
use apand a}; [see (2. 15)] to define thé Green's
functions. Let

u _{ap if p=+,

= 3.1
P a:‘p if u

- .

Greek indices will always denote + or — Repeated
indices are summed over + and —, We define the
Green's function as the 2 X 2 matrix

Ql(p)=—ifate’™ ([ab(t), ap"yo(),  (3.2)

where p stands for (v, p) in the argument of @. Let
us define

gl =q/D, D=—detg, 3.3)
As expansions in powers of g, we have
N=N,+gN; +-, D=y + gDy +--- .
(3. 4)
The zeroth-order Green's function is diagonal:
w t w 0
oo =(* 7 ). (3.5)
0 —wtw,
Dy(p) = w? — 2. (3.6)

The Green's function fully describes the propaga~-
tion of a phonon., Next, we define the vertex func-
tion A% (p, g) by

AP, q) = féBdeT’euT+UT'<T(XI(T)OI:(T’)
X ap.g)

p=lo,p), q=Wq, X(N=e"xT @7
The discrete energy variables w, v are integral
multiples of 27i/8 and Xy is a dynamical variable

such as the momentum density, which is explicitly

pi=Tplajo,.,, i=1,2,3, (3.8)
P

for very small q. From A¥ one can obtain various
response functions, for example,

F(Py, P/)) = — T]DEPiAI(p,q). (3.9)

Transforming the sum over w into an integral
along the real w axis and analytically continuing A
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to real v above the real v axis, we have, ignoring
the ++ indices,

F(Pi, Pig) = —iem™ [d® [ dup’

- (AIZ(p’ q) +

Azs(P,Q)>
ebuw — 1 ’

ebBlw+rv) __ 1

Ay =AM — Dy, Ayz =AM, — Ag. (3.10)
The notation needs some explanation. The vertex
function, defined by analytic continuation from dis-
crete w, v as a function of complex w and v, be-
comes singular whenever one of v, w, v + w be-
comes real. The cuts along Imv =0, Imw =0,
Im(w + v) = 0 divide the space of two complex
variables into six regions, as shown in Fig. 2. Here
we are only interested in Imv > 0,i.e., regions 1-3.
The subscripts in (3. 10) specify the region in which
A is defined. Evidently, if we find the singularities
of the vertex functions, we then will know the singu-
larities of the response functions.

B. The Integral Equation

The vertex function satisfies the Bethe-Salpeter—
type integral equation depicted in Fig, 3, where 7
contains no isolated two particle lines. We have

As(P @) = GL(p)G4(p +q) <X:,,(p) +T

x I 10,0, N0, q>) : (3.11)

where the source term X(‘;y depends on the particu-
lar form of the operator X,. For example, for the
operator Py given in (3. 8), we have

Xi=p'

X =X,=0.(3.12)

The G's in (3. 11) and the solid lines in Fig. 3 de-
note exact Green's functions defined by (3. 2). For
simplicity of notation, we write

D' =D(p +q), N =NR(p+ygq), (3.13)
and substitute?Y/D [see (3. 3)] for the G's in the in-
tegral equation (3. 11). In a symbolic form, it reads

AR/ DD’) (X + IA). (3.14)
We now define the new variables (", q') by
a=gq’, v=gV, (3.15)

and thus regard (v, q) as quantities of O(g). This is
appropriate in view of (2, 20). It will facilitate our
discussion because, when we drop terms of higher
orders in g, we automatically drop higher powers
of (v, @.

Now let us consider the quantity D — D’ [see (3. 4),
(3. 6), and (3. 13)]. We have
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D -D =D, D, +g(D, —D,) + -~
= 2wV — q'*vw,) + (D] — D) +---,(3.16)
v = dw,/ap. (3.17)

Now we observe that, by (3. 14) A is proportional to
(DD)"1, which is

L:<i_1_> 1
2D \® O/ -D

og I

%—é)(Zwu’ - Zq"va + 5)'1 — 5)1)'1
0 0

+0(1). (3.18)
Assuming Imv > 0, we notice that, in regions 1 and 3
shown in Fig. 2, Imw and Im(w + v) have the same
sign, so that D, and D, are simple poles on the
same side of the real w axis, and therefore

1 1
-~ =00,
D, T (&
fD'l —®, =0(g), inregions1and3, (3.19)

since (v, ¢q) = O{(g). On the other hand, Imw and
Im(w + v} have opposite signs in region 2 so that

11278 5 - w,)— 6w + wy)] + 0(g),

Dy, Dy 20, (3. 20)
D, —D, =2 mD + ol
= 2iw,T(p) + 0(g) inregion2. (3.21)

The function gT'(») may be interpreted as the damp-
ing rate of a phonon. Therefore, by (3. 14) and
(3. 18)-(3. 20), we see that

A% (p, ) = l@—"—’) 6w — w,) — 8w +w,)]
£\2w,
X M5, Mg (X +IA)} + 0(1)  in region 2
= 0(1) 1inregions 1 and 3, (3. 22)

Imw

56[

4

Imy

FIG. 2. Regions of an-
alyticity of the vertex

function,
p [\ Pop
p+q p+q p+q P

FIG. 3. Bethe-Salpeter equation satisfied by the
vertex functions.
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provided A is of O(1), which is obviously the case
as will be seen shortly. From now on, we shall
only keep the leading term, i.e., the 0(1/g) term,
in A. Since 91, has the form (3.5), AT and A7 are
of O(1). Let us define ¢*(p, q) by writing

AL(p,q) = (1/g)2mi6(w — w )¢+ (P, q'),
(3. 23)

AZ(p,q) = — (1/8)27i6(w + wp)9~(p, ¢'),

in region 2 and zero in regions 1 and 3. The func-
tions ¢* are clearly of @(1). The leading term of
the kernel I of the integral equation (3. 14) is of
0O(g) as given in Fi§. 4, Each of the three line
vertices is of 0(g1/2) and has a structure as shown
in Fig. 5. Since A =0(1/g), we see that IA = O(1).
To this order, the Green's function line in J can be
replaced by the zeroth-order approximation. The
1

SHANG-KENG MA

term (a) in Fig. 4 generates a ladder series. The
term (b) in Fig. 4 will be ignored because it, in
fact, only gives an effect which is higher order in
£. It generates diagrams like that shown in Fig. 6
and is responsible for the O(g) correction to the
zero sound-velocity and damping.

Now the integral equation (3. 11) can be written as
an integral equation for ¢*(p,¢’). We first trans-
form the sum over w’ to integrals along the real
w’ axis. After analytic continuation from discrete
w and v to real variables in region 2, we substitute
(3. 23) for A. The energy 6 functions in (3. 23)
allow the energy integrals to be performed easily.
It turns out that only the imaginary part of /, which
again is proportional to energy & functions, contri-
butes. All these mathematical steps are straight-
forward but uninteresting. Let us write down the
results:

(v' — q' *v)¢+(p) = X+(p) — iT(p)d+(p) +i(2m)~6 [da3p’d3p"{o(pp'p")(f" — f)e*(P") + ¢~(~p')]

+ 0(p'P"P)%(1 +fl +fn)[¢+(p/) + ¢+(pn)]}’

(3. 24)

V' +q'*v)¢~(p) = — X~(p) — iT(p)p=(p) + i(2m)~6 [d3p’d3p"{o(pp'p")(f' — f No~(p") + ¢+(—p")]

+o(pp"P)3(1 + £ + ) o= (®”") + ¢=(p")]},

where f',f” are the Bose distribution functions

fu_ 1

_——‘eBw'”_ 1’

f= 1

BT @ =Wy

and

o(pp’p”) = 2m)46(w + w' — w")6(p +p’ — p") |A(pp'P") |2

measures the rate of the process p +p’' — p”,
which has the amplitude g1/24 with

A(Pp'D") = 202" /2(a + 1" — A" + 3AA"2") (3. 28)

and X =, = p2/2w, was given by (2. 16). If
b,p’,p" are small, we have, taking into account the
>—< +

JORNEE
o) (b)

FI1G.4. Leading terms in I.

Lo b A

FIG.5. Detail structure of a three-line vertex.

0lg%)

FIG. 6. Effect of the
term (b) in Fig. 4 is to
generate the diagrams
of this kind. Each re-
petition of the shaded
bubble turns out to
give a power of g.

(3. 25)
W =wy, W= wy, = X3, (3. 26)
(3.27)
I
energy conservation w + w’ = w”,
Alpp'?") = (Jww'w")V2, (3. 29)

The dependence of ¢*(p) on (q, v") = (g 1q,871v)
is understood.

Equations (3. 24) and (3. 25) represent the content
of the general equation (3. 11) in the small-g
limit for small (q, v). The input to these equa-
tions are the free phonon energies, damping rate,
and absorption-emission rates. These equations
are exact for g -0,

@vsg TSI (3. 30)
Qualitatively, the appearance of energy & functions
reflects the fact that we are including in the inte-
gral equation only those scattering processes with
very long-lasting intermediate states, so long-
lasting that the particles in the intermediate
states are essentially on-energy shell, so that the
scattering process may be described as indepen-
dent decay and absorption events put together.
This point would be clearer if we formulated the
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problem in terms of scattering amplitudes, but
the mathematics would be much more complicated
than what we have here.

Before solving these equations [(3. 24) and (3. 25)]
for small T, we shall first elucidate some general
features of these equations reflecting various con-
servation laws in the theory and transforming
them into more convenient forms.

4. SOME CONSEQUENCES OF CONSERVATION
LAWS

A. Energy-Momentum Conservation

Whenever one of the two operators in the response

function (2. 17) is a constant of motion, i.e.,

[Xq, H] = O,Xq(t) =X (4.1)

q’

the response function is proportional to a simple
pole at v = 0, i.e.,

F(Xg, XL} = 1/ {(xg, XL D 4.2

by simply performing the ! integral. Analogous
results can be derived for the vertex functions
and thereby for ¢*.

Let us replace the X, in the definition of A [Eq.
3.7,y P:
P =2 aja,P, 4.3)
P

with ¢ set to zero. Since P is a constant of motion,
we have

~ = (T(P()ay(r)a))

= — (Tlap(T)[P, af 6(7)

— (TP (D), ap (D] No(7 — 7). (4. 4)
Since

[P, all=pa}, [P ol=—a,, (4.5)

G100 = — [y Cla,(Maervdr, 4.0
we obtain from (4. 4) and (3. 7) that

vAt(p,v) =p[g1(p) — g1 (p + V)] 4.7
Using (3. 23), it follows from (4. 7) that to the
leading order in g, we have

Vétp,q =0,v) =p. (4.8)
Similar arguments lead to

Vo~lp,q =0,V) =p. (4.9)

We can go through the above arguments using the
total energy H in place of P. Instead of (4.5), we
now get
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(H, o} = w0 + 0(), (4.10)
(A, 0p] = — w,a, + 0(g).

Keeping only the leading terms in £, we obtain
identities similar to (4. 8) and (4. 9).

VoHpa=0,0) = o,
, , (4.11)
V¢-(p)q =0,U):—'wp-

An immediate application of these identities is to
get an expression for the damping rate I'(p) direct-
ly from the integral equations themselves. Let X g
be the total momentum P. Then we have in (3. 24)
and (3. 25)

X*(p)=p, X~ (p)=-0p, (4.12)
and q = 0. We see that the identities (4. 8) and (4. 9)
are already exhausted by the source terms X+ and
X ~. Everything else on the right-hand side (rhs)
must vanish. Both equations then imply, by virtue
of the momentum 6 function in o, that

T(p) = (2m)~6 [ a3p’d3p"[o(pp'd")(f —F")

+a(pp" Pz + 1"+ 1) (4.13)
The same conclusion is reached by setting X, =H,
q=0.

B. Invariance Under Space and Time Inversions

Except for the source terms X* and X, the rest
of the terms on the rhs of the integral equations
(3. 24) and (3. 25) may be regarded as an integral
operator K operating on the pair (¢+, ¢~). We see
that K mixes ¢* and ¢~—. The appearance of
¢*(—p’) instead of ¢*(p’) in the integrand is also
unpleasant. Owing to the invariance of the theory
under space and time inversions, these unpleasant
features can be removed. We shall examine the
explicit equations (3. 24) and (3. 25) directly instead
of going back to A§.

Let us define the inversion operators ® and ® by

®o*(p) = ¢p*(—p), @ ¢*(p)=— ¢7(p). (4.14)

Evidently ® is the parity operator. ®' is effec-

tively ® X (time reversal) as far as the kernel of

the integral equation is concerned. We can now

construct eigenvectors of ® and ®’ from ¢*(p) and

¢*(—p). Let

o*(p) = Ho*(p) — ¢~(p) + ¢*(~p) — ¢~(—p)],
o=(p) = i{¢*(P) + ¢=(p) — ¢+(—p) — ¢~ (—p)],
o*(p) = il¢*(p) — ¢=(P) — ¢*(—p) + ¢~(—p)],
@=(p) =i[¢*(p) + ¢~(p) + ¢*(—p) + ¢~ (—p)].

(4. 15)
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By construction, ¢ *, ¢* satisfy

®p* = to*, C¢*==z¢p*,

Po* =vp*, C¢*=ztp*, (4. 16)
Since K commutes with ® and ®’, it will not mix
these eigenvectors of @ and ®’'. To obtain integral
equations for ¢ * and ¢*, we simply make linear
combinations of Egs. (3. 24) and (3. 25). Let us de-
fine

=) 7= () =09

and construct similarly eigenvectors of ®,®' from
the source term:

4. 17)

_ <X+(p) +X°(p) + Xt(=p) + X~ (— p)>
“\X*(p) — X~(p) — X*(—p) + X~ (—p)

(o)

<X+(p) + X~ (p) — X*~p)—X(~p) )
XHp) — X~(p) + X*(~p) — X~ (—p)

()

Then we have, from (3. 24) and (3. 25),

(4. 18)

(4. 19)

(' —q'*vo1)e/s = x/s — iK(¢/s), (4. 20)

(' —q'*vo1)e/s = x/s — iK(0/s), (4. 21)
where

s = 2 sinh3fw, (4. 22)

and X,X are now real and symmetric integral
operators:

X(p/s) = (2m)=6 [d3p’d3p”(s’'s”)1
x {o(pp'p")e(p) +¢(p’) — ¢(p")]
+ o(p’p"p)3e(p) — o(p') — @(p")]}, (4. 23)

K(p/s) = (2m)~6 [a3p’d3p”(s’s")"1

x [a(pp'p") + 30(p'p"P)[@(p) — @(p") — @(p")].

(4. 24)

Of course, s’ and s” are defined by (4. 22) with p
replaced by ' and p”, respectively. We have used
(4. 13) for T'(p) and taken advantage of the identi-
ties

f—f"=s('s")"1 if w'=w+t+ow,

1 +f +f" — s(slsll)_l if w — wl + w".
(4. 25)
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It will be seen later that only (4. 20) gives rise to
second sound but not (4. 21). However, we shall
carry (4. 21) along until this becomes transparent.

C. Invariance Under Rotation

It is evident from (4. 23) and (4. 24) that X and X
are both rotationally invariant. As a consequence,
the solutions of the integral equations without the
q'*vo, term can be classified by (I, m), the angular
momentum quantum numbers and X and X are dia-
gonal in the (I, m) representation. We shall leave
the explicit construction to the next section.

5. SOLUTION OF THE INTEGRAL EQUATION

A. General Feature of the Kernel and the Second-
Sound Pole

We are looking for singular solutions to the inte-
gral equations (4. 20) and (4. 21) for small ¢’ which
behave like simple poles near the real v’ axis.
These poles may then be interpreted as reflecting
the existence of the second sound. The precise
location of the poles will tell us about the speed of
propagation and the damping rate of the second
sound. The location of poles is obtained by solving
the homogeneous part of the integral equations

(4. 20) and (4. 21), i.e., the eigenvalue equations

(5. 1)

W=+, W= +X)T,

X' =iq'+vo, =iq'v cosbo,. (5. 2)

The poles on the v’ plane are then located at

Vo= —ix, — ik, (5.3)
The z axis is taken along the direction of ¢'. Since
we are interested in the small-¢’ limit, the operator
X' can be treated as a perturbation after we solve
the equations without it, Since X ,X are real and
symmetric, their eigenvalues are all real. Also, the
eigenvalues must be all positive because the inte-
gral equations were derived with v in the upper
half-plane and therefore there can be no singularity
for Imv > 0,1i.e., all X, Xx's must be positive. To see
this explicitly, let us write down the bilinear forms
(¢, Xo), (o, 5%@). Here the scalar product is de-
fined by

(¢, ¢') = [asp(2m)~3¢(p)e’ (P)s™2,  (5.4)
Writing ¥ = ¢/s, ¥ = ¢/s and utilizing the sym-
metry properties of the integrands, we obtain
from (4. 23) and (4. 24)

(0, %) = (2m)-2 [da3pd3p’'d3p”(ss’s")~1

x 50(p’p"p)e(p) — 0(p") — ¢(pM]2,  (5.5)
(@, K@) = (2m)~2 [d3pd3p’d3p” (ss’s")-1

x 10(pp'p"Hle(p) — o(p')]2

+[o(p) — o(p]2 + [0(@") — 2(@)]2}. (5.6)
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Since @, @ are arbitrary, and o(pp’p”) is positive,
it is then obvious that X and X are positive defi-
nite.

It is also evident that the lowest eigenvalue of ¥
and X is zero. For X, we see that (5. 5) vanishes
if ¢(p) — ©(p’) — ¢(p”) vanishes identically. This
happens if and only if

@(p) = w,,
or
¢(p) «p, (5.7
-momentum & function in
For X, we see that (5. 6)

in view of the ener
o(pp'p") [see (3. 27)].
vanishes if and only if

@(p) is independent of p. (5.8)
As we shall point out later, when o(pp'p") takes
certain special forms, there can be additional

eigenfunctions with zero eigenvalue other than
(5.7) and (5. 8). In general, there is no more.

Of course, positive eigenvalues will not give rise to
any propagating wave because v’ = - i (positive
number) describes an exponentially damped ampli-
tude. Therefore, we are only interested in the
eigenvalue zero. The perturbation term X’ =

iq * V01, being 1ma,gmary, will supply an imaginary
A and hence a real v’ proportional to ¢’ by a first-
order perturbation calculation. This eigenvalue
can be identified as describing a propagating wave.
The second-order perturbation term will then give
a real positive correction to A, i.e., a damping
term for the wave proportional to g’2.

Since the eigenvalue A = 0 for X is non degenerate
and the wavefunction is a constant, the first-order
eigenvalue is zero since the perturbing term

&' cosfo, is purely nondiagonal and odd in parity.
Thus, X will not give us any sound wave and we
shall concentrate on X alone from now on.

To sum up, our procedure of locating the second-
sound frequency is to locate the nearly imaginary
eigenvalues of X + X': We start with the eigen-
value zero of X and calculate the correction due to
X’ by the perturbation theory. Since X’ is purely
imaginary and proportional to ¢’, we have

— i(eigenvalue of X + X’')

=c,q'—1i7'q’2 + 0(g'3), (5.9)
where ¢, and 7' can be obtained using the elemen-
tary perturbation method in quantum mechanics.

B. First-Order Eigenvalue and the Speed of the
Second Sound

No further information concerning X is needed to
calculate the first-order correction to A due to
the perturbation X’.

The eigenvalue zero of & is fourfold degenerate
as (5. 7) shows. The two relevant eigenfunctions
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are (not yet normalized),

v =(3)2,

v, (p) = (g)p csose : (5. 10)

The other two eigenfunctions, being proportional to
b, and p, give rise to zero matrix elements. The
matrlx representatmn of X’ in this two-dimen-
sional space spanned by ¥, and ¥, is

X' =1ig'c,o, (5. 11)
which clearly has the eigenvalues A = * z’q'cz,
where

02=—1=3<f dpp3wus- z) (f dpp2w2s- 2) Vz

x (4

= /31 + Sr2T2 + 0(T4)].

/\

dpp4s'2) v
(5. 12)

Recall that s = 2 sinh3fw [see (4. 23)], and p can be
expanded in powers of w:
p=wll—zw2+

et — ), (5. 13)

128
and v = dw/dp. The integrals in (5. 12) are easily
performed using this expansion. We have therefore
found poles on ¥’ plane located at

V=—ix=12 Czq’. (5. 14)
Since v'/q’ = v/q = c,, the speed of propagation is
thus given by (5. 12). The zeroth-order eigen-
functions are given by

v, = (¥, 2 ¥,)271/2 (5.15)

where ¥ ,, ¥, must be normalized to unity.

The first-order result is valid only if higher-
order corrections are small. We must at least
calculate the second-order term to see over what
range of g’ (5. 14) makes sense. The second-order
correction to A is given by the formula

’ ((Pi,gclﬁl’,,)z
Yoo

((P,,, o, cosbp,)2 =7 (5.16)

=—q'2);
2=

n

in an obvious notation. Evidently, we must know
more about the other eigenfunctions and eigen-
values of X in order to evaluate (5.16). We now
proceed to study X in more detail,

C. Angular Momentum Decomposition

We have mentioned before that X is rotationally
invariant and therefore its eigenfunctions can be
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classified by (I, m), the angular momentum indices.
Since X’ o cosf, only I = 2,m = 0 enters in (5. 16).
It turns out that, for the leading term in the low-
temperature limit, only the lowest [ = 2 level is
needed to evaluate (5. 16). Nevertheless, in order
to exhibit some qualitative features of X, we shall
discuss an arbitrary I. We now classify the eigen-
functions by ! and write

for [ even,
/2 (w)
20 +1\V2 X
7,(p) =< )P (cosﬂ)( 5 ) s
for [ odd,

¥,(p) = ( )p (cose)(zlz+ 1> ok ﬁii"-)

Recall that the two~component notation comes
from the separation of even~ and odd-parity
functions [see (4. 16) and (4. 17)].

Substituting (5. 17) in (4. 23), we can perform the
angular integral with the aid of the 6 functions
contained in o(pp’p”) (see (3. 27)]. We obtain the
radial part of X ¥, after a little algebra:

(5.17)

= (2mp)1 fowdﬁ'di’ "5'p"(s's")"1

x {o(w” — o’ — w)A(ppp") 1 [x,
+ P )y, (@) — P, x")x ("]

(w)

+6(w—w' — ") {A(p P"P)Izz[x,(w)

— P ("), (@) — P,(")x, ("]}, (5. 18)

where

o0

?". (5.19)

x’ = 5 ° ﬁ’) = p
are fixed by the triangles determined by the three
energy variables w, w’, and w"” (see Fig. 7). Clearly,
for I=0,x, = w, and for I = 1, x, = P, the square
brackets in (5 18) vanish as we have seen before,

This is as far as we can go without looking at the
detail form of the amplitude A or the dependence
of p on w, Equation (5. 18), as it is, appears to be
very complicated, but it becomes tractable under
the assumption of low temperature.

D. Low-Temperature Expansion of the Lowest
Eigenvalues

Leaving higher eigenvalues to later discussion, let
us determine the lowest eigenvalue of X for a defi-
nite /. We have the eigenvalue equation, leaving the
subscript / understood:

Xy =

AX, (5. 20)

FIG.7. Geometry of the .

three phonon momenta p P

in the terms of the P p
integral equation.

(a)
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with the left-hand side (lhs) given by (5. 18). Be-
fore doing systematic expansion in powers of the
temperature, we note the following fact: At low
temperatures, only phonons of very small momenta
can appear. In the small-momentum limit, we have

p=w. (5. 21)

It then follows from energy-momentum conserva-
tion that

(5. 22)

i.e.,p,p’,andp” are all parallel. In this case it is
obvious that if

x(w) = w,

' =x"=1 P =PK") =1,

(5. 23)

then the square brackets in (5. 18) vanish, i.e.,

Xx = 0 for all I. In other words, the zero eigen-
value appears in more than ! = 0, 1 noted before
and the first-order calculation for the second-
sound pole given in Sec. 5B is not meaningful in
this limit. This is a general result., Whenever the
phonon energy is strictly proportional to its
momentum, emission and absorption processes
cannot give rise to second-sound propagation.
Physically this situation is clear. If gas particles
always move along straight lines without ever
changing directions, there cannot be any sound wave.

Here p is not strictly proportional to w when
higher-order terms [see (5. 13)] are included. How-
ever, the deviation from p = w is very small and
delicate,.

To expand in powers of 7, it is convenient to
change the variables w, w'w” toy,y’,y” defined by

y=fw, y =pw, 3"=pu” (5. 24)
Then the functions s, s’, s” become
s = 2 sinh3y, etc., (5. 25)

and the expansion (5. 13) for p in terms of w be-
comes

p=Ty(l— T2 + LTH4 +-.-).  (5.26)
Expanding all the p variables in (5. 18) by (5. 26),
we see that X is an expansion of the form

T-5 = X0) + T23(1) + T4 2) + - .. | (5.27)
The fact that the leading term of X is of O(T5) can
be seen easily from (5. 18). One simply counts the
power of p and takes into account the fact that
|al? ‘w”, as shown in (3. 29).

o we'w
We can also expand the eigenfunction and the eigen-
value in powers of T2;
x=x©) + x (T2 + y(2)T4 + .- (5. 28)
T-5x = A(0) + A(VT2 + A(2)T4 + ++ (5. 29)

The eigenvalue equation Xx = Xx is then expanded.
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We have

:;c(o)x(o) = ;\(o)x(o),
gc(o)x(l) +5c(1)x(0) = A(l)X(O) + x(o)x(n,
x(o)x(z) +Jc(1)x(1) +Jc(2)x(o)

= A1)y (1) + A(2)4 (0) + A (0)y (2) etc. (5. 30)
Before proceeding, let us define the scalar product
for the radial wavefunctions:
00

(x, 9) = fo dyy2s ~2x(y) ¢(9). (5.31)
From what we just pointed out above, the lowest
eigenvalue of X(0) is zero since keeping the lead-
ing term in (5. 26) implies p = w. Also x(0) is
known via (5. 23):

A(0) = O,

x©(y) =y, (5. 32)

apart from a normalization factor.

Let us now expand X in 72, It is sufficient for the
moment to concentrate on the square brackets in
(5. 18) which are the delicate parts. Everything
outside the brackets are multiplicative factors and
can be expanded separately later if necessary.
Consider the first square bracket in (5. 18). From
Fig. 7Ta, we have

(5. 33)

Using the expansion (5. 26) for the p variables, one
finds
P =1—210 +1y"T2 + 5510 + 1)y"2

x 3yy" —33"2[1— Ul + 1)]

— 35(y"2 —yy")} T4 + O(TS), (5. 34)

Pylx") = 1 — Z10 + 1)y'2T2 — ;5100 + 1)y°2
X {3yy” +3v'2(1— 211 + 1)]

+35(y"2 — yy)} T4 + O(T8). (5. 35)
Let us write x (1) = a(1)y3, where a (1) is a con-
stant. Then the first square bracket of (5. 18) be-
comes

[— %2 +1) — 3a(M]yy'y"T2 + 0(T4). (5. 36)
Therefore, if we set

x D (y) = — 211 + 13, (5.37)

then the first square bracket vanishes to 0(72). A
similar calculation shows that the second square
bracket of (5. 18) also vanishes if we apply (5. 37).
Let us summarize what we have so far:

A(0) =, A1) =0,

(5. 38)

X(O) =9y, X(l) = -—%l(l +1)y3.
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With this information we get a formula for 1(2)
from (5. 30):
A (2) = (X(O),.’]c(l)x(l) +5€‘2’x‘°))/(x‘°’, X(O))-
(5.39)

This requires the O(T4) term of (5. 36). A little
algebra shows that this term is
(599"(»"3 —y'3) — 3yy"2y"2]

x I+ 1)[30 + 1) — 1](128) 174

+ 99"y "2 — ") +1) F5T4. (5. 40)

The T4 term of the second square bracket of (5. 18)
can be calculated in the same manner. We find

—[39'y"(y'3 + ¥"3) + 3yy’2y"2]
x U1+ D[51(0 +1) —1](128)-1T4

—yy'y"(y2 — 'y + 1) F5T4. (5. 41)

Substituting (5. 40) and (5. 41) for the square
brackets in (5. 18), the scalar product in (5. 39) can
now be calculated. We find

A2 = 11+ D[5I +1) — 1]C, (5. 42)
where the constant C is given by
3 5 o ’ ”n r_n L "
c= 5(@) J, davdy‘dy”(ss’s")71(vy’y")3
x G(y _yl _yll)
1
3 (2)e -
X foo dyy10 coth (ZX) csch 2(2
0 2 2
= 3.353. (5.43)

Thus, we conclude that the lowest eigenvalue of
¥ in the low-temperature limit is, putting the
subscript / in now for clarity,

A, = 2P T9 + 0(11Y), (5.44)

In view of (5.42),1(? vanishes for I = 0,1 as it
should.
E. Higher Eigenvalues

Higher eigenvalues can also be considered as
expansions in 72, We shall be satisfied here with
an estimate of their leading temperature depend-
ence. Consider, for an aribtrary x(y), the bilinear
form (y, X(®y). We have

[+ 0} -
(XOy) = 1%17 fo_dydy’dy” (ss's™) 1
X (yyy"28(y —y'— ")z [xO) — x ")
— xO)]2.

This, of course,can be viewed as a special case
of (5.5). As long as x(y) is not x(O(y) = y, (5. 45)

(5. 45)
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is of O(1). Therefore, we conclude that all higher
eigenvalues of JC are proportional to 75 and
independent of [ in the low-temperature limit.

F. Second-Order Perturbation and Damping of
Second Sound

We are now in a position to evaluate the second-
order term (5.16). The matrix element is non-
zero only for I = 2 intermediate states. Since
the lowest eigenvalue is of O(79), while all the
others are of O(T3),we need to keep only the
lowest level in I = 2 levels to calculate the lead-
ing term in (5. 16)., The matrix element can be
easily evaluated. We get for (5. 16)

+ O(T"7) = 0.003 31479 + O(T"7),

(5.46)

which corresponds to a term in the imaginary part
of v':

Imy’ = — 77¢’2, (5.47)

G. Summary of Results of Cadlculation

Together with (5.12), we have the frequency of the
second-sound v in terms of its wavenumber g.
Recall that (¥, q") = (v/g,q/g). We have

v = coq ~—i7q2 + 0(q3), (5.48)

o, = 3-1/2(1 + 10.57 T2) + O(T4) + O(g),

7=0.003 314g~ 1779 + g~ 10(T~7) + O(1).
(5.49)

The damping must be much smaller than the real
part of v in order to have a propagating wave. We
therefore must have
v gT?, (5.50)
which is far more restrictive than the qualitative
estimate v < g7'5 one would guess [see (2.20)].
The reason is that owing to the near proportion-
ality of phonon energy to its momentum, the dir-
ection of propagation of a phonon is not easily
altered by emission or absorption. This in a
sense greatly hinders the 'relaxation' of phonons.

Clearly, it is a matter of further straightforward
algebra to obtain high-order terms in 72 for

¢y and 7, For the O(T~7) term in 7,the lowest

1 = 2 level is still sufficient. For the O(7~95) term,
all higher [ =2 levels must be counted.

6. DISCUSSION AND SUMMARY

A. Oscillations in the Phonon Distribution
Function

We have mentioned before that, in contrast to the
zero sound, the second sound reflects oscillations
between certain sets of excited states. In the
zeroth-order approximation, the excited states
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are free phonons. Qualitatively, oscillations be-
tween excited states can be described as oscilla-
tions in the distribution function, which specifies
the number of phonons per phase space volume.

To relate the concept of distribution function to the
function ¢(p), we go back to (3. 10), where a res-
ponse function is expressed in terms of the vertex
function. Substituting the expression (3. 23) for

A? in terms of ¢* into (3. 10), we have, for small v

F (P, Pl = (2m)73 [a3pisf(p,q,v),  (6.1)
where we have defined
6f(p) q, V) = ¢+(p’ Cl', V')V’ T (6. 2)
and
1 v
=k 6.3
f eﬁwp—l y V z (6.3)

as before. We have written out the (q’, v’) argu-
ments of ¢* explicitly.

The form (6. 1) strongly suggests that 5f be inter-
preted as the change in the distribution function
due to an external perturbation. By the definition
of response function,

F(P§, Pl)ei@x-v) (6.4)
is the average of momentum density at (x,¢) if

there is an external disturbance described by the
perturbing Hamiltonian

- P_J'qeiq.x-ivt. (6.5)
It is then clear that
of (p,q, v)eiaex-ivt (6.6)

is the change in distribution function from the
equilibrium one at (x,#) as a result of an external
perturbation. This interpretation holds if piis
replaced by another operator. The poles of %
near the real v axis thus describes oscillations in
the distribution function.

Now we return to the eigenfunctions in (5.7) and
(5.8) for the eigenvalue zero of 5. For q’= 0,
it is clear that (4.20) and (4. 21) have the solutions

«
0_68< 'P’

pi (6.7
(pl———ﬁu‘ (;> p'? )

_ 1\ 1
§00=6€07,

where we have arbitrarily written 68, duf, and &¢
for the source terms. Substituting (6.7) in (6. 2),
we obtain

~opw, AL 1
of ~ 8pw, dw, LB*8B, 75 (6.8)
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2 1
~ u- ~ e — 6.9
of ~ du-p dw, B lwpruep) /s (6.9
~oe L~ 1 _
of ~ b€ 5 YRR 1. (6.10)
r e P -1

Thus (6. 8) may be interpreted as a change in
inverse temperature 88, (6.9) a uniform notion of
the phonon gas with velocity 6u,and (6. 10) a uni-
form shift of energy scale. When the term q’'-vo,
is turned on in (4.20) and (4.21), we showed that
the second sound appears as a result of the coupl-
ing of ¢, and ¢,,while @, gives no propagating
wave. Therefore we can interpret the second
sound, in view of (6.8) and (6.9) as a wave of drift-
ing velocity of phonons coupled with temperature
oscillations. For discussions along this line in
problems of crystal lattices, the reader is referred
to Refs. 6 and 7. Although the above physical
picture is appealing, we wish to emphasize the
qualitative nature of the interpretation in terms

of oscillating distribution function, which is a
concept valid only in the noninteracting limit.

B. Relaxation Time

For the second-sound problem in solids, there

has been no concrete procedure from which the
damping of second sound can be calculated. The
authors in Refs. 6 and 7 simply introduced a re-
laxation time to count for the effect of a sum like
(5.16). Their procedure is clearly consistent with
our approach. In this paper,we have a well-defined
model, which allows us to calculate the damping
rate from first principles and display the physical
mechanism responsible for it.

C. Higher-Order Terms

Keeping only the leading order in g seems to be
essential in getting a tractable integral equation.
This is rather unfortunate because we expect some
of the higher-order processes such as phonon—
phonon scattering to be important. They would
give rise to large~angle scattering, which is more
effective in supporting the second sound than the
absorption—emission processes appearing in the
leading equation. As was mentioned before, the
absorption—emission processes are nearly all in
the forward direction and are ineffective. Thus,
higher-order terms may give qualitatively differ-
ent temperature dependence of the damping rate.

The next-order calculation will also produce a
correction to c, due to the lowest~order interaction
between phonons. It is clear from our calculation
in Sec.5 that ¢, depends only on the free phonon
dispersion curve and has nothing to do with the
interaction between phonons even though the damp-
ing rate does depend on the interaction through
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o(pp’p”). This is not surprising in view of the
following observation.

Our integral equations are equations at zero g
limit, i.e., qualitatively a zero phonon density limit.
Like the Boltzmann equation for dilute gases, it
depends only on the cross sections of reactions,
i.e.,the square of the amplitudes A, but not the
phase of the amplitudes. The quantity c, is related
to the "compressibility” of the phonon gas which

is obtained by differentiating the free energy of

the interacting phonon gas. We know that the
Boltzmann equation contains no information con-
cerning the free energy except for the ideal-gas
term, even though it can count for transport coef-
ficients. The free energy depends on the phase

of the scattering amplitude and there is no informa-
tion of this kind in the Boltzmann equation.® Our
integral equation contains no phase information jn
the phonon decay or absorption amplitude. There~
fore only the compressibility for the ideal phonon
gas can be obtained, even though the interaction
plays a crucial role in the propagation and damp-
ing of the second sound.

D. Summary

We have described the phenomenon of second
sound with a model containing only one dynamical
parameter g. This is very likely the simplest pos-
sible model which allows a realization of second
sound. In contrast to a general hydrodynamical
approach, we have taken a specific perturbation
theory approach. We started with the Bethe—Sal-
peter equation (3. 11) after a qualitative investiga-
tion. We extracted the leading terms in the small-
g limit. After taking symmetry principles into
account, we arrived at the integral equations (4. 20)
and (4.21). The eigenvalues of the homogeneous
equations were studied by repeated applications of
perturbation theory treating the wavenumber g’
and T2 as small parameters. The eigenvalues
giving rise to a nearly real frequency are found
and interpreted as the second sound. The speed
and damping rate are evaluated for small T,[(5.48)
and (5.49)). Finally, some qualitative interpreta-~
tions are sketched.

The physical picture and mathematical apparatus
are very elementary. Our analysis is strictly
within the framework of equilibrium statistical
mechanics. No concept of local thermal equilibrium
is used. We have made no use of any macroscopic
concepts such as viscosity or thermal conductivity.
Indeed, the next step is to understand these concepts
in a2 more precise manner in terms of a microsco-
pic theory.
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Coulomb field, and radiating electromagnetic dipole and quadrupole fields is examined to second order.
If the first-order radiation is a pulse of finite duration, then the only second-order radiation present
after the pulse has turned off is due to interactions involving the mass monopole. All other interactions
contributing to the second order produce no such scattered radiation. At third order, the dipole—dipole-
mass interaction is found to give rise to scattered radiation.

1. INTRODUCTION

Nonlinear effects that show some interesting
aspects of the interaction of gravitational radia-
tion fields in empty space—time with themselves
and with mass monopoles have recently been dis-
covered.l™3 These previous investigations made
use of a perturbative approximation scheme to
calculate the nonlinear effects. In this paper we
apply the same perturbative scheme to the case
where an electromagnetic field is present in space—-
time and investigate certain interactions of elec-
tromagnetic fields with gravitational fields and
with themselves.

We assume that all quantities occurring in our
formulation of Einstein- Maxwell theory are expand-
able in a perturbation series in which the zeroth
order represents flat space—~time with no electro-
magnetic field present, the first-order fields are
those of linearized Einstein—Maxwell theory, the
second-order fields are those required by the
field equations to first nonlinear order,and so
forth.

Specifically, we take our combined linear gravita-
tional and electromagnetic field ¥ to be composed
of a mass monopole field m,a retarded gravita-
tional quadrupole radiation field ¢ ,a Coulomb
field e,and an electromagnetic radiation field ¢
consisting of a retarded dipole plus a retarded
quadrupole. The radiating multipole fields are
chosen to be pulses of radiation that turn on and
off simultaneously. The field ¥ is taken to be
axially symmetric.

We symbolize the field by writing
Y=m+e+y+ o¢.

Formally, there are then ten possible second-
order interactions:

€2+ m2 + Y2+ ¢2 + me + my + mo + ey
tept yo.

Since the first-order gravitational and electro-
magnetic fields are not coupled (i.e., the first-
order electromagnetic field does not contribute to
the first-order metric and vice versa), a second-
order electromagnetic field can arise only from
the interaction of a first-order gravitational field
and a first-order electromagnetic field. This is an
obvious consequence of the fact that the interaction
terms in Maxwell's equations are products of the
electromagnetic field with quantities constructed
only from the metric. A second-order gravitational
field can arise only from the self-interaction of
fields and not from the interactions of the gravita-
tional field with the electromagnetic field. This
follows obviously from the fact that the electro-
magnetic field occurs in the Bianchi identities
only quadratically. Hence the electromagnetic
parts of the interactions e2,m?2,y2, ¢2, my,and

e¢ do not occur,and the gravitational parts of the
interactions me, mo, e, and Y ¢ do not occur.

The gravitational part of m2 and the electromagne-
tic part of me are not eliminated by the general
nature of the nonlinearities of the Einstein—Max-
well equations, but direct calculation of these two
interactions shows that they vanish. This is in
agreement with the fact that they do not enter the
Reissner-Nordstrém solution, The gravitational
part of the e2 interaction does not vanish. How-
ever, it is part of this well-known static solution.4
The my and 2 interactions have been analyzed
completely in Ref. 1,



2170

Research supported by the U.S. Atomic Energy Commission,

under Contract No.AT(11-1)-GEN-10, P,A.11.

1 The literature on the second sound in He II is too extensive
to be cited here, For complete references, the reader is re-
ferred to I. M. Khalatnikov, Introductlion to lhe Theory of
Superfludity (Benjamin, New York, 1965), and J, Wilks, The
Pyoperties of Liquid and Solid Helium (Clarendon, Oxford,
England, 1967).

2 See collected papers in D, Pines, Many-Body Problem
(Benjamin, New York, 1962).

3 J.Gavoret and P. Nozieres, Ann Phys. (N.Y.) 28, 349 (1969).

SHANG-KENG MA

4 P.Hohenberg and P, C. Martin, Ann. Phys, (N.Y.) 34, 291 (1965),
C.E. Carroll, Phys Rev. A 2, 497 (1970).

5 §.Ma, H. Gould and V, K. Wong, Phys, Rev. A 3, 1453 (1971),

6 For example, see J. A. Krumhansl, Proc, Phys. Soc. (London)
85, 921 (1965), R. A. Guyer and J. A, Krumhansl, Phys. Rev.
A 1411 (1964). See also P.C.Kwok and P. C. Martin, Phys.
Rev. 142, 495 (1966).

7 L.J.Sham, Phys. Rev 156, 494 (1967); 163, 401 (1967).

For a general discussion along this line, see R. Dashen and

S. Ma, J. Math Phys. 12, 1449 (1971),

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 12, NUMBER 10

OCTOBER 1971

Radiation Scattering in Einstein—Maxwell Theory

W.E. Couch*
Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

and

W. H. Hallidy

Department of Physics, California State College, California, Pennsylvania 15419
(Received 13 May 1971)

A linearized Einstein-Maxwell field composed of a mass monopole, a radiating mass quadrupole, a
Coulomb field, and radiating electromagnetic dipole and quadrupole fields is examined to second order.
If the first-order radiation is a pulse of finite duration, then the only second-order radiation present
after the pulse has turned off is due to interactions involving the mass monopole. All other interactions
contributing to the second order produce no such scattered radiation. At third order, the dipole—dipole-
mass interaction is found to give rise to scattered radiation.

1. INTRODUCTION

Nonlinear effects that show some interesting
aspects of the interaction of gravitational radia-
tion fields in empty space—time with themselves
and with mass monopoles have recently been dis-
covered.l™3 These previous investigations made
use of a perturbative approximation scheme to
calculate the nonlinear effects. In this paper we
apply the same perturbative scheme to the case
where an electromagnetic field is present in space—-
time and investigate certain interactions of elec-
tromagnetic fields with gravitational fields and
with themselves.

We assume that all quantities occurring in our
formulation of Einstein- Maxwell theory are expand-
able in a perturbation series in which the zeroth
order represents flat space—~time with no electro-
magnetic field present, the first-order fields are
those of linearized Einstein—Maxwell theory, the
second-order fields are those required by the
field equations to first nonlinear order,and so
forth.

Specifically, we take our combined linear gravita-
tional and electromagnetic field ¥ to be composed
of a mass monopole field m,a retarded gravita-
tional quadrupole radiation field ¢ ,a Coulomb
field e,and an electromagnetic radiation field ¢
consisting of a retarded dipole plus a retarded
quadrupole. The radiating multipole fields are
chosen to be pulses of radiation that turn on and
off simultaneously. The field ¥ is taken to be
axially symmetric.

We symbolize the field by writing
Y=m+e+y+ o¢.

Formally, there are then ten possible second-
order interactions:

€2+ m2 + Y2+ ¢2 + me + my + mo + ey
tept yo.

Since the first-order gravitational and electro-
magnetic fields are not coupled (i.e., the first-
order electromagnetic field does not contribute to
the first-order metric and vice versa), a second-
order electromagnetic field can arise only from
the interaction of a first-order gravitational field
and a first-order electromagnetic field. This is an
obvious consequence of the fact that the interaction
terms in Maxwell's equations are products of the
electromagnetic field with quantities constructed
only from the metric. A second-order gravitational
field can arise only from the self-interaction of
fields and not from the interactions of the gravita-
tional field with the electromagnetic field. This
follows obviously from the fact that the electro-
magnetic field occurs in the Bianchi identities
only quadratically. Hence the electromagnetic
parts of the interactions e2,m?2,y2, ¢2, my,and

e¢ do not occur,and the gravitational parts of the
interactions me, mo, e, and Y ¢ do not occur.

The gravitational part of m2 and the electromagne-
tic part of me are not eliminated by the general
nature of the nonlinearities of the Einstein—Max-
well equations, but direct calculation of these two
interactions shows that they vanish. This is in
agreement with the fact that they do not enter the
Reissner-Nordstrém solution, The gravitational
part of the e2 interaction does not vanish. How-
ever, it is part of this well-known static solution.4
The my and 2 interactions have been analyzed
completely in Ref. 1,
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We therefore restrict our attention to the second-
order field that arises from the interactions ¢2,
mo,ey,ed,and Y ¢. The boundary condition that
the second-order field have no gravitational or
electromagnetic radiation that comes in from in-
finity is imposed. In fact we require that the

second-order field vanish for all times prior to the

emission of the first-order radiation, and further
require that after emission, it has no radiating
multipole singularities at the origin. With these
conditions we are able to calculate the second-
order gravitational and electromagnetic fields
that arise,and we do this separately for each
interaction. For the second-order field of each
interaction we ascertain whether there is a gravi-
tational or electromagnetic radiation field present
in regions of space—time after the first-order
radiation pulses have turned off. The boundary
conditions ensure that if any radiation is present
after the emission of the first-order radiation, it
has been generated by the interaction. Whether
such gravitational or electromagnetic radiation
fields are present is the major invariant property
of interest concerning the second-order field.

2. EINSTEIN-MAXWELL THEORY

We use a null tetrad of basis vectors5,8

(lp ’ ny 7mp s ;Fl“) Satisfying

Int=—m m =1,
: " (2.1)
l“m# =nmt = 0.

The vector [ u is chosen as the gradient of null
hypersurfaces labeled by the coordinate x® = « so

]
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I, = Us e The vectors n,m,, and 771_“ are parallel-
propagated along the geodesics to which [# is
tangent. The coordinate x 1 is taken to be the affine
parameter 7 along [¥;and the coordinates x¢ label
different null geodesics in each null hypersurface.
Our tetrad then has the form:

= 4,

nt = o4 + UdY + Xig!, (2.2)
— u i
mk = wbh + Eidk,

The gravitational field is given by the tetrad com-
ponents of the Weyl tensor:

Yo =— prpal#m"lpma,

Y= Cyyottnvirmo, (2.3)
Yy = — C’wpaﬁ#n"lf‘mc,

ll/3 = — C“ypoy_n#n'/lpnc,

Y= cwpo minvmen

and the electromagnetic field is given by the tetrad
components of the electromagnetic field tensor:

¢y = F“yll‘m",
¢, = %F,m(l“"" + mbmv), (2.4)

¢y = F,, mitnv.

The y, satisfy the Bianchi identities:

Ova— Q=0 =2 () vaa— @ = 02(8) vas + 6= 2 (O + () (A0.0r + 22— 2180,
(4= A)0%pr] = ()0, +0,H0 = 22 = ALy + (B = Ao + (1 = Dy} + 6y + 8,

x{[a—2(3 — Alyp,p + (4 — AT + (2— A]¢,]) + (%)@\1 +043)DPpy + (Gg t+ 844)

X {[§ — 2(3 — A)ald,q + [(4 — A + (2 — AX]p,)),

with A = 1,2,3,4, where 6,, is the Kronecker
symbol,
= l“;y

p mimY

=1 S =
o= z(l“‘.ynl‘m‘ mu’.ym#m”),
B

]

%(l#;un“m" —m, ymimv),

TE A&+ B, (2.6)
VE oy ,mint

y= %(lw MENY —m mn),

L =—mn, Jwhmr,

(2.5)

g=1,, mmy,

u
A =— n“._ym#m'/ ,

and the differential operators (D, A, 5,8) are the
intrinsic derivatives with respect to the tetrad.
Maxwell's equations in terms of the ¢, are

<€>¢A _<A5>¢A— 1= (1—4) (ﬁ) ¢a0— 22— A)
X(5)ea-1+ 6= 2(0)e.+(9)

x[Augymy + 21 = ABe, — 2= o9, i), o
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with A = 1,2,

The perturbation scheme applied to these equations
gives the differential equations that govern the
fields at each perturbative order.

The zeroth-order field is givenby ¢, = ¢, = 0
and we have

1
:yu=—~2,

p=—1/r, U
— (V2/47) cots,

Ei = (V2/2r)(1

o= — B =
,i/sin 6),

(u,7,0, ) are null spherical polar coordinates. All
other spin coefficients and tetrad vector compo-
nents vanish in flat space,

The first-order field of our problem is given by

- [(4 — A)1\ 172
¢A=%OY005§+(_J§)A2<_______(A! )>

(2. 8a)

] 10
b4 o¥oodh + (=14, AY10<a_u__25}—>A
) (3— A)! 1/2
Xt (204D () @.80)

- 1 A+1 4
x ‘/3 1"AY20 1’<§—‘u - ‘2 a%) 7—4:-:’

with A = 0,1, 2 where m is the mass, ¢ the electric
charge, @ the mass quadrupole moment, p the
electric dipole moment,and g the electric quadru-
pole moment;the quantities @,p,and g vanish out-
side the interval u, > u > u,. Thefunctions ¥ are
spin-weighted spherical harmonics of spin weight
s.7

The first-order spin coefficients and metric
variables are

p=0,
o =<—?— + §9_>2Y20’
y2 g4
a=3vV2 (—i + Q—) cotf,Y 4,
y2 4
3 Q 4 Q>
=3 m(Ei48)y,,
2 7\ 3 44/1720
g=17—a, -
_mm L .3 gg
po= Yoo+‘/6—<1,2+273+ <) Y20
Q . 9 .3
y = 2TOY00+J6<———+7’§+—0L4>0Y20
(@, @
- —(;3- + —%)cote 1¥50
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1/Q
5 (5 ) eoteara, @
_1(29,@ @
rEI\y Tt 4>-2Y20’
v=— ‘/2_<é+ ﬁ—-——Q. +3L_ (‘_)> -1Y20,
¥ ¥ 493 y4
U_:ﬂ. Y +_ (ﬁi-FQ-*-Q
Ty 0 2
5
+%§&>oyzo,
Q 30 @
w=\/§<7—2—1?2——7>1y20,
Xi=3 <1’s;:9><1%+r(£> Y20

_afy i _> <_§_ _Q__>
2 ( ’sing / \,3 * ,4 -1Yzo,

i_ _ L'
&= 2 % " sinf +r4 220

where the dot denotes ¢/du.

These quantities can be obtained from the metric
and the field equatlons — 81k T

Bnk(F'F, — g, F, I} when both the metric
and the f1eld equatlons are written in their tetrad
form.1.5

The first-order field satisfies the equations

2y 5—4 42 3
or ¥ v+ ¥ v —0o
_2 Tt f_e 1 A
2r ou 209rv 2r
(2.10)
with A = 1,2,3, 4;
-
Cpery L
v ‘/_7‘ ¢A+ ¢A—1=0’
2 d 10 A
2 0 T 2o Yo
(2.11)

with A = 1,2. The operator d is a raising opera-
tor for spin-weighted quantities and is defined by?

. d i d T
8N = — (sm9)5<5—9— + Sind %) [(sin®) *n], (2.12)
and 8 is a lowering operator defined by
= fas -sf d ’[
3N = — (sind) (a preva 6¢>) [(sin6) * ], (2.13)

where 7 is a quantity of spin weight s. At each
perturbative order the ¥, have spin weight 2 — A
and the ¢, have spin weight 1 — A.
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The second-order field satisfies a modified form
of Egs. (2.10) and (2. 11) that has instead of zero
for the right-hand sides driving terms composed
of products of known first-order quantities. These
driving terms for Egs. (2.10) and (2. 11) are,re-
spectively, given by

T

+ () fanvas—lo— 22— ap— 5 - Ay,

- (4 _A)Ud’,qq}
¢ 3 . —A
+ <_°> [(asA1 + 5A3)<§/—3 b,y + 17‘1’1)
2}
3 13
+ (0,5 +044) <a-§5> %-z]

2
+ <61>[(6A1 +043) aa_,, ba-1 ™ (Baz + 04

2
V2 4—A
+ (27 0pz d)l)J

i () rs + [(2) 20~ 2 ()] &

- (2 - A)0¢A+1}'

The second-order field is obtained by solving the
driven form of Egs. (2.10) and (2.11) in conjunction
with the boundary conditions.

3. THE SECOND-ORDER FIELD

We find the second-order Einstein—Maxwell field
caused by each interaction by solving for ¥, and
¢, in the driven form of Egs. (2.10) and (2. 11) with
A = 1. The other ¢, and Y, can then be obtained
from the remaining equations by straightforward
calculation. We will only display ¢, and y.

A. The ¢? Interaction

There is no electromagnetic field arising in this
case. The solution for the gravitational field is
given by

Yo =775[(W + V), Y, + (X +0),Y5,
+ (Y +9),Y,,] +r78[3(X + 0),Y,,
+ Y +8),Y,,] + 7 714[Y + S], Y, + 2,

(3.1)

where V,0,and S are, respectively, the second-
order quadrupole, octupole, and sixteen-pole mo-
ments due to second-order outgoing gravitational
news. This news is present only in the pulse
region® and is unrestricted there except for the
following relations which must be satisfied at

U = u2:

(3.2a)

21173

0 __dX 01,23, (3. 2b)
dn du

n
s 4T g1 93,4, (3. 2¢)
dn du

The terms W, X, Y and Z are defined in the Appen-
dix.

We see that y ; = 0 outside of the pulse region, so
that the radiative part of this field vanishes in
space—time regions outside of the first-order
pulse. If the conditions at # = u, expressed by

Egs. (3. 2) were not required, the second-order field
would still be nonradiative but ¥ ; would not vanish
for u>u,.

B. The m¢ Interaction

There is no gravitational field arising in this case.
The solution for the electromagnetic field is given

y > )

' NN | K
e L) B

L L
where
_ [ u')du’
I= _pl)dn U=u,,
ful @+ 2r —u)?’ 1
K(u) =2 f“_(_L_pu du U=,

“ w—u)2’
_ 3 L [ qu')du’
J =545+ 3 : u=u
20r ¢ ful  +2r —u’)?’ v

U=u,.
v (w—u)2’ 1

The outgoing electromagnetic news for this field
is given by

$9 = 74’% (R Y10 +31L.,Y,0) (3.4)

in the region after the pulse. This shows the scat-
tering of the electromagnetic radiation off the
Schwarzschild mass.

C. The ey Interaction

There is no gravitational field arising in this case.
The solution for the electromagnetic field is given

by
2\ 1/2 ra)
=05

which vanishes outside of the pulse region. This
field is therefore nonradiative in the region after
the pulse.

+§Q>1Y20, (3.5)

¥S

D. The e¢ Interaction

There is no electromagnetic field arising in this
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case. The solution for the gravitational field is
given by

_(2\1/2 _i_ﬁfi
‘pO - <;> e(ys 76>2Y20’

which vanishes outside of the pulse region. This
field is therefore nonradiative in the region after
the pulse.

(3.6)

E. The ¢y Interaction

There is no gravitational field arising in this case.
The solution for the electromagnetic field has been
calculated for the electromagnetic dipole-gravi-
tational quadrupole interaction. The field is found
to vanish outside of the pulse, and is therefore non-
radiative in that region. This is also found to be
true when the first-order field is not restricted

to be axially symmetric.

It has previously been found! that there is scatter-
ed radiation arising from the my interaction and
no scattered radiation in the case of the Y2 inter-
action. These results and the interactions calcula-
ted here show that for the complete second-order
field arising from ¥, the only scattered radiation
present after the pulse is due to the scattering of
the first-order gravitational and electromagnetic
radiation off the mass monopole; no radiation is
scattered if the mass monopole vanishes. In par-
ticular, the interaction of these first-order elec-
tromagnetic radiation fields with themselves or
with a radiating gravitational quadrupole produces
no scattered radiation after the pulse.

4, THE THIRD-ORDER FIELD

We will discuss only the mass-dipole—dipole inter-
action. There is no third-order electromagnetic
field arising in this case. The solution for the
gravitational field is given by

M+ N R
%zli -5 tD? <7> _T}zyzo,

3

(4.1)

APPENDIX
The quantities W,X,and Y are defined as follows:

w

i

b
]

Tn

Y

W. E. COUCH, W. HH. HALLIDY

where
Nw) = -2 ;Vu, U= uy,
() wrikha 1
R = f“_{»____‘Fu’)du/ s U= Uy,
“ (u+ 2r —u’)?2

M(u) + Nu) = — 24 fuM

w—wyz T

_ 2({ 3\1/2 _. -
F(u)=—2‘7/na7—1 [W+V~7<ﬁ;> (PP—GPP)] ,
r=2 D(rDZI—— ap1 +6J>~+ £_pe (D—’> + 1522

73 4 272 v 7

and now the terms involving ¢ are not present in
Wand V.

The third-order outgoing gravitational news for
this field is given by
. 0 L=

ag :—5M2Y20 (42)
in the region after the pulse. We see that we will
have scattering in the region after the pulse unless
thel second-order outgoing gravitational news
— gV2Y20 is chosen such that F(u) = 0 everywhere.
In that case, in the region after the pulse we have
Yo =M = 0 and no radiation is present. We in-
terpret this to mean that in general, third-order
gravitational radiation is produced by the inter-
action of first-order electromagnetic radiation
with the mass. In the special case that F =0 the
produced radiation is canceled by radiative scat-

tering of second-order gravitational radiation off
the mass.
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The equations of hydrodynamics are derived from the principles of classical statistical mechanics for a
single component system of spherical molecules. Exact expressions for the stress tensor and heat flux
are obtained without resorting to any methods of approximation. The derivations are carried out for a
system of molecules which interact through a continuous pair potential, and for a system consisting
solely of rigid spheres. The “long-wavelength” expansion employed by Irving and Kirkwood [J.Chem
Phys. 18, 817 (1950)] in their expressions for the stress tensor and heat flux is examined. It is demon-
strated that this expansion converges only if the intermolecular potential goes to zero faster than any
positive power of (1/¥) in the limit of large » (r is the internuclear distance) and hence diverges for any
realistic intermolecular potential. An elementary example is considered to demonstrate the effect of

finite wavelength on the stress tensor.

1. INTRODUCTION

The derivation of the hydrodynamic equations, the
general conservation laws of macroscopic physics,
from the principles of molecular mechanics has
always been a central problem in statistical
mechanics. One of the earliest approaches to this
problem starts with the Boltzman transport equa-
tion! which arises in the study of dilute gases. Al-
though this approach yielded the correct kinetic
contributions to the equations of hydrodynamics,
the role played by intermolecular forces was not
generally understood until about twenty years ago.
At that time Irving and Kirkwood developed their
general distribution function formalism? to obtain
explicit expressions for the stress tensor and heat
flux in terms of microscopic quantities. Since
then their results have been widely used as the
starting point of more detailed investigations.3

In order to obtain expressions for the stress ten-
sor and heat flux, Irving and Kirkwood arbitrarily
expanded a pair distribution function occurring in
the general conservation expressions in a Taylor
series. The underlying assumption for performing
this expansion is that the pair distribution function
is a slowly varying function of the center of mass
of the two molecules over distances comparable
to the “range® of the intermolecular forces. Simi-
lar expansions, appearing frequently in the litera-
ture,4-7 may be characterized as “long-wave-
length® expansions. Irving and Kirkwood, as well
as Green, Mori, Zwanzig, and Frélich, assume that
for most situations the convergence of the expan-
sion is sufficiently rapid to justify disregarding
all but the first nonvanishing term.

Unfortunately, as shown in Sec. 14 of this paper, the
long-wavelength expansions for the stress tensor
and heat flux do not converge unless the inter-
molecular pair potential vanishes faster than any
positive power of 1/ in the limit of large »(r is
the internuclear distance). This is a requirement
no realistic potential can meet and poses the prob-
lem of obtaining a satisfactory derivation of the
hydrodynamic equations. It is our intention to
supply solutions for these problems under the
limitations of classical statistical mechanics.

We rigorously derive the equations of hydrody-
namics for a single-component system of spherical
molecules and obtain exact expressions for the
stress tensor and heat flux. We consider not only
molecules exhibiting continuous, differentiable
potentials, but also a system of rigid spheres. The
effects of finite wavelength on the intermolecular
contribution to the stress tensor, as opposed to the
kinetic contribution, are then considered in an ele-
mentary example. Any external forces on the sys-
tems considered are assumed to be conservative,
and functions of position only.

Although the results for a system with a continuous
intermolecular potential were obtained by Choh8
from the BBGKY hierarchy, 2 he immediately em-
ployed the long-wavelength expansion of Irving and
Kirkwood. It should be noted that the derivation
presented here has two distinct advantages: It
gives the physical origin of all terms appearing in
the transport equations and is independent of the
equations governing the evolution in time of the
required distribution functions.
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from the BBGKY hierarchy, 2 he immediately em-
ployed the long-wavelength expansion of Irving and
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the transport equations and is independent of the
equations governing the evolution in time of the
required distribution functions.
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Transport equations for a system of perfectly rigid
spheres were obtained by Enskogl® for moderately
dense, as well as dilute systems. All of his results
depend on approximation methods of limited appli-

cability and are incorrect for highly dense systems.

2. DISTRIBUTION FUNCTIONS

Let g(¥)Xx,,py; -+ Xy, Py; 1) be the canonical distri-
bution function, normalized to unity, of the entire
system, where X, is the position and p, the momen-
tum of the /th molecule, and N is the total number
of molecules in the system. The two-particle dis-
tribution function in configuration and momentum
space is defined by

£@(X,,p13%, Py) = N(N —1)

X Jo graraim @3 +- dXydpg -+ dpyg M (2.1)
and the one-particle distribution function in con-
figuration and momentum space is given by

g(l)(xl, pl) = NfG(N—l)dim_ dx, - -« dX dp,

* deg(N)' (2' 2)

The two- ahd one-particle distribution functions in
configuration space are, respectively,

fOx,,%,) = [dpy [dpyg @(X1,P13%,,P,),
fOxy) = [ dp.g WUxy,p,).

For convenience we have suppressed the depen-
dence of these functions on the time £, but it is
assumed that there may be explicit dependence on
t in any or all of them.

(2.3)
(2. 4)

It will be convenient to introduce the vectors w, p,
r, and x, where

W=p,—P;, P=3:(p;+Dy), (2.5)
r=X,—X;, X=73(X,+X); )
and the functions I' and y defined by
T(w,r;p,x) = g¥(xy, py; Xy, Py),
p 15 Pqps 49 pz (2.6)

y(r,X) = f(2)(x1’ x2)~

Because the molecules are identical, g¢® and /@
are such that

g(2)(x11 pla Xy, Pz) = g(z)(XZ’ P2 Xy, pl)’

(2.7)
F@x,, x,) = fO(x,, X,);
so that
T'(w,r;p,x) = I'(—w, —T; p, X),
P P (2. 8)

Y(r’ x) = 'y(_r, x)'

We mention that in hydrodynamics the mass density
p is frequently employed in place of f. If m is
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the mass of one molecule, then p is defined by

p(Xl) = mf(l)(xl).

Having defined all of the distribution functions we
shall require, we may now proceed to derive the
statistical transport equations.

3. TRANSPORT OF MASS

Throughout the following work we shall be con-
cerned with the rate of change of some property
(mass, momentum, etc.) of a simply connected
region R in configuration space. The velocity of a
boundary point of R is defined to be the average
velocity v, of a molecule at that point:

1 g(l)(xl, Pl)

fdp f(l)( )

1
volxq) = 1 = —Po(xy), (3.1)
m

where p,, is the average momentum of a molecule
at x,.

The mass M, contained in the region R is given by

M, = fRdxlp(xl) (3.2)

so that, from the definition of R, the rate of change
of M, is

daM ap ~

—f = Jpdxyzy + [pdafiovep, (3.3)
where da is an element of the boundary surface of
R and n is the unit vector normal to the boundary
surface and directed outward. Applying Gauss’s
theorem to the second term on the right-hand side
(rhs) of Eq.(3.3)

2 2
fRdx1< £y 2 = 'pv0>

Now, the only way in which M, may change is by
the flow of molecules across the boundary surface
of R. Consider a molecule with position x; and
momentum p, suchthat x, is in the region (1/m)
p; — po)-n da 5t just inside the surface and

(p; — p0)°n > 0 for some surface element da:
Clearly, if 6¢ is positive but very small, the mole-
cule will leave R in the time 5¢. Thus, the number
of molecules with p; € dp; and x, € (1/m)

(p; — Po)*n da 6t leaving R in the time 6¢ is

(1/m)(p, H{(p,

where H(x) = 1if x > 0 and H(y) = 0if y < 0. Simi-
larly, the number entering in 6¢ from just outside
da and with p; € dp, is

dM (3.4)

— po)*n g Mz, py) — py)*nldp,dabdt,

1 . .
— —(py — Po) *AgP(x,,p,)H (P, — py)* n}dp,dadt
Y43

so that,as each molecule carries with it the mass
m’
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dMpg
at - §rda [dpsie(py —

PP (x,,p,) =0,
(3.5)

by Egs.(3.1) and (2.4). As this is true for any R
in the system, we find from Eq.(3.4) that
9P

i (3.6)

0
+ 5,0 = 0,

which is the fam’liar equation of continuity in
hydrodynamics.

From the foregoing analysis it should be clear

that if y(x,,p,) is some property associated with a
molecule located at x; with momentum p,, then the
rate of change of X, the quantity of y contained in
R, due to the flow of molecules across the boundary
of R is given by

dXxX
<__R> :_71; §Rdafdp1(P1

— po)' ﬁxg(l) (3.7
dt
flow

. 0
- _%dexlgx—;'jdpl(pl ~ Pohxg,
where we have used Gauss's theorem. We shall
make frequent use of Eq.(3.7) in what follows.
Moreover, it should be noted that Eq. (3.7) applies
regardless of whether the property y is a scalar,
vector, or tensor quantity.

4, TRANSPORT OF MOMENTUM

The momentum p, contained in the region R at the
time { is given by

Pr = fRdxl.fdplp]_g(l) (x1,p1) = fRdxﬂ)Vo, (4.1)

by Eq. (3.1), so that the rate of change of p, is

P,

d -
Pl fRdxla_t pvo + dpdaiisvopvg

_ 9 9
= Jrdx 57ovo + 2%,

dJ i
= fRdX1p<-a—t + Vg 'aT)VO,

where, in the above, we first applied Gauss's
theorem and then the continuity equation, Eq.
(3. 6),to obtain the result.

*VoPVo

(4.2)

The contribution to the rate of change of P due to
the flow of molecules across the boundary of R is,
from Eq.(3.7),

<dP
di

R> =—— j dx1
flow m

X (p; — Polg @

_ﬂmlml Po)

(4.3)

as fdp1(P1 —pog® =0.

If F(x,) is the external force per unit mass acting
on the molecules in R, then F contributes
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= [pdxy [dpymFg® = [rdx10F  (4.4)

<dPR>
at ext
to the rate of change of P.

The force exerted on a molecule at X; due to the
presence of another molecule at x, is

_ (% —xy]) _ a0 (Irl) _ x dp(r)
9%, x4 rdr
=1¢'(r)

where ¢(r) is the intermolecular potential. Now,
given a molecule at x,, the probability that there
is another molecule located in dx, is

FD(x4,x,)
f(l)(x1)

Thus, the rate of change of P, due to intermole-
cular forces is

P.
<‘iﬁ) = [pdx, [drre’(r)f@(xy, %y + 1)
at/

= [rdxy [drte’ (r)y(r,x; + ir). (4.5)
We shall now express the integrand as the diver-

gence of a tensor. We note that

dP, .
(f) =— fRdxl fdrrq)’(r)-y(——r,xl-—%r)
t /i
= éfRdxl fdrf'cp’(r)[y(r,xl + 1)
-7 (r)xl_ ér)], (4.6)

where, we first let r ~ —r (without altering the
limits) and then used Eq. (2. 8). Now, since y is a
continuous function of the components of x, we
find

y(r,x, + 51) —(r,x; — 37T)
fl/zd"an (r,x, + nr)

1/2
Ve AN 5 377
/2
-1/2

V2
-1/2 dnri

y (r,y)

g or. 2%
3y; 91

3y

ayz ’

4.7

where y = x; + nr,the y; and 7; are the Cartesian
components of y and r, and repeated indices are
summed over. But,

By _ 9y 9% _ 3y
ay]- axL- ayi
Hence

’)’(ryxl + 2
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d V2
Fry f_l,2 dny(r,x, + nr)

=r
ax (4.8)

where we have defined y by

y(r,x,y) = f-]{/22 dny(r,x, + nr). (4.9)

The intermolecular contribution to the rate of
change of P, may now be written as

dP 2

(4. 10)

Adding up all of the contributions and using the
fact that R is arbitrary, we obtain the balance
equation for the transport of momentum:

a a

PG+ Vo *3x,0%

* <_£_n fdp1(p1 —po) (P — Po)g(l)

+ 3 far rr¢'7>. (4.11)

5. TRANSPORT OF ANGULAR MOMENTUM

Because we have assumed that the molecules of
our system have no internal angular momentum,
a molecule with position x, and momentum p,
possesses solely its orbital angular momentum,
X, Xp;. We shall see later that such a system
must have a symmetric stress tensor. Here, how-
ever, we shall simply find the balance equation
for the transport of orbital angular momentum.

The angular momentum contained in R is
Ly = fRdxlfdpl(xl X pylg®
= .[Rdxlxl X fdplplg(l)

= [adxyxy Xpv, (5.1)
so that the rate of change of Ly is found in the
usual way to be

dL

—F = [pdx;x%; X

a -~
Py 57 PV * fRdan' v, (X) Xpv,)

2
= fRdx1p<al A >(x1 xv ), (5.2)

where we have used the arguments leading to Eq.
(4.2) to obtain Eq.(5.2).

The rate of flow of angular momentum into R is,
from Eq.(3.7),
dLg
dt flow
-1 9
T om fRdxl 0%y °

Japy(py —p,) (X3 Xpylg®
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_1 2
= m Jrdx 3%,

<[dpl(P1 p,) (P — Po)g( 1)) XXy . (5.3)
We define the symmetric tensor A by
1
=7 Jdpy(p1 — 1) (p, -pg®, (5.4)
so that
dLp
(?) fRdxl ox, + (A xx,)
flow
fRdxl a (Az] Xke X ek)
= — Jpdx %, % *A+ dexlAZ]e] xé;, (5.5)

where the &, are the Carteswn unit vectors, the
x; are the components of X,,the A, are the ele-
ments of A,and we have employed the convention
of summing over repeated indices. Now, since A
is symmetric,

Al]’e‘] X ’él =0, (5.6)

and the contribution due to flow may be written as

()= e [0

% By — po)g<1>) x xl]
fdpl(lh -

1
~m ﬁzdxlxl X P

X(p1_Po)g(D (8.7

Since the external forces are only functions of
position, the contribution they make is simply

(5.8)

dL
(—J) = [pdx,x, X pF.
ext

dt

In the previous section we demonstrated that the
average force on a molecule at x, due to the pre-
sence of all other molecules is

fOx,,x, + 1)

drto’(r)
f T’ (v f(l)(xl)

Hence, the intermolecular forces contribute
fpdx %, X [drfe’f @ (x,,%; + 1)

to the torque acting on the molecules in R. Apply-
ing Eqs. (4. 5)-(4.9) to the above, we obtain

dL
<—-_R> = [pdx x; X (56; (5.9)
dt int

« 3 [dr rry’ 7).
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Now, the tensor
far rr¢’y

is obviously symmetric, so that the arguments
used on A in Eqgs. (5.5)—(5.7) also apply here, and
Eq.(5.9) may be alternatively expressed by

AL
<_£) =— jndxl X, o (& farfrery x x;).
at /ine

(5.10)

Adding the contributions due to flow, external
forces,and intermolecular forces, equating the
sum to the rhs of Eq.(5.2),and using the fact that
R is arbitrary, we obtain the balance equation for
the transport of angular momentum:

o) e
=x; X pF — 53{—1 ‘[(“;L‘ Jdpy(p3 — Po)
x(py — PPt 2 fdrfw’?) X 31]
:xlx[ ail'<—%ﬁfdp1(P1_Po)

x (py — PolE (1)+2]drrr¢’7ﬂ

(5.11)

The motivation for expressing this balance equa-
tion in two alternative forms will be made appar-
ent when we discuss the stress tensor.

6. TRANSPORT OF ENERGY

We ascribe to each molecule in a given pair the
potential energy 3¢,and we write »d(x,) as the
scalar potential due to the external forces of a
molecule at x,, so that

0

=—:—¢.

2%, (6.1)

With these definitions, the average energy of a
molecule at X, with momentum p, is

e(x,P1) =3 Ip, |2 + m®

£@(%,py;% tr Pz)

(6.2)
gW(x,,p,)

+ %fdrfdp2¢
while the average energy of a molecule located at
X, is

mf}‘+—

f(l)
8 (717_)1 fdp1 Ipy[2e® + %fdrf@)(xl’xl * r)¢>.
(6.3)

e(xy) =

2179

The total energy E, contained in the region Ris
then

Ep= [pdx,f D2 = [dx,pe, (6.4)
where ¢ is the energy per unit mass:
1
€=—e. (6.5)
m

In the usual manner we find that the rate of change
of Ey is given by

dEy,

3 9
T = x5+ Vo )€ (6.6)

The contribution due to flow is simply
dE 1 3
R
(“‘) =“Efndx1g"fdpl(l’1 — PolgWe
dat flow 1 (6 ,7)

and it should be noted that, since ¢ depends solely
on xy, the external forces make no contribution to
the flow term.

The average increase in the kinetic energy of a
molecule at x;, with momentum p, in the time 6¢ is

1
Fo + —
( Py mg (1)

+ r,p2)>6t

Py fdrfdp2f¢'g(2) (x1;p1;x1

and the average increase of the potential energy
of such a molecule in 8¢ is

od
(Pl =, 5‘—(1') Jar [dp,(p,

Fo'g @Ux,,py5x, + r,pz)) ot,

—py)

where we have expanded ¢ and ¢ through first
order in 5¢ to obtain the result. Multiplying the
last two expressions by g (¥ , integrating over all
p; and over Xx,eR, dividing by 6t,and adding on the
flow contribution, we find

dE,,
at -/ Rdxl 3%,

(P1 — pyleg (0

+ fRdxlfdrfdpz ﬁ (Pl + pz)

T2 B(x,,py;x; + 1,D,), (6.8)

where we have used Eq.(6.1) in the above.

We shall now proceed in a manner similar to that
of Sec.4 to express the second term on the rhs of
Eq.(6.8), the intermolecular term, as the integral
over X;¢R of the divergence of a vector quantity.
Transforming to w,r,and p coordinates, the inter-
molecular term may be written as

ﬂzdxlfdrdu’f"fdwfdp -’}W—‘pl"(w,r;p,x1 + ir).
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Defining b(r, x) by

b(r,x) = [dw [dppT(w,T;D,X), (6.9)

we have

b(~r,Xx) = fdwfdppl‘(w,—r;p,x)
= faw [dppT (—w,1;p, %)
= [aw [appT (w,r;p,x)

= b(r,x), (6.10)

where we first used Eq.(2.8) and then let w > —w
without altering the limits. We may now write the
intermolecular term as

1 -
= [pdx, [dr ¢'Teb(r,x; + ir)

1 "
== Jadx, [dr ¢'Teb(—r,x, — i)

o Judxy [dr ¢'Fe[blr,x; + ir)

31)]

—~b(r,x, —

=g [ dx, [dr '3+ [aw [dp

X p{T(w, r;p,%; + 21) — T(W, 1; p, X, — 21)].

But, applying the arguments used in Egs. (4.7)-
(4.9), we find that

I'(w,r;p,x, + 3r) — I(W, r;p,X; —31) =T T,

%y
(6.11)

where T is given by

dn r(w) I'; p) xl + 771')-

(6.12)

Finally, the intermolecular contribution may be
expressed as

1 3 ~ 1 =
andxla_ﬂ fdrze'r fdwfdppl".
Adding up the contributions and using the fact that

R is arbitrary, we find that the balance equation
for the transport of energy may be written as

0 0
p(a—f + VO KI)E

2 1
= -(— — Jdp, (p; — polg Ve

— 1/2
T(w,p;r,X,) =f_1/2

1 -~ E=—y¢
+mfdrr¢r-fdwfdppr‘>. (6.13)
While the term in large parentheses may be inter-
preted as the total energy flux, in order to find the
heat flux we shall first need to determine the
stress tensor.
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7. THE STRESS TENSOR

In hydrodynamics and the theory of continuous
media it is assumed that the rate of change of P,

is due to forces acting on the surface of R (stresses)
and external forces (or body forces). If da is an
element of the boundary surface of R, and if T is

the stress tensor, then the force actmg on da is
n-Tda where 0 is the outward directed unit vector
normal to da. Thus, if T exists,

dPy

= = gdaﬁ-'r + fRdxlpF

so that the momentum balance equation of hydro-
dynamics is, from Eq. (4. 2),

fdx1<pF + (7.1)

0 i 0
— + VY, \V, =2 T + pF
p(at Vo ax1>v0 3%, pF. (7.2)

The rate of change of L, in hydrodynamics is

daL, -
v yﬁldaxl XnT + fﬁdxlx1 X pF

= fRdx1 [xl

giving us, with Eq. (5. 2), the balance equation

)] (7.3)

(7.4)

Now, it is easy to verify that

d
i

1)
0

0
=X, X (a_t+v0.5?

which may be combined with Egs. (7.2)-(7.4) to
give us the further condition on T:

J
Xl X <—ax—1 ) +
This condition is. satisfied if and only if T is
symmetric.

(7.5)

(7.6)

Hence, the conditions that any candidate for the
stress tensor must satisfy are, first of all, that it
satisfy the momentum and angular momentum
balance equations, secondly, that it be symmetric,
and thirdly, that it reduce to the familiar result
obtained from the virial theorem for a system in
thermal and mechanical equilibrium. Thus, from
Eqgs. (4.10) and (5.11), and from the fact that, in
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equilibrium, 4 depends only on r, the stress tensor
is given by

1 .
T =— - Jdp;(p, — Po)(P; — Pl ™

+ 4 [dr rro’y. (7.7)

8. THE HEAT FLUX

In hydrodynamics the rate of change of E is
ascribed to the work done by the surface forces
and the flow of heat across the boundary surface of
R. Thus,

dE,

gt— = f}eda ﬁ'T‘Vo -

9gda n-q

= J %, 57— a (T-vO —q), (8.1)

where q is defined as the heat flux, or conductive
heat current. The balance equation for the trans-
port of energy is, from Eq. (6. 6),

4 o )¢
p<é—t-+v0 a—x1->€—$— (TVO'—q) (8.2)
so that, from Egq. (6. 13),
1
q=Tevy + — Jdp,(p; — polg e
- _ZLm Jart¢’re [dw [dppT. (8.3)
Inserting the rhs of Eq.(7.7) in the above, and
noting that
y(r,x,) = [dw [dpT, (8.4)
we find, with a little rearrangement,
1
a == fap,(p; — po)lp; — Pol2%®
2m
1
o fdp, Jdp, [ar(p, — py)o
Xg(z) (xl’pl;xl +r, pz)
1 ;. - —
~ _/drr¢>’r-fdp fdw(p — pT. (8.5)

Any candidate for the heat flux not only must satis-
fy Eq. (8. 2), but must also vanish for a system in
thermal and mechanical equilibrium. By inserting
the Maxwellian form of the momentum distribution
functions on the rhs of Eq. (8. 5), it is easily veri-
fied that our expression for q vanishes in equili-
brium, and hence is the correct choice.

9. TRANSPORT OF INTERNAL ENERGY

The internal energy of a molecule located at x; is
defined as the sum of its average intermolecular
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potential energy and the difference between its
average kinetic energy and (1/2m)|p,|2. The
appropriate transport equation is obtained easily
from the balance equations for momentum and
energy transport.

We observe that

EE'X d
T 0\ex,
d J \, 0
—ol— +v.»o—]1 2 ¢ —
p(at Vo axl)zl"0| T, B

ov,
>+T—0
0%y

(9.1)

where we first asserted the symmetry of T and
then used Eq. (8. 2). Inserting this result into*
Eq.(8.2) we obtain

9 9 1 2 2,8 ®
p<at + Vg ax> [2m2 Jap,(Ip, 12 — Ip,| )f(l)
1 F(x,,x, + rﬂ_ AL 2
Wfdr‘p FO = E_E q,
(9.2)

where the term in square brackets is the internal
energy per unit mass. Now, the kinetic temperature
# is defined by

@)
8(x;) = fdp1|p1 p0|2§(—1v)—
1 2 _ 2,89
_Wfdplﬂpll N )f(l), (9.3)

and we define the internal potential energy « by
f@®xy,x, +1)
FO

so that # is the average potential energy of a mole-
cule at x;. Inserting these definitions into Eq. (9. 2)
we obtain

1 d
Par

the balance equation for the transport of internal
energy.

u =3 [dre (9.4)

ALY d

+VO ax>(26+u) Té———"a—x—l

‘q
$]
X

(9.5)

10. PROPERTIES OF A SYSTEM OF RIGID
SPHERES

In the previous sections we have shown that well-
defined representations for the stress tensor and
heat flux may be found for systems with a contin-
uous intermolecular potential ¢. We shall now
demonstrate that this is also true for a system
consisting of perfectly rigid spheres of mass m
and radius o.
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Before we start, we need to consider two more
characteristics of the distribution functions I' and
y for a system consisting specifically of rigid
spheres (the definitions and some of the general
properties of these functions are in Sec. 2). First
of all, since two rigid spheres cannot overlap, we
note that I and y must vanish if » < 2¢; clearly
these is a discontinuity at » = 2¢. In this work we
shall define T'(w, 20T; p, x) and y(20T, X) by

I'(w, 20T;p,x) = limI[(w, (1 + €)20T; p, X),
€+ 0

| X (10.1)
y(207, x) = limy((1 + €)20T, %),
€=+

that is, as the limit » — 20 taken from above,
These quantities are perfectly well defined and
have a definite physical interpretation.

In order to develop the second property, we con~
sider the collision of two rigid spheres at the time
¢t. Suppose that, at the time { — 0, their momenta
are

P; =Py, T P1°IT and P, =P, + P, err,

where p,, and p,, are the projections of p, and
p, in a plane perpendicular to T, so that after the
collision, at the time { + 0, the1r momenta are

Py =Py, T Pp°IT and p; =P, +Py°Tr.
We observe that the collision has duration zero,
so that no simultaneous triple, or higher multi-
plicity, collisions occur. Thus, if two molecules
are approaching each other at the time { — 0 with
separation 2¢ + 0, the outcome of the collision is
completely determined. The probability that two
molecules are approaching each other at¢{ — 0
with momenta p, and p, must be equal to the pro-
bability that they are moving apart at £ + 0 with
momenta p; and pj, so that I' must have the
property

I'(w, + wW*TT, 20T;p,x) = [(W, — w*IT, 20T; D, X)

(10.2)
for a system consisting specifically of rigid
spheres.

COLLISION
CYLINDER

COLLISION
SPHE RE

FIG.1. Collision of
two rigid spheres
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11. COLLISIONAL CONTRIBUTIONS TO THE
EQUATIONS OF TRANSPORT

The differences in the equations of transport be-
tween a system of rigid spheres and a system with
a continuous intermolecular potential arise only in
the intermolecular contributions., Rather than re-
peat all of the formalism of the first nine sections,
our prescription will be first to calculate the col-
lisional, or intermolecular, contributions of a sys-
tem of rigid spheres to the various transport pro-
cesses, and then to modify the previous results
accordingly., We shall be concerned with the aver-
age increase of some property of a hard-sphere
molecule located at x,, with momentum p; due to
collisions with other molecules in the time 6¢.
Hence, we need to know the probability that such a
collision occurs in the time 6¢.

Suppose we are given a molecule at x; with momen-
tum p,: the probability that it has a collision with
another molecule having p, ¢ dp, and x; € dx,
(20)2(1/m) | (py — p;) T1dN25¢t in the time 6¢ is

g(2)(x1, pyix; t zor,Pz)
& M(xy,p,)
X dQdp,6t,

(20022 lwe £ | H(— weF)
m

(11.1)

where d? is the solid angle subtended by dx, at x,
(see Fig.1), 20 is the radius of the collision
sphere, and the requirement weT < 0 (H(y) is defin-
ed in Sec. 3) ensures that the molecules will collide
in the limit 6¢ - 0. Thus, if Ay is the increase in
the property x of the molecule at x;, with momen-
tum p,; due to a collision with a molecule at x, +

20T with momentum P2, then the rate of change of
X p due to collisions is

(7).

X Aﬂw-?\H(—

f dx, [dp, [dp, fdQ (20)

we D) g ®(x;,py; %y + 20T, p,)

=—fdx1fdpfdwfdﬂ 20) A WeT H—w-+T)

X I'(w, 20T;p,X, + oT), (11.2)
where X ; is the amount of x contained in the region
R.

The momentum increase of the molecule at x; due
to the collision is we rr so that

4P, .
<—at_@>col - -&dxlfdpfdwfdﬂ (2—::1)—

X (weT)2T H(—w-T)T; (11.3)
the increase in angular momentum is x; X (Ap,)
giving us
dLR (20-)
<d—t>c — [ dx,x,x fdp [dw [d



STATISTICAL DERIVATION OF STRESS TENSOR

X (weT)2T H(— weT)T; (11.4)
and, as the increase in energy of the molecule at
x, due to the collision is (1/m)(weT)(p+T),

(%?) col - fRdxlfdpfdwfdQ <z_;;>z

X (WeT)2p+T H(—w-T)T. (11.5)
The integrands in Egs. {11. 3)—-(11. 5) depend on

we T precisely in the same manner; namely, through
the function (w+T)2 H(— w+T)T'. But, from Eq.
(10. 2), we see that I" is an even functxon of weT.
Hence, if we integrate over w before we integrate
over §, and if we break up the integration over w
into an integration over we Tr (where T is fixed)
and then an mtegratlon over w,, we may replace
H(—w-*T) by % in the mtegrand w1thout altering the
result. As the order of integration is arbitrary,
we shall assume in what follows that this substi-
tution has been executed.

12. THE BALANCE EQUATIONS, STRESS TEN-
SOR, AND HEAT FLUX FOR A SYSTEM OF
RIGID SPHERES

Equations (11. 3)~(11. 5) are the collisional con-
tributions to the transport of momentum, angular
momentum, and energy for a system of rigid
spheres. Each shall replace the appropriate inter-
molecular contribution (with subscript int) in the
earlier work for a system with a continuous inter-
molecular potential. As in the earlier work, we
shall express each contribution as an integral over
X, € R of the divergence of a tensor, or vector,
quantity. This is quickly accomplished by observ-
ing that each collisional contribution contains

[do [aw T(w+T)2T(w, 20T; p, X, + oT)
= - fdedW T(weT)2I(w, —20T; p,X; — oT)

= — [dQ [dw T(w*T)2I'(— w, 20T; p, X, — OT)

9 A _9.(3
<at + v, X 1)"0 pF 3%, <77fdP1(P1—Po)(P1

the angular momentum equation is
i i
P <at TV 5%

+ g:TSfdpfdwfdQ ??(w-?)zf),

and the energy balance equation is

i a\_ _ 8,
P(ﬁ”o a’:§>“ 3%,

3 o~ o
~—Po)g(l) + %:L— fdp faw [as rr(w'r)2I‘>,

1 @ , 203 a A ~\oTs
<—2—;1--2-fdp1(p1 -—-po)lp1| 204 + ﬁfdpfdwfdﬂ r(p-r)(w'r)21‘>.
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= — [dQ [dw T(w*T)2T(w, 20T; p, X, — OT)

= 1 [dQ [dwr(w +T)2[T(w, 20T; p, X; + oT)

— I(w, 20T;p,X; — 0OT]

=0 JdQ [dw TH(wT)2 -a—i—l-f(w, p; 20T, X,),

(12.1)

where, in the first step we let r » —r without
changing the limits on €, in the second step we
used Eq. (2. 8), in the third step we let w— —w
without changing the limits, and in the last step
we used Eq.(6.11). Inserting this result into Egs.
(11.3)-~(11. 5), we obtain

dp

(12. 2)
dLpg 3 2¢3
(7?) col [ ax;x, x %, m fdpfdwfdﬂ
X Tr(weT)2T (12.3)
dER 3
<—dt—>c01='f 13‘{‘—“fd Jaw fag
X ¥peT)(w-T)2T. (12.4)

It is now a straightforward matter to obtain the
balance equations of transport for a system of
rigid spheres; we simply perform the aforemen-
tioned substitution of each collisional contribution
for the appropriate intermolecular contribution in
the balance equations obtained for a system with a
continuous intermolecular potential [Eqs. (4.11),
(5.11),and (6.13)]. We must also delete the terms
containing ¢ (as opposed to ¢’) in the energy per
unit mass and in the flow contribution in the earlier
energy balance equation, Eq.(6.13), since there is
no long-range intermolecular potential in our hard-
sphere system. Performing these operations, we
find that, for a system of rigid spheres, the momen-
tum balance equation is

(12, 5)

9 1
> (xl x VO) =Xy X pF — X4 X 5_1'< fdpl(Pl —Do)(P1 _po)g(l)

(12.6)

(12.7)
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From the above, and the discussion of hydrodyna-
mics in Secs.7-9, it is clear that the stress tensor
T is given by

¢y

T=~ ;nl—fdpl(pl —po)pP, —Py)E

203 ~= - 2—
——m—fdpfdwfdﬂ rr{(we*r)2T (12.8)
for a system of rigid spheres. Inserting the equili-
brium form of the distribution functions, one quickly
obtains agreement with the virial theorem for a
system in thermal and mechanical equilibrium.

The heat flux q is found as before by setting the
term in large parentheses in Eq.(12.7) equal to
g—T 'VO to obtain

(6)]

4 == [dp,(p; — Po)(D; — Do)

Im?2

—2— fdpfdwfdﬂ f'(pl —Py) s T(weT)2T.

(12.9)
Since a hard-sphere molecule possesses no inter-

molecular potential energy, the transport equation
for the internal energy is simply

ad d 3
P(az*"o‘aq) o

13. SUMMARY OF RESULTS

We have shown that a single-component system of

spherical molecules possessing either a continuous
intermolecular potential ¢{r), or a hardcore inter-
action of radius o, obeys the general hydrodynamic
equations of motion;

vy 3

=Tla—x:-—

R (12.10)

oq_

ap+a

=7 *(pvy) =0, mass transport, (13.1)
d d 0
p (at A\ 5% ) 0= 3%, *T, momentum
transport, (13.2)
2] 2 0
<at+v0 o )(x1Xv0)=x1XpF—-a§-I-(T><x1),

angular momentum transport, (13.3)

9 d _ 0 imee
p(at + Vo oy >e 3%, (T+vy—q), energy
transport, (13.4)
? 3 \(.3 1\ _ % 9,
p<at Vo* ax><2m9+ >_T'é'x_1—ﬁ; e
internal energy transport, (13.5)

where m = mass of one molecule, p. = mass den-
sity, v, = macroscopic velocity [= (1/m)py}, F =
external force per unit mass, T = stress tensor,

€ = energy per unit mass, q = heat flux, 6 = Kine-
tic temperature,# = average intermolecular poten-
tial energy of a molecule at x;.
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For a system having a continuous intermolecular
potential ¢, we have found that the stress tensor
and heat flux are given by

T=- ,,% Jap,(p; — )Py —po)g™® + £ fartre'y
and (13.6)
a=— Jdp; (p; — po)lp; —Po |28

M 9171 Jap, fdp, [ar (b, — po)e

x g2Yx,,py;X; +1,pP,)

_'z‘rlﬁfdr T¢'r+ fdw [dp (p — p,)T. (13.7)

For a system consisting of rigid spheres of radius
o we have found that

(6]

1
T=—— Jdp; (b, —Po)D; — Polg

_ 23 Jdp [dw [dg TT(w+T)2T(w, p; 20T, x,),

(13.8)
q= 2—1—2 Jdp, (b, — po)p; —pgl2¢ P
292 [4 2 P
> pfdwfdﬂ r(p — py) *T(w-T)2
xT (w,p; 20T, X,). (13.9)

In the last four equations we have used the notation

_ 1/2
y(l‘,xl)=f_1/2d77 wr, Xy +77),

(13.10)

T(w,p; T, X%,) f ® dn T(w, r;p, X, + 1),

1/2

In obtaining these results we have assumed that
the interactions between molecules may be des-
cribed by classical statistical mechanics, that the
external forces are conservative and depend only
on position, and that the interactions of molecules
far from the system boundary with molecules in
the boundary material are negligible.

14. DISCUSSION

The stress tensor and the heat flux may each be
considered as the sum of two parts which we label
a local and a nonlocal contribution. The local part
depends only on the distribution function g (1),
whereas the nonlocal contribution depends on f @)
(=y),or g@)(=T). The local contribution is a
familiar result of the kinetic theory of gases and
is discussed in great detail elsewhere.! It is the
nonlocal contribution that interests us here. We
call any contribution depending on ) or g @) non-
local because it depends on what is happening to
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the system not simply at x,, but also at points near
X,. Thus, we expect the nonlocal contribution to be
highly sensitive to the distribution of molecules in
the substance making up the boundary wall (we
have ignored this contribution here) when x, is
near the system boundary.

The functions 7 and T play an important role in
our theory. They appear in the stress tensor and
heat flux in the terms due to the force exerted

and work done, by molecules outside of the region
R on the molecules inside R. They are obtained by
averaging y and I in their center-of-mass depen-
dence over the straight line connecting x; — sr

to x; + zr. To understand the importance of this
averaging process, consider the case when the sys-
tem is perturbed by a plane wave of such short
wavelength that any significant variation of ¢ or

¢’ occurs over many wavelengths. In the limit of
such short-wavelength phenomena, it can be expect-
ed that the dependence of 7 and T on r will become
insensitive to the disturbance. We shall see that
this is so for the elementary example considered
in the next section.

In order to understand the difficulties encountered
with the Taylor expansion obtained by Irving and
Kirkwood, we shall now examine the trace of the
nonlocal part of the stress tensor, 4pT ., for a
system with a continuous intermolecular potential.
From Eq.(13.6) we find

opTine =5 Jdrre'y = Jdo [Zdr r3¢7y

We quickly obtain their result by expanding 3
about y(r, x4 ):

(14.1)

1/2
V(T;xl) = _];1/2 dn '}’(r) x]_ + 771')

f nE <nr' >v(r X1)

o1 (12 N[
S ()
0
=2
0

d \n
x1> Y(r) xl)

an 1;_' 0
(2n+1' 2 9x,

giving us

)2”y(r, x), (14.2)

APTlnt = %%(Zn—ﬁ-fﬁ fdQ(zruax > ”fdr

X 7230 (r)y(r, x,).

Let us examine the integrand of
00
{dr ’}’2’”3(1)'(1’))/(1',}{1)

in the limit of large ». As y becomes the product
of the number densities,

Lim y(r, %) =Pz, — 30/ Pz, + i), (14.3)
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it does not vanish for large 7. Thus, either ¢’ goes
to zero faster than (1/7)%"3 or the mtegral blows
up and the nth term in the expansion is not defined.
Hence, for a square well potential or a Yukawa
potential the Irving and Kirkwood expansion pro-
duces meaningful results, but for a Leonard-Jones
potential the expansion is ambiguous. The reader
may easily verify that the same difficulties are
encountered with the heat flux. It is a straightfor-
ward matter, however, to avoid this pitfall. If one
wants to determine T, one must know, or assume
some form for,y(r,x). But, if one knows y, it is
just as easy to integrate over n to obtain 4 and
then perform the integration over r as to perform
an expansion under the integral. Any long-
wavelength expansion can then be made on the ex-
pression for T obtained in closed form.

We gain further insight into the Irving and Kirk-
wood expansion by contructing a Fourier decom-
position of y(r, x) in x:

y(r,x) = [dk ' *g(r, k). (14.4)
By inserting Eq. (14. 4) into Eqgs. (13.10) and (14. 4),
we quickly find

7(x,x;) = [dk ¢'*'*1 g(r, k) iif_f.;'ir'_’ (14.5)
and :
2pTiny = 1 fdk e'F %1 Jdrve’ g(rk) ——— smzk r
(14.6)

The reader may easily verify, by applying the
power series of Eq.(14.2) to

y(r,%,) = [dk "1 g(r, k), (14.7)
that the Irving and Kirkwood expansion consists
of expanding sinjk~r/3k T in powers of (3k+r) in
the integrand of Eq. (14. 6):

R D ik.
2pTine = 5%(2(7# [dk ¥ %1
X fdrrqb'g(r,k)(%k-r)z"

While the lack of convergence of the series is
immediately apparent for a realistic potential, we
shall find yet another shortcoming of the expan-
sion, even for well-behaved potential functions, in
the next section. Although the first term of the
series provides an excellent approximation for
long-wavelength phenomena, the remaining terms
may not provide useful corrections to this limit.

15, AN ELEMENTARY EXAMPLE

Suppose our system is a fluid which is slightly
perturbed by a density wave of angular frequency
w and wave vector k. We shall assume that the
amplitude of the wave is small and that it may be
considered a constant over distances of many
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wavelengths. For such a disturbance the density
is given by

f(l)(xl) =n[l + € cos(k,*x; — wt], (15.1)
where n is the number density in equilibrium. We

shall also assume that in the perturbed state the
two-particle distribution function is of the form

FBAxy,x5) = Dx,) F Pxy)hr), (15.2)
where we require
Hm (r) = 1 (15.3)

in order that f ) have the proper asymptotic be-
havior.

With these conditions we find
y(r, %) = n2h(r)[1 + 2€ cos(ky* X — wt) coszkyer]
+ order €2, (15.4)

where we shall ignore all terms in €2, so that

7(r,x,) = fl,zdny(r x, +7r)

=n2h(r) [1 + 2¢ cos(k,°x, —
(15.5)

The intermolecular contribution to the stress ten-
sor for a system with a continuous potential is,
from Eq. (13.6),

T, = 3 [drire’ (0)7(r,x,) (15.6)
so that, for our example,
Tine = 202 [drfro’(rh@)

+ € cos(ky x,; — wi)n? f-dri-rrb’('r)h('r)

X sink,°r/k, T, (15.7)

In order to determine the Irving and Kirkwood
expansion for this example, we construct the

Fourier transform of y(r, x) [see Egs.(14.4)—(14. 8)]:

G (r,k) = n2h{5 k) + € cossk,y rle " ok — ko)
+e' ot + ko,

where the 0's are three-dimensional Dirac § func-
tions in k space. Inserting this into Eq. (14.5) for
y, and the resulting expression into Eq. (15.6) we
find that the Irving and Kirkwood expansion does
not result in an expansion of the coefficient of
cos(k,*x; — wt) in Eq. (15.7)! Writing

. 1

sinzk,*r

= 0 cosik,°r,
éko'r

sinkg*r
ko°r

we find that the expansion consists of expressing
sinzk,*r/3k,°r as a power series in (3ky°r) with-

wt) sinky*r/kqer].
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out expressing cos%ko'r in similar fashion, This is
clearly a shortcoming of the theory as every term
in the expansion of the coefficient of cos(k,*x; —

w!) contains all the even powers of —ko'r We still
encounter the previous difficulty in that the contri-
butions of most of the terms are not defined unless
¢’ goes to zero in the limit of large » faster than
any positive power of (1/7). The correc! long-wave-
length limit is found by setting sink,*r/kyer = 1

in Eq. (15.7), giving us

(T ) 1o
x [ Carr3e o,

where I is the unit tensor. Hence, in the long-wave-
length limit T, , is spherical and there are no
shears present unless the kinetic contribution is
nonspherical.

=[(1 + 2 € cos(kyx; — wt)) 20 p2

(15.8)

In order to determine T, , in the general case we
shall assume that k;, is in the &; direction. Per-
forming the integration over angles in Eq. (15.7)
we find

o0
(o), y =302 [Zar o
3
+ 4ne cos(ky*x, — wt)n2 food'rr3¢’h L
0 ko7
X (sinkyr — ko7 cosk ) (15.9)

and

(Tlnt)ll (Tm‘)zz 27 p2 f dr¥3¢'h

+ 2me cos(ky*x; — wi)n? fo drr3¢'h

1 . 1\ .
X I:W Sl(ko’}’) — <k;07> (sinkyr — ko COSko’J’
(15.10)
where,11
sitx) = J,*dy S—‘y“i"— (15.11)
All of the off-diagonal elements vanish, but the

stress quadric is now an ellipsoid of revolution,
so that the fluid is undergoing shear.

It is interesting to note that, in the short-wave-
length limit (k, — ©), Si(ky?) — 27, s0 that

2
(T g 20t [rarrsen +oxtor (1)

ko
(15.12)
and
Vi o0
(Tint) 1,1 =(T int) 2,2 3 n? fo drv3¢'h
72
+ €5 cos(ky x; — wt)n? f;odrrqu’h
2
+ order <kL> . (15.13)
0

Hence, in the limit of short wavelength the stress
tensor returns to its spherical form. Moreover,
if in this limit %#(») approaches the equilibrium
radial distribution function,then T, , is unaffected
by the disturbance and the perturbed part of T,
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in the k, “direction” vanishes more quickly than
the perturbed part of T, , in the e; and e, “direc-
tions.”
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The multiple scattering theory of radiative transfer, in the light of Case's normal modes, is investigated.
In particular, it is shown that in the Neumann expansion of the total intensity the expansion coefficients
are related to the normal modes in the form of certain integrals over the continuum Case spectrum. In
the general formulation of the theory, the phase function is kept arbitrary. Two types of boundary-value
problems are considered which involve semi-infinite and bounded media. To illustrate the structure of
the general formulation, the isotropic case is treated in detail.

INTRODUCTION

In boundary-value problems of radiative transfer
one often seeks solutions of the transfer equation
expressed as a powers series in the single scatter-
ing albedo w.1~3 The coefficients in such a power
series, the so-called “Neumann coefficients,” are
associated with the physical process of multiple
scattering of the radiation traversing some given
medium (c.f. Van de Hulst4). The radiation at any
given point in the medium is decomposed into com-
ponents according to whether it has suffered no
scattering, or has been scattered once, twice, or »
times. At every stage of this process it is re-
quired that the equation of transfer be satisfied
such that the scattering of the intensity in the #th
process will give rise to a source function of the

(n + 1) times scattered radiation. The #7th coef-
ficient in the Neumann series then represents the
nth order of scattering.

In this paper we seek the relation of such an ele-
mentary process to Case's singular normal
modes.5 In other words, the relation of Neumann
coefficients to the elementary solutions of the
transfer equation is investigated. The general for-
mulation is presented for an arbitrary phase func-
tion. The two types of boundary-value problems
we consider involve semi-infinite and bounded
media. To illustrate the detailed structure of solu-
tions, we treat the isotropic case in detail. How-

ever, the whole procedure is kept sufficiently
general so that, for a gray atmosphere, the exten-
sion to other geometries remains straightforward.
The basic tool we use is Case's Green's function
technique® and its further developments are dis-
cussed in Refs.7 and 8

1. GENERAL FORMULATION FOR MULTIPLE
SCATTERING

The equation of radiative transfer we consider is

pL Kr,Q) + Itr, @) = £ [ a'Pl@-2)i(r, ),
o7 4m (1.1)

where we have employed the usual notation. Thus,
7 is the optical depth, 2 is the unit vector pointing
into the direction of propagation of radiation. If

n represents the unit normal at 7 = 0 pointing into
the volume of interest, then p = n+£. Finally w is
the albedo for single scattering,i.e., w = oo + K)~}
where 0 and K are the coefficients of scattering
and extinction, respectively, P(2+R’) is a rotation-
ally invariant phase function, and /{7, ) is the
total intensity. Since the frequency occurs as a
parameter in Eq. (1. 1), this dependence is not ex-
plicitly indicated. In general, of course, / and w
will be. functions of the frequency.

Let I, (1, %) represent the intensity of the »n-times
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in the k, “direction” vanishes more quickly than
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series, the so-called “Neumann coefficients,” are
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cussed in Refs.7 and 8

1. GENERAL FORMULATION FOR MULTIPLE
SCATTERING

The equation of radiative transfer we consider is

pL Kr,Q) + Itr, @) = £ [ a'Pl@-2)i(r, ),
o7 4m (1.1)

where we have employed the usual notation. Thus,
7 is the optical depth, 2 is the unit vector pointing
into the direction of propagation of radiation. If

n represents the unit normal at 7 = 0 pointing into
the volume of interest, then p = n+£. Finally w is
the albedo for single scattering,i.e., w = oo + K)~}
where 0 and K are the coefficients of scattering
and extinction, respectively, P(2+R’) is a rotation-
ally invariant phase function, and /{7, ) is the
total intensity. Since the frequency occurs as a
parameter in Eq. (1. 1), this dependence is not ex-
plicitly indicated. In general, of course, / and w
will be. functions of the frequency.

Let I, (1, %) represent the intensity of the »n-times
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scattered radiation. Then for the nth-order scat-

tering the equation of transfer to be satisfied is
d

bam1,(7,Q) +1,(7,9) =

w ’ ! ’
Eﬁm PQ-Q),_,(1,2).

(1.2)
One may readily check upon summing both sides
of Eq. (1. 2) with respect to # from 0 to ®,that the
total intensity
I(r,Q) =

¥ 1,9 (1.3)
n=0

is a solution of Eq. (2.1), as it should be.

It is convenient to separate out the azimuth angle
dependence in Eq. (1.2). This we do as follows.

Writing
o0 . ,_
P@-9)= 2 "7s (), (1.4)
m==0
d I(m)( )__LJ‘Zﬂdq)eim‘ﬂl ( Q) (1 5)
n AT B =57 00 n\Ta 350 ’
we see that Eq. (1.2) then becomes
b 06w + 1)
5 1 aws, b w) 17 @, w). (1.6)
Now, since e i are complete, we have
2 pm ",
Lo = e, n. (1.7)

m=—o0

Integral Representation of Iu("') (Half-Space)

Following the procedure discussed in Ref. 8, we
first consider the time-reversed Green's function
for a purely absorbing medium,i.e.,

2
RGO, = 57, o)+ G(T,— BT, T o)

= 6(r — o)1 — ug). (1.8)

Noting that G satisfies the reciprocity relation

G(Ta'#;To,—No) =G(T07u0;77u)’ (19)
we combine Eqgs. (1.6) and (1. 8) in the conventional

way and obtain

gikT

3 1
I,fm)(T,#)e(T) = uI? (0,1 5 f_: dk T+ 7

(m)
f dk1+zk;1R 1&; 1),

m
- O

I
Fig.1. Contour in
the complex K plane.

(1.10)
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where the Fourier coefficients R " are defined

as [see Ref. 9]

”m B -1 1 m,
RY(esw) = [ dre T [ aw's, (w1, ’<r,w)(, )
1.

and ©(r) is the Heaviside step function. This
symbol () will be reserved throughout for the
step function.

We note that once the coefficients R(m) are deter-
mined, then /" are known everywhere In the
usual fashion, an equation which determines these
coefficients is obtained by letting T = 0 in Eq.
(1.10). Before such a limit is considered we shall
fuzst examine certain singular properties of
R" “(k;p) in the complex k plane. Then re-expres-
sing the right-hand side of Eq. (1. 10) over the
Case spectrum,? we will utilize those singular
properties and obtain certain modified coefficients
which are relatively simple to evaluate. We will
find that the modified coefficients are directly
related to Case's normal modes. Let us remark
here that Neumann coefficients N, are defined
simply as
I7,9) =

i w"N,(7,9), (1.12)
n=Q

where N, are independent of w and correspond to
the multiple scattering process in a purely scat-
tering medium (v = 1).

Singular Properties of R ™

Pursuing the procedure of Ref. 8, we take the
Fourier transform of Eq. (1.10) with respect to
7, multiply both sides by S, (4, 1) and integrate
over 4, to obtain

Sty 1)
z—

RO (a5 =00 a5 + 5 [ L

x R (), (1.13)

where for convenience we have set 2 = i/z and
defined

m, 1 R AL ' S J,
Tew) =2 [ dww'r ’(O,u)—;"%f‘—)a.w

and used the symmetry of S, (i, 1), i.e.,

S, ) =S, (v, 1. (1.15)

From Eq.(1.13) it is clear that R (’")(z p) as func-
tions of z are sectionally holomorphlg: in the com-
plex z plane cut from — 1to 1. If R + (v; )

" (2; 1) as
), then the sums

represent the boundary values of R

z approaches the cut (from bott

and differences of these boundary values are re-
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lated in the manner as shown below,

R ;1) + RO (u; ) o o
)t
_ Aoy 2 B BY—R, (15 v)
==l Ow— S
1 1 d ! S ("‘L,’ V) + ’
2@ [ T R O ()

ir” Jaap—-p S, (kY
— R (1), (1.16)

where @ represents the principle value and we have
used Plemelj's formula,

1 1
=@
(v—m), v— i

Finb(v — ). (1.17)

It is interesting to note that the left-hand side of
Eq. (1.16) is independent of v. The reason is
simply that by virtue of Plemelj's formula (Eq.
1.17) the term associ('i ed with the sum of the
boundary values of Rnr_"l (2; 1), on the right-hand
side of Eq.(1.13),is a delta function. This “fac-
torization” property of Eq. (1.13) turns out to be
very useful in obtaining the modified coefficients
which are directly related to continuum normal
modes, as we shall see presently.

Keeping the recurrence relation (1.13) in mind, we
note that other than the branch cut }n the complex
z-plane extending from — 1 to I,an)(z;u) have no
other singularities. This implies that in the spec-
tral representation of In(’”) (r,w), the discrete
modes, which correspond to the discrete spectrum
of the transport operator of Eq. (1. 1) [the integro-
differential operator operating on the total inten-
sity I{r,®)], will not occur explicitly. This is
really not surprising, for the integro-differential
operator of Eq. (1.6) has only the continuous
spectrum for any fixed value of . However, in

the infinite sum over 1% (r, ), the discrete modes
will be generated from the dynamics of the recur-
rence relation (1.13). To illustrate this point we
shall later examine the isotropic case in detail.

Spectral Representation of I:"')

Now consider Eq.(1.10) and a contour around the
branch cut of Rfﬂ)l (%; 1) in the upper half complex
k ;’)”lane as shown in the figure. Since 7 > 0 and
R(_i(k; p) in the half-space are functions of 2 (and
;.le only, the integrals over the semicircle do not

contribute. Consequently,
14, we(r)

_ qm -r/y wi lﬂ_/ -t/v vV
=1 (0, we "rew + @ f ze

xR, (i) = BRI w) + 5 e 0w
x R (u; ) + RO (u; ),
(m)

where +(—) on R, ;(z;u),as before, represent the
boundary values as z approaches the cut in the

(1.18)
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z-plane (z = i/k) from the top (bottom). The last
term on the right-hand side, involving the sum

of boundary values, may be eliminated by means
of Eq. (1.9). The result, after change of variables
and rearrangement of terms, is

1, WS, (1, 1)
=T (e PO ) + ws, (1, V)
x [l av o we " T v — we THoq)
x [lav e ()8, 07, DD 5 v), (1.19)

where we have introduce9 the modified coefficients
F,fm) and distributions ¢ (u) which are defined by

T ) = — 1/2002[RE (w3 0) — R (15 )

4 (1.20)

an -

o'W = Lo Viu +A+(V);'A () 500 — ),

with 21 g (1.21)
AR) =1 ff_l—f‘—z_”. (1.22)

One may readily check that ¢ “(u) are Case's con-
tinuum normal modes® of the equation of transfer
for a conservative (w = 1) isotropically scattering
medium. For the sake of convenience, we intro-
duce another function defined by

U (1) = 0" WS, (k1) (1.23)
and rewrite Eq. (1.19) as
() RN TN
L™, we(r)s, (1, V) =T, "(rle "0
1 - P . (n) 7.
to [Cave ey GO0
- 1 ”
—we o) [ avEL( WL (5 v).  (1.24)

We remark here that functions ¥, are independent
of n. In the spectral representation of n~times
scattered radiation I,f”‘ [see Eq. (1.24)], the order
of scattering occurs only via coefficients I“,f"’).
Consequently, the functions ‘I',Z are fundamental in
the sense that they involve the scattering proper-
ties of the medium and not the order of scattering.
Finally, the coefficients '™’ are to be determined
by the boundary condition at 7 = 0. In other words,
at 7 = 0, we assume that
10,1 = 6,057 (0,1, 1 >0, (1.25)
where Iém) (0, ) for p > 0 is the known incident
radiation appropriately integrated over the azi-
muth angle ® [see Eq. (1.5)]. Then, the set of
equations which determine I, is
F,f"‘)(u; V) = wf_idu’\l/ v ) l“"(_"i) (u; v')

m

1 ;
—w [ v, L0 W

+6,003°(0, WS, (1, 1), p>0. (1.26)
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In particular

I 0 = 1970, 1)S (s, 1),  w>0, (1.27)
and
M, 1 e,
I“n( )(u; V) = wf_ldVW“(V" V)F( )(p, V')
—wfldv’\llw( ‘v)I"(" (v,
o AV T
u>0, n=l, (1.28)

This is the recurrence relation which determines
all the coefficients T’ "”), in terms of normal modes,
and the scattering kernel S, (s, v). Clearly F

are proportional to w”?. Therefore if we set

T (w0 = 0"A (1), (1.29)
then, A satisfy

0 l m,
AP = [ ave b AT @ v)

— [ v nAR e, w>0n 31,

(1.30)

with .

Ay (V) = 170,18, (u; v). (1.31)

Now in Eq. (19) if we divide both sides by S, (1, v),
then in terms of the coefficients A" defined by
Eq. (1. 29), the component of the radiation » times
scattered is given by

) A
e —u [ o (g
_f dV¢) (V) S((u y))A(m)( ’V)>

s ave we Al s

In particular, at any 7 > 0 the nth order back-
scattered (u < 0) radiation is

A s ),

n 1 v’
170, 0 =" [ dve’ (we
p<0.

The emergent intensity (r = 0) is

(1.33)

190,m =w f dve” WA (v,  w<o.

(1.34)
From Eqgs. (1. 33) and (1. 34) we conclude that for
n = 0, corresponding to the process in which the
radiation has suffered no encounters, the back-
scattered and emergent intensities are zero, as
they should be.

Let us now introduce the Neumann coefficients
by defining

. ' A(m)
) — E plme [e—‘i‘/“@(u) % (M, v)

N, (7,2 —T——j—sm )

m=—x

Vs Y)

1 m, ’
— [l avore) i A v )(
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+ fo1 dve”(we ™" AT (v ,u)} (1.35)

In terms of these coefficients the total intensity
I(r, ) at any optical depth 7 is given by

I(7,2) = iow"Nn(T,Q). (1.36)

We remark here that in practical calculations
this so-called “Neumann expansion” [Eq. (1. 36)]
of I(r,8) is very convenient for such purposes

as computation of absorption line strengths, since
it eliminates the problem of repeatedly solving
the transfer equation numerically for various
albedos w (the albedo being a function of frequency).
In other words, the fact that the Neumann coef-
ficients N, correspond to the multiple scattering
process in a conservative medium (w = 1), and
the same coefficients appear in the case of an
arbitrary nonconservative (w < 1) medium, per-
mits us to reduce the problem of solving the
transfer equation for various frequency dependent
albedos to that of obtaining the coefficients N,
once and for all. The solution for a nonconserva-
tive medium then results by trivial summation as
given by Eq. (1. 36). Unfortunately,the Neumann
series [Eq. (1. 36)] for a near conservative medium
(w =~ 1) converges very slowly. This, in a way,
limits the usefulness of such an expansion (c.f.
however, Uesugi and Irvinel0). However,by a
simple modification of the multiple scattering
process described earlier,an expansion in powers
of (1 — w) can be obtained. We shall treat that
case in a forthcoming paper.

In the next section we examine the structure of
coefficients 4, (") for the simple isotropically
scattering medlum Smce the Neumann coefficients
N, are related to A, ) by means of Eq. (1.35), the
convergence propert1es of the series in Eq. (1. 36)
then become transparent.

2. APPLICATIONS
Isotropic Case (Semi-Infinite Atmosphere)

For the isotropically scattering medium, the for-
mulas derived in Sec.1 are considerably simpli-
fied. {.Jet us first examine the recurrence relation
for A" [Eq. (1.30)]. Since for the case under
conS1derat10n m = 0, we have

A% = [T e Al )
— fol dV’\If "(u; VA, © AGHDE 2.1)
Now, by definition [see Eq. (1.23)]

¥ o (s 0) = 0" (WSek, v)
and for the isotropic case

Solu, 1) = 1.
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Then \Pg'(u; v) reduce to normal modes,i.e.,
= (i)“(V’).

Also, from definitions of A:O) (u; ), T (0) (u; V) [see
Eqgs. (1.29), (1.20),and (1.11)], we conclude that

A, (b,

i.e.,A,f )(p; v) are independent of the second argu-
ment v,

TV v) (2.2)

A © (p‘y V) (2' 3)

With these simplifications, Eq. (2. 1) becomes

1 v
AW =AW~ [ dv'@wa, ), 2.9
where we have used the normalization
1
S due =1 (2. 5)

of the modes.

Before we solve the recurrence relation (2.4) for
A _(W),let us introduce the functions

Hy(u; v) = 6(p — v),

Hy(p;v) = ¢>1(u), (2. 6a)
Hy(iv) = J, dv¢ L@H, (vy50),
and in general
1 v
Hu;v) = fo dvi¢ "Y(wH,  (vy;v), [1=1.(2.6b)

Now one may readily show that Eq. (4) has the solu-
tion

E (~ 1) n— l)'l'f dVAo(V)H (65 v),
2.1
with

A()(u) = IO(Oy p’)y 4 > 07 (2' 8)

being the incident radiation.

Finally for the intensity I ’50) (t,w), Eq. (1. 32) gives
us

1,1, e )
= WA, e MO0 + [ dvo (e A, 4(v)
— e oA, (), ], (2.9)

where we have deleted the superscript (0) on
I,(r,w). In particular,for p < 0 (the backscattered
radiation) we have

LW =" [ avs"We 7 A, 4 ),

p<0,7>0, (2.10)

whence the reflected intensity at 7 = 0 is given by
1
L0O,p) =" [ dve WA, (),

p<0. (2.11)
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Forn =0,

I400,p) =Ip(r,p) =0, p<O0. (2.12)
Inserting the explicit form of A (v) [given by Eq.

(2.7)] in Eq. (2.11) yields

n!

L =™ D0 ey

1=0
1
x [ dvAWH (55 ),

The total emergent intensity is then

p <0, (2.13)

o

E n+1(0 N

0, p) = p <o,

ie.,

10,p) = w > i(* 1)lw"( i

7=0 120 n— )i

1
X [, avA H,,(v), w<o0. @.14)
From this we conclude that the Neumann coef-
ficients associated with the emergent intensity

are

n

f
N,(0,u) =§0( 1H” (,;—nT)rﬁ
[ avAgH, (59, p<o, (2.15)

where, as a reminder, H,,, (u; v) defined by Eq. (6)
are the multiple integrals of normal modes.

In Eq. (2. 14) the right-hand side may be reduced
to a single sum by an application of the Cauchy
sum formulall

o0 =)
Z} E B k) = 2 B +k;R). (2.16)
n=0 k=0 n=0 £=0

The result is

o w n

10,0 =725 5 €0 (72)

x fo dvA,(WH . (1), u<o0. (2.17)

The slow convergence of the Neumann expansion
for w =~ 1 should now be obvious from Eq. (2. 17).

3. GENERAL FORMULATION FOR FINITE
REGIONS

To see how the general formulation presented in
Sec.1 for the semi-infinite region is modified in
the case of a bounded region, let us consider an
atmosphere bounded by two planes at T = 0 and

T =d. We assume that the incident intensity at

T =0, > 0 and the intensity at 7 =d for p <0
are known. Following the procedure of Sec.1,one
may readily show that the integral re;))resentatlon
of the n-times scattered radiation I (r,u is
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ikT
1
176, we(rew — 1) = 5 : 1*6:1-;@—“

x [0, ) — & *u1 @, w]

w o7 R
+47Tf_°°dkr+—ik—u (k w;dy, (3.1)
where, in contrast to the half— space problems
[see Sec. 1 ,Eq. (11)],R ”‘(k u; d) are now the
finite Fourler transforms of the Source function,
i.e.,

(m) a -k 1 ’ ’ ’
R p5d) = [ are™ [ aws, (u,p )1,5"“’-«,;(1 -

3.2

By the san(le) token we have the recurrence rela-
tion for R, of the form

=550 — & T ks 3 )

f a mu,u)
1+1ku

R (k; p; d)

o5 a), (3.3)

where for x =0 or d

1 i, 2
L) = [ dwwr e, w) S, u, ) /1 )

From Eq. (3.3) it is clear that R "(k; u;d) are
explicitly dependent on the total optical thickness
d. Aside from that, these coefficients share the
same analytical properties as those discussed

in Sec.1 for similar coefficients for half-space
problems. Thus,to remind us that R ¢ (k; p1;d)
are sectionally holomorph1c in the complex k
plane cut from — 7 to — 7 and i to /0. However,
due to the exponential dependence on 4 they di-
verge as |k |- ®© in the upper half # plane, Conse-
quently, in obtaining the spectral representation of
In'")('r, ) by considering the contour (see figure in
Sec. 1) in the upper or the lower half % plane, it is
necessary to decompose R(n"‘) into two parts which
converge in the respective parts of the % plane.
Such a decomposition is readily obtained by noting
that upon solving Eq. (3. 3) one has

RO usd) = U(k; 150) — ¢ U ks ;4), (3.5)

n
where Uff"), for x = 0, or d, satisfy the following
recurrence relation:

2, » 1 ’
U k3 5%) = J ks 30) + % S an
S,y 1)

(m)
1 + ik’ U,-1 k;075).

(3.6)

By inserting the decomposition, given by Eq (3. 5),
into Eq. (3. 1), and solving the first integral on the
right-hand side, we obtain

17, u)e(‘r)@(d— r) =170, pe” ™ e(y)

( m)
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1,”(d; we'“ he - p)
id-1)

[ €
~ e P ikp

— oo

(m)

1 (B p; d). 3.7

N?vg since U (k, ; 0) are independent of d and
(B; w; d) involve d only through surface dis-
tr1but1on at d, we distort the path of integration in
the upper half K plane in the first integral and in
the lower half in the second integral given on the
right-hand side of Eq. (3. 7), respectively. In the
manner of the procedure followed in Sec. 1 we
oPt;un tt)xe following spectral representation of
In T’ IJ

157(7, we(r)e(d — 1S, (3 v)

o ()
:wf dv'e”™ ¥ (u; )T, (V5 1 0)

e T/“O(u)wf_ av'e h(v'; v)

X

(m)(u, p';0) + F(M)({J; v, 0) e—r/pe(u)
W5 15)

wf_l av'et (v'; v)

(d-T)t

—wf_l‘dve \If (s )1"

e (d—T)/p 6 (_ [J.)

(m)

x T, (u;v';d) — r,f"‘)(u; v; d)e(d-T)/“O(— ),

(3.8)
where, for x = 0 or d,
Ty 5 %) = — (1/20002) (U (v p5.x)
U (s ;%)) (3.9)
and, as before
¥, (3 0) = 0" (1S, (45 v), (3.10)

with ¢"(u) being the continuum normal modes
defined by Eq. (1.21). Equations which determine
coefficients T, " are obtained by letting 7 — 0 and
T—d in Eq. (3 9), so that

1 '
1,700, 1), (4, v) = @ dv¥h; )TV (07545 0)
(m)

1
(u; v; 0) — wf av'e )l (v';v)
X I"(m)(u, v'; 0) — wf dv'e® '\I/:,:(p; V)
X T (s u;d),  p> 0, (3.11)

and
(m)
L,"(d, n)s,, (1, v)

-dly vt
g ¥ () T 0 0)
(m)

=wf1dl/,

_ wf vl (u; ) T, s d)
(m)(u, v; d) + wf dv' &t (' v)
s vsd),  w<o, (3.12)
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where

10, 1) = Ig™(0, 18,0,

17, 1) = 18(d, 1) 0,

u>0,

<0 (3.13)

are known from the boundary conditions.
Finally, the reflected and the transmitted com-~
ponents of the intensity are
160, 1)S,, (1, V) = wf v 2u; T 3 0)
lv
— wf_l dve®’Vy” ("R )I"(m)(u ;s d)

— T vy e + ed/“wf_l v ¥y (v';v)

(m) p <o,

1 v';d), (3.14)
and

1 ~dpr
I,(lm)(d, w)S,,(u, v) = wfo dv'e M‘I’"m(u; v)

- 1
(m) e d/uwj;l dV"I’um(V’; V)

X T, p;0)—

X I‘;mi(u; V'3 0) + I",Em)(u; v; 0)e 4

p>0,

— wf_l v ;s VT (5 3 d), 15.15)
.15

respectively.
4. APPLICATIONS

Isotropic Case (Bounded Media)

For the isotropically scattering medium, various
equations derived in Sec.3 are again consider-
ably simplified. Thus, in the notation used in Sec. 2
the n-times scattered radiation 7, (7, p) at any
point [see Eq. (3. 8)] is given by

(7, )OO — 1) = w [ dve ™" " ()T, (v; 0)
e oW, (1150) + T, (1; 00 o)
- wf_j dye(d~‘r)/u¢u(“)1..n_1(y;d)

O (- )T, y(u;d)

~ T d)e e (- p). (4.1)

Equations which determine the unknown coeffici-

ents T',(¢; 0) and T (u;d) from the boundary con-
ditionsat 7=0(u > 0)and 7 =d (u < 0) are

1,00, 1) = w [ dv6 (W, ;(4;0) + T, (u; 0)

— W,y (1500 — w [ dve™ o)L, 1 (),

p> 0, (4.2)
and
1(d, 1) = @} dve 6" (W)L, 4 (;0) — T,(u;d)

~ wf] dve W)L, (v d) + T, 4(u; d),

w<o, (4.3)
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where

1,0,1) =6,40,(0,n), u>0, (4. 4a)
and

I,(d, p) = b,5lo(d, ), <0, (4. 4b)

are known, These are coupled recurrence re-
lations which have the following formal solutions
expressed in terms of the H; functions defined by
Eq. (2. 6b):

1 no,
L(1;0) = w"fo dvE (13 v, (0, v) — § Wt
1
1 4] dfpr w
x fo duf_l dvie” E(u;v)¢ (v)
X Fn—l—l(V,;d)’ u> 07 (4. 5)

and

1 n 1
L p;d) =— w"fo dvE, (13 VIo(d,— v) + zzjowl

X fol dv f_j dv’ed/wEl(u; V)" (v)
XT, , ;&v;0), p>0, (4.6)
where for convenience we have set
E,(u;v) = Ez——y——l)'n],H-(u;V)- (4.7

Equations (4. 5) and (4. 6) are particularly suited
for asymptotic calculations for large d. For
example, the zeroth approximation is obtained by
neglecting the terms involving the exponentials.
The results is then

1
T(u;0) = w"fo dvE (1 V)I,(0,v) >0, (4. 8)
1
L u;d) =— wnfo dvE(u; VIyd,—v) p> 0, )
(4.9

which are merely the coefficients associated with
the half-space problems. By using these values
of T(¢;0) and T (— u;d), correction terms may
then be obtained by calculating the terms pre-
viously neglected and so on. For arbitrary values
of d, exact solutions of Egs. (5) and (6) pose no
real difficulties.

Finally the reflected and the transmitted com-
ponents of the intensities are given by

I(0,p) = wfol dve” (1)T,_,(v; 0) — wf_(l) dve™

X ¢, 4 (v;d) + e® W, (u;4)
— T, (u; e,

p<o, (4.10)

and
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1 -d v, -d/p
Lidip) = w5 dve ¥ ¢"(u)T, 1 (5;0) — e

i 0 )
X wl,_1(1;0) + T,(u;0)e o wf_l dve”(u)
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We prove the following: The kernel Ki') corresponding to the [th partial wave of the modified partial
wave Lippmann-Schwinger equation having symmetric kernel K = ‘,'1/2(,‘6‘/1/2 belongs to the Hilbert-
Schmidt (L2) class for spherically symmetric potential V such that V(¢) = 7o, 6 < 2 as» > 0; V(r)
2y, p>lasr - ©, For V(r) = g/re, 1 <a<2,the kernel K of the modified Lipmann-Schwinger

equation satisfies Tr{(Kl)'"K:'} <,

ifa>1+ 1/m,

m = 2,3, . The above results are valid

even fgr positive real energy. It is also shown that for potentials for which both K and the kernel
K = G,V of the usual Lippmann—Schwinger equation belong to L” class, the corresponding off-shell two-
particle T matrix (k| T(E- + i€} | k’) has a unique limit as ¢ = 0, £ 0. Some important consequences of

these results are discussed.

I. INTRODUCTION

In a recent paper1 (hereafter referred to as I) we
examined the conditions on the two-particle po-
tential V for which the associated kernel K(= G V)
(or some power of it) of the Lippmann—Schwinger
(LS) equation belongs tothe Hilbert—Schmidt (L?)
class, for complex energies only. It is found that
when the energy is made purely real and positive
by letting the imaginary part of it vanish, the trace
of (K*K) is unbounded, showing that K does not be-
long to the L2 class. This happens even for short-
ranged potentials of the Yukawa or cut-off types.
This points to the fact that if the two-particle T
matrix associated with K is obtained as a solution
of the LS equation for complex energies, its limit
as the energy becomes real and positive may not
tend to a unique value. To circumvent this diffi-
culty, it is often suggested2~7 that one should exa-
mine if the symmetrized form of the LS kernel
defined by

K, = V'/?gv/?

belongs to the L? class for complex as well as real
energies. The associated T matrix, denoted by

T, is related to that defined for the usual LS
equation denoted by T, through the expression

1.1)

_ ,-1/2
T,=V

T. (1.2)
These conditions hold for a class of potentials which
obey the conditions:

Tri{k'K} = (m®/2r |Imk|)[d%r | VP(r) P < o, (1.3)
2
Tr{kKs} = Z”? [a®r (@ |v(e) viz') |

-2Imklr=r/!

X =y < @,
Ir —r’|

(1. 4)
Here m is the reduced mass, Im# is related to

the imaginary part of the energy via the relation
£°/2m = E + ie. Consider for instance, the Yukawa
potential V(r) = Vye "/ for which both (1. 3) and
(1. 4) hold for Imk > 0, while for Imk = 0 (1. 3) is
divergent, whereas (1. 4) is not. This indicates
that if it can be shown that the 7 matrix obtained
from K and that obtained from K_are identical for
complex energies, then even though (1. 3) does not
hold for real positive energies, a unique limit

of it is assured because of (1.4). We prove this
here for a wide class of potentials, including those
covered by our earlier work.

In this paper we establish the statements similar
to those obtained in I for K, K,, the partial wave
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equation satisfies Tr{(Kl)'"K:'} <,
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m = 2,3, . The above results are valid

even fgr positive real energy. It is also shown that for potentials for which both K and the kernel
K = G,V of the usual Lippmann—Schwinger equation belong to L” class, the corresponding off-shell two-
particle T matrix (k| T(E- + i€} | k’) has a unique limit as ¢ = 0, £ 0. Some important consequences of

these results are discussed.

I. INTRODUCTION

In a recent paper1 (hereafter referred to as I) we
examined the conditions on the two-particle po-
tential V for which the associated kernel K(= G V)
(or some power of it) of the Lippmann—Schwinger
(LS) equation belongs tothe Hilbert—Schmidt (L?)
class, for complex energies only. It is found that
when the energy is made purely real and positive
by letting the imaginary part of it vanish, the trace
of (K*K) is unbounded, showing that K does not be-
long to the L2 class. This happens even for short-
ranged potentials of the Yukawa or cut-off types.
This points to the fact that if the two-particle T
matrix associated with K is obtained as a solution
of the LS equation for complex energies, its limit
as the energy becomes real and positive may not
tend to a unique value. To circumvent this diffi-
culty, it is often suggested2~7 that one should exa-
mine if the symmetrized form of the LS kernel
defined by

K, = V'/?gv/?

belongs to the L? class for complex as well as real
energies. The associated T matrix, denoted by

T, is related to that defined for the usual LS
equation denoted by T, through the expression

1.1)

_ ,-1/2
T,=V

T. (1.2)
These conditions hold for a class of potentials which
obey the conditions:

Tri{k'K} = (m®/2r |Imk|)[d%r | VP(r) P < o, (1.3)
2
Tr{kKs} = Z”? [a®r (@ |v(e) viz') |

-2Imklr=r/!
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(1. 4)
Here m is the reduced mass, Im# is related to

the imaginary part of the energy via the relation
£°/2m = E + ie. Consider for instance, the Yukawa
potential V(r) = Vye "/ for which both (1. 3) and
(1. 4) hold for Imk > 0, while for Imk = 0 (1. 3) is
divergent, whereas (1. 4) is not. This indicates
that if it can be shown that the 7 matrix obtained
from K and that obtained from K_are identical for
complex energies, then even though (1. 3) does not
hold for real positive energies, a unique limit

of it is assured because of (1.4). We prove this
here for a wide class of potentials, including those
covered by our earlier work.

In this paper we establish the statements similar
to those obtained in I for K, K,, the partial wave



REMARKS ON THE EXISTENCE OF SOLUTIONS

decomposition of K, and its iterated counterparts,
for the corresponding symmetrized kernel K .

This is given in Sec. 2. Section 3 proves the state-
ments that the T matrixes obtained from K and K

are identical for those potentials for which both
(1. 3) and (1. 4) hold, and that a unique on-shell
limit of T exists for such potentials. The results
are discussed in Sec. 4. The notations and defini-
tions employed here are the same as those in I.

2. STATEMENT OF THE THEOREM AND ITS
PROOF

Theorem: (a) The kerne% K of the modified
LS equation belongs to the L class provided

~2 melr-r/if|p —p'}2

fa%y [a®r | Vi) Vi) le

(b) The kernel K
wave decomposmon of K_belongs to the L? class
for spherically symmetrlc V(r) such that

V'('r) ,,_,0>r_5, 5 <2,
V(r)—=> r_",

oo

(c) For the potential V{7)

n> 1.
=g/7%, 1<a <2,
Tr{(K;r)mK:"} <o
provided
a>1+ 1/m,

m=2,3,°" (2.2)

and all statements (a), (b), and (c) are true even
when Imk = 0,

Proof: Theorem (a) is well known” and there-
fore will not be proved here. To establish (b) and
(c) we proceed as follows:

We have
K = vV/%chE)V'?, 2.3)
K'= v*2%65E) V2, (2. 4)
TriK K } = [d°r (x| KK, D) (2.5)

= [a% [a®r V)G (r, )G, 1) Viz)  (2.6)

correspondmg to the lth partial

(2.1a)

(2.1p)

2195
-6 1,3 3 d3k dak' ik o(x—1")
:(211) fd'rfdr’f—_-f———.;—e’ s
Ak’
X oDy pa) 2.1

Vs =0

200 ©
- (3) 2221+ 1) j:o'rzd'rV('r) 5 v Vir')

2
k2dk . wkZdk
x [ A—Jl(kV)],(kT')fo = 5, (k)i (k)

k k'
(2.8)

kdk o kPdR

1 = [kl V1))
k Ay
(2.9a)

=<3> zi @+ 1) [

U =0

o0

=7, (@21+1 {TrKK)}

=0

(2. 9b)

it may be shown by the same procedures as in I,
that

Tk K} = 232 0,125 @1+ 1) [2dre?
K= + , drr Vir)
1=0

® 1 12 ’ M
x [, arr Vi) (eer JhP(e, r)I%, (2.10)
with 2, = (2mE + 2mie€)1/2. Since lim € — @ exists,
we note that %, can also be made real. Thus
Imk, 0. By considering in detail the integral in
(2.10), Theorem (b) can be verified.

We now use (2. 9) to study the Coulomb-like po-
tentials V(r) = g/r". Via the procedure de-
veloped in I, it is easy to show that

2m 2
2\°mx kZdk
Te{(K!)"KT} = <—> Ter+) ;..
T 1=0 A"1
k2 dk ¥ k2
) m+1 0 vy
I m [ koo [ 2
km km+1 kom

X(Uky | V1) (lky | V | 1Rg)" - -

(U, | VU, )+ ~(lky,, |V | k. 2.11)
We now use Eq. (16) of I to obtain a bound on
(k| V| IR" for V(r) = g/r"and get after some

algebra similar to the one described in I,

{Tr(x!K )},
[gr[p + 31 —0IrE e+ Ve, )27 2] I K2dk - klzdk,< . >2;1—1 s oy
T(p + DTA + 0T + DT + 5 1 ® (o) ® Tab] \E+ #)2 (2.12)
< D%(, w2t~ 2]°°~— kﬁww'<m €>0, (2.13)

¥ |
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D(x, p) the term inside large brackets in (2.12), All ¢ = 0 and hence |9 | < «© for € = 0. The integra-

other symbols are defined inI. x = @ — 1 and so
for 1 < a < 2,we have 0 <x < 1. The integral

is the straightforward Mellin transform which can
be seen to exist even when € = 0 in the sense of
‘the principal value. Therefore the integrals (2. 9a)
exist even for ¢ = 0. The convergence is uniform
in I. In a similar fashion following I, one can show
the convergence of the multiple integrals (2.11) for
1< @ < 2. This can be seen as follows. As € = 0,
the most divergent part of the multiple integral in
(2.11) can be isolated and expressed inthe form

gokdk

Sty

_ f kot &g kldkl
- | Al 1

0~ %o Ak, ;
ko* &0 kfmldkmq . kotég kgmdkzm
kg~ &g A; kot A+kzm

m+1

X (lkll Vllk2><lk2| V'lka)' . (lkzm' V|lk1>,

(2.14)
where by = [2m(E + ie)]l/2 and £, is an arbitrarily
small positive definite number, which is set equal

to zero after the integration. Now let us define a
real function F, of 2m variables:

Flyy ko, Ry )= (lky | VIR IRy | VIikg)
(lky, | VIR ), (2. 15)
which is regular for 0 <k, <ow,n =1,2,--,2m,for
Vir) =g /r>.
Now we write
Fkyy kg, ky,) = [Fikyy kg, ky,) (2. 16)
- Fl(k()a koy oty ko)] + Fl(ko’ kgy e, ko)-

This leads to the separation of the most singular
part 9 in the multiple integral (2.14):

dk
kytE 1
— c. otto p2 1
g, =Filko.ko, ko) [, 00k
1
+E 2
ko*to kmdk L [EtEg b2 km+1 .
ko~ko A_ kytg M BG
fko+€0 k2md 2m
kyto AT

m
But the integral

kyteo R2dE
Rkg D%

exists with the sense of principal value even for

tions remaining after separating the most singular
part given by (2.14) from (2.11) can similarly
seen to be convergent for € = 0. This proves the
existence of the multiple integrals in (2.11) for
€ = 0 for the potential V(r) = g/r> with 1 < & < 2.
One also notices that the matrix element {{2{V|
k") falls off exponentially in las [ > © if & = &',
When & = £’ we can use the asymptotic behavior
established in Eq.(19) of 1. As in I, we estimate
the convergence of the / sumin (2. 11) by consider-
ing the most divergent part of the multiple % inte-
grals as a function of /. This most divergent part
of the / series occurs when 2y =k, = - kg, ;
corresponding to this,the / series is convergent
if

oa>1+m-

1, m=2,3,"".

This proves Theorem (c).

3. EVALUATION OF T FOR REAL POSITIVE
ENERGIES

From the Theorem it is clear that the class of
potentials for which Tr{KIK } < ® is not identical
with the class of potentials for which Tr{K1K} < .
In addition, even for the potential for which both of
the above two traces exist, it is not yet clear that
Hm(k|T(E + i€)|K") as € = 0 is unique and is the
same as the one that one would get by solving
(k|V1/2T (E + i€)|k’) for € = 0. Let € be nonzero
and V(») be such that both the kernels K and K be-
long to L2, Let 7' = V1/2T . Then it is easy to
see that T = T — T’ obeys the homogeneous LS.
equation:

T = VG}T = KT. (3.1)

Since the kernel K belongs to the L2 class for
complex E, the usual Fredholm theory can be
applied to the integral equation (3.1). Then we
find that (3. 1) has nontrivial solutions for some
discrete values and £, = E < 0. These corre-
spond to one of the discrete eigensolutions of
H=H, + V. Since in the scattering problem we
are interested in

eli_)r%(kIT(E + i¢) |k’) for E > 0,

we deduce

T=0, E>0, €=#0 (3.2)

as the solution to (3.1). In fact T = 0 except for
negative real E, where K = 1. Thus

e>0.

& | V2T (E +ie) | k') = kIT(E + ie) k'),
(3.3)
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Since lhs of (3.3) has a well-defined limit for

€ — 0 in view of the results of Sec.2, we can con-
clude that (k|V1/2T (E + j€)|k’) gives unique
analytic continuation of (k|T(E + 7¢)|k’) on the
positive real axis.

4. DISCUSSION

We wish to stress the fact that the proof given

above for the existence of a unique limit for

&|T(E + i€) k') as € = 0 is valid only for that
V(r) for which both K and K belong to L? class.

In I we showed that for V r) =g/re, the part1al

wave LS equation has L2 kernel for $ < a < 3 . On

the other hand, the symmetrized partial wave LS

equation has L2 kernel if 1 < a < 2. Therefore

the common re3glon for which both have L2 kernel

is for 1 < @ <3. Thus,for 1 < a <} with V(r) =

g/r%, a unique on-shell limit of the partial wave

T matrix exists. It can be noted that the Coulomb

potential V. (») =g /7 is not covered by our analysis.

This is not surprising in view of the fact that plane

wave representation of the off-shell Coulomb

T matrix has no unique limit as one approaches

€ — 08.

The full symmetrized LS equation requires twice
as many iterations as the usual LS equation in
order to have L2 solutions.

Another aspect to be emphasized is that G{V =
V1/2GEV1/2 is not the only way to obtain a ‘modi-
fied LS equation. In fact Coester? shows that one
can in general express V = V¥V~ and obtain the
correspondingly modified LS equations. As an
example let V = VBV1-8:then the modified LS
equation:

[V1-8G+] = VI-BGY + {V1~BG8VB}[V1-BG+]_

The evaluation of various traces corresponding to
KB = V1-8G} V8 will lead to the same conclusmns
that we obtam from K_ for which 8 = 3. In the dif-
ferential equation method employed 1n potentlal
scattering, the constraint on the potential is

fooor |V(r)ldr < . It may be pointed out that po-
tentials obeying this condition are incorporated

in Theorem (b), whereas the converse is not true.
For example, V() = g/r%, 1 < a < 2 satisfies the
requirements of Theorem (b), whereas the integral

f: r|V(r)ldr is not convergent for this potential.

There is another method to construct the modi-
fied LS equation, by employing the kernel3
K, =Gg2vGyl/z, (4.1)

For € = 0, one can obtain for spherically sym-
metric potentials the result

2197
{Tr(K} K, )}
k dk k'2dk’
( ) E (@ [at,
X [{RIV]E)2. 4.2)

We notice that (4.2) differs from (2.9) in the
presence of |A%|and |A%,|instead of A7 and

A%,. Due to this difference (4. 2) diverges when

€ = 0 (the principal value integral does not exist),
whereas for € = 0 (2.9) exists in the sense of
principal value. However for € > 0, the existence
of TriK" K } has the same re strictions on the
potent1a1 V(r) as stated in (2. 1a) and (2. 1b).

Note added in proof: In 1 and the present paper
the specific case of E = 0 was not investigated.
This case was studied subsequently and we sum-
marize the results below

The existence of the limit E — 0 (from the negative
side) for the trace

Tr(K 1K), = (%) 2 f

can be obtained by explicit evaluation. Thus (with
6=0)

k2 k2dk
2
dr r() A+|2

j3kriV2(r)

TrK 1K),

- (3) 24m2f0°° Y22 (r)dr

=3

d [f” k2dkj} (er)
ag? Yo (2 +;32)1

= <2) ztlzmzf;o v2V2(y)dr

w

I [2%)' dBZ {Il'fl/z(”B) +1/2(”ﬂ)}]

Here 82 = — 2mE > 0,and I/, and K, , are the
modified Bessel functions of first and third kind,
respectively. Via the properties of these functions,
it is found that,for [ = 0, Tr(K'K), diverges 11ke
BlasB—>0(1e E—>0)andforl—1\2/3 ,

i T
lim {TrK'K),}

exists provided that

Vry — r=8, §<2
r—0
and
Vir) =, n>3.

Similarly, from the study of (2.16) of the present
paper, Tr{KTK }, can be shown to exist as k4 — 0
(i.e.,as E — O) provided that V{(r) satisfies the
condltlons (2.1a) and (2. 1b).
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The asymptotic form of the wavefunction for the scattering of a neutral particle on a hydrogen atom
bound state is discussed, with particular reference to the case where the two charged particles may be

close together in the asymptotic region.

I. INTRODUCTION

In spite of the great progress that has been made
in the past decade in understanding the mathe-
matics of multiparticle scattering problems, there
are still problems that remain when long-range
Coulomb forces are involved.

If we look at ¢-H scattering (for example) in co-
ordinate space, we need to impose suitable boun-
dary conditions before the solution of Schrodin-
ger's equation is uniquely specified. Let us use a
six-dimensional vector p = (r{,r,) (withr,,r,
the positions of the electrons). Then the only
boundary in the problem is a five-dimensional
hypersphere at infinity, i.e.,p = (r# + 7§)1/2 > «,
The boundary conditions involve specifying the
form of the wavefunction ®(p) as p — .

The asymptotic form of $(5) has already been
given by Peterkop! and others? for almost all the
hypersphere, and is, for a wavefunction describing
scattering from the ground state of hydrogen
above the ionization threshold,

oiVEp

~ if3) .
(I)(p) p—?oo W P pufo(pu)’ (1)

where f,(p,) is proportional to the amplitude for
ionization with the electrons emitted in directions
specified by the unit vector p, = p/p. The function
n(p,) is related to the total energy I and the com-
plete potential V by

np,) = lim — pV/2VE. (2)

Form (1) is valid on all but three small portions
of the hypersphere corresponding to the places
where a pair of particles is close together.

It is the purpose of this paper to describe the
asymptotic behavior of ®(p) in those regions where
two charged particles are relatively near each

other. An understanding of the region where par-
ticles 1 and 3 approach each other, with a Coulomb
interaction, is an essential step in understanding
the behavior of three charged particles. For sim-
plicity, instead of e-H scattering, we here study a
model in which V3, V, (the potentials between 12,
23) are short range, e.g., a superposition of Yukawa
potentials, but V; is a pure Coulomb potential
—2¢/74, taken to be attractive for the following dis-
cussion (¢ > 0), Particle 3 is infinitely heavy and
my =my =1/2,

A principal result of our work is that (1) becomes
invalid if the inequality

73E >> 2cv§ (3
is not satisfied. We call the region where (3) holds
the outer region and its complement the inner
region.3 In the inner region, % is described by the
well-known sum over the bound states of the hydro-
gen atom, with coefficients proportional to the
amplitudes for elastic scattering and excitation. In
addition there is a continuum contribution which
Peterkopl has written as an integral over two-
body Coulomb scattering wavefunctions ll/q(rz). We
evaluate this continuum contribution in the inner
region, and in particular find that, for fixed », it
falls off as »32. We also find that, in the outer
region, the bound-state sum falls off no faster than
7317, 79/4, but that the continuum contribution
cancels this term in such a way that (1) and the
corrections to it given by Peterkop! are the only
parts of & that do not decay exponentially.

II. BASIC EQUATIONS

Let us suppose that, with the model we have de-
scribed, particle 2 is incident on a bound state of
particles 1 and 3, so that the total energy is E.
This initial state will have a wavefunction x(r;, r,)
which is a product of a plane wave for particie 2
and the bound-state wavefunction. The three-body
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The asymptotic form of the wavefunction for the scattering of a neutral particle on a hydrogen atom
bound state is discussed, with particular reference to the case where the two charged particles may be

close together in the asymptotic region.

I. INTRODUCTION

In spite of the great progress that has been made
in the past decade in understanding the mathe-
matics of multiparticle scattering problems, there
are still problems that remain when long-range
Coulomb forces are involved.

If we look at ¢-H scattering (for example) in co-
ordinate space, we need to impose suitable boun-
dary conditions before the solution of Schrodin-
ger's equation is uniquely specified. Let us use a
six-dimensional vector p = (r{,r,) (withr,,r,
the positions of the electrons). Then the only
boundary in the problem is a five-dimensional
hypersphere at infinity, i.e.,p = (r# + 7§)1/2 > «,
The boundary conditions involve specifying the
form of the wavefunction ®(p) as p — .

The asymptotic form of $(5) has already been
given by Peterkop! and others? for almost all the
hypersphere, and is, for a wavefunction describing
scattering from the ground state of hydrogen
above the ionization threshold,

oiVEp

~ if3) .
(I)(p) p—?oo W P pufo(pu)’ (1)

where f,(p,) is proportional to the amplitude for
ionization with the electrons emitted in directions
specified by the unit vector p, = p/p. The function
n(p,) is related to the total energy I and the com-
plete potential V by

np,) = lim — pV/2VE. (2)

Form (1) is valid on all but three small portions
of the hypersphere corresponding to the places
where a pair of particles is close together.

It is the purpose of this paper to describe the
asymptotic behavior of ®(p) in those regions where
two charged particles are relatively near each

other. An understanding of the region where par-
ticles 1 and 3 approach each other, with a Coulomb
interaction, is an essential step in understanding
the behavior of three charged particles. For sim-
plicity, instead of e-H scattering, we here study a
model in which V3, V, (the potentials between 12,
23) are short range, e.g., a superposition of Yukawa
potentials, but V; is a pure Coulomb potential
—2¢/74, taken to be attractive for the following dis-
cussion (¢ > 0), Particle 3 is infinitely heavy and
my =my =1/2,

A principal result of our work is that (1) becomes
invalid if the inequality

73E >> 2cv§ (3
is not satisfied. We call the region where (3) holds
the outer region and its complement the inner
region.3 In the inner region, % is described by the
well-known sum over the bound states of the hydro-
gen atom, with coefficients proportional to the
amplitudes for elastic scattering and excitation. In
addition there is a continuum contribution which
Peterkopl has written as an integral over two-
body Coulomb scattering wavefunctions ll/q(rz). We
evaluate this continuum contribution in the inner
region, and in particular find that, for fixed », it
falls off as »32. We also find that, in the outer
region, the bound-state sum falls off no faster than
7317, 79/4, but that the continuum contribution
cancels this term in such a way that (1) and the
corrections to it given by Peterkop! are the only
parts of & that do not decay exponentially.

II. BASIC EQUATIONS

Let us suppose that, with the model we have de-
scribed, particle 2 is incident on a bound state of
particles 1 and 3, so that the total energy is E.
This initial state will have a wavefunction x(r;, r,)
which is a product of a plane wave for particie 2
and the bound-state wavefunction. The three-body
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wavefunction &(r, rz) may be obtained from
ImW=0

Here W is the total energy with real part E and

positive imaginary part,and H =T + V; + V, +
V5 is the Hamiltonian for the problem. We work
with this equation before the limit is taken.

Equation (4) can be rearranged to read

l@) =[x+ (W—=T— V) YV, + V3) | ®). (5)
In the coordinate representation, (5) may be written
as

® (ry,r5)= x'(ry, T2) +(1/873) [dadpy(ry ) exp(iprr,)
X (W—p2 — q2)"1T(q,p)
+ (1/8”3)L§;N Jdpwy,iry) exp(ipery)

X (W—P2 + BN)'lTNLM(P),
with
T(a;p) = [dridr,ug"(r,) exp(— ipr,)

X (Vg + V3)®(ry, 1y)
and

TypP) = fdrldrzw:lLM(rl) exp(—ip*r,)

X (Vy + V3)®(r,,r,). (8)
Here Y ,4r;) are the normalized Coulomb bound-
state wavefunctions and yg(r,) are the correspond-
ing continuum functions for in-going scattered
waves. The inhomogeneous term y’ approaches x
as W—0,

In our model problem in which V, and V, are of
short range, we shall see that, for fixed q, T {(g,p)
and Ty, (p) are analytic functions of p for real p
near p(g) = (E — q2)1/2 or near p, = (E + By)1/2.
Consequently, for large »,, we may approximate

(6) by an extension of the method of steepest de-
scents, described in more detail for this case else-
where,4 with the result that

‘I’(rp 1'2) ~x'(rq, 1‘2) - % quwa (ry)

explip(q)7,]
X e~ T 27

- T@ b))

exp(ipy 7y

) -
- 7;17} N% Vyrmry) T Tyrants).  (9)

It should be noted that this formula is not valid in
regions ¥,/p > 0or|r; —1,1/p— 0.

Equation (9) may be further simplified by the
method of steepest descents, but care must be
taken of the singularity that the integrand contains
at ¢ = 0, both in Y (r;) and in T(q, (q)f5). The be-
havior of T(q, p)near ¢ =0 may be studied from its
definition [Eq. (7)]. An important point, which is
the basis of our whole analysis, is that apart from
two exceptional regions, not near q¢ = 0, we may
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assume that the integral in (7) is over a bounded
region when studying the analyticity of T'(q, p).
This is due to the fact that we know enough about
the phase of & for large p (dominant term vWp)
to see that at no point where V, + V, is not ex-
ponentially damped is the phase of the integrand
stationary for large p.

At this point it is convenient to perform a partial
wave resolution in the q and r; variables to obtain
a partial wave analysis of T(q,p).

* -~ -
We set ¥, (r)= 25 YYE )Y @G)gte 2p(L
M
+1—in)F}(g,7y),

where n = — ¢/q, with ¢ positive in the attractive
case under discussion.

The function &, (¢, ) is defined in terms of Kum-
mer's function% M Dby the relation

2\ 1/2 (271)1’
siory=i() " rar vy

e
X M(L +1—in,2L + 2, 2igr,)
From (7), we have
T(@p) = 2 Y@= gre

X T(L + 1+ in)t,,,(q,p),

igr

(10)
with

*
tda,p) = [dridr, Y'Y (#,)F,(q,7,)
X ePT2(V, + V,)@(r,, 1,).

The function &, (g, ) [and thus ¢,,,(¢,p) from the
argument above] is an even function of g and is
analytic in ¢ near ¢ = 0.

The behavior of T(q,p) near g = 0 is governed by
the factors given explicitly in (10).

We can use (9) and (10) to write the asymptotic
form in a more compact notation. The continuum
contribution to (9) is

2L+2 «um

~ L S 0 dad” T 1~ in)
LM

X T(L+ 1+ in)F,(q, 7)Y )
eip(q)r2

V2

X

t1049; P(9)T,). (1)

The integrand has polesat L+ 1—in =L +1—
N,N>L+ 1,0or g=—ic/N.

We note that if ¢;,,(g,p) is evaluated at ¢ = — ic/N
where N is a positive integer and N = L + 1, it will
be found to be related to the excitation amplitude
Tyou by

27TWN + L + 1)\ /2 -1 1+372 -L-2
Tawle) = (BT L4 1) 122 02,

x tLM(———]\;Q’ p), (12)
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Vip() = (ZWI‘(N + L+ 1)) L2 1 103/2y 12

TW—L)
—ic M,
x F, <——N—, ’)’> Y, (F).
Thus the behavior of Ty, ,@) for large N is related
to the behavior of the continuum scattering ampli-
tude ¢, ,,(¢,p) for small q.

Using (12) and (13), we may show that if the inte-
gral in (11) is taken on a contour consisting of a
small circle about one of these poles, then the
result is exactly the corresponding bound-state
contribution to (9),

(13)

NLM(prZ)'

1 < e’
~ L%W/ Yurmlry) T

Thus we may replace the sum over N by an integral
over ¢ and we write (9) as

ZL*Z -n7
&(ry,ry) ~ x'(ry, rp) — f‘i

X T(L+1—in)T(L + 1+ in)
e i, 7o

X §,(q,7,) Y (F,) t, .0 @)T5),

where the contour « is shown in Fig. 1.

It is now useful to introduce the irregular Whit-
taker function® and write

L1
2 1/2 ¢q nm

sFL(CI: 7) = (;r—) % ir €
W_in, 141/2(— 2iq7)

I'(L +1—in)

w, (2igr)
_ gL+l in,L+1/2
(=) T(L+1+n) ) (14)

FIG.1. The contour o used to include the bound-
state sum.

O)

-iC B

FIG.2. The contour B used with the Whittaker
function to include the bound-state sum.

J NUTTALL

Although this does not appear to be an even func-
tion of ¢, it must be remembered that Wk’m(z) has

a cutfrom z = 0 to— w. As we take ¢ along a path
from real positive to real negative values either

above or below the origin, the argument of one of

the W functions crosses its cut.

In view of (14) we can rewrite (11), the continuum
contribution to (9), as
2—5/2 3/2. Z/ [°° dqq (L +1—in)

X Wy 101/2(2gr,) + (— 1~

XTI +1+ ’")W-zn,L+1/2<_ 2iqr4)]
o zp(q)rz R
X Yy (#;)° P t1u(a,p(@)F,) (15)
or
-3/2
— 27, Z}fo dqq 'L +1—in)
zp(q)r

ty g, P(Q)F5).

X Wy p41/2 (21W1)YL (1‘1) —_—
v (16)

Since the first term of (14) is zero at the bound-
state poles ¢ = — ic/N, we can include the contri-
butions of the bound-state poles to & by integrating
(16) along the contour B shown in Fig. 2:

&(ry,ry) ~ x'(ry,Ty) — 2 5/2ﬂ—3/z,Z quqL+1

X DL + 1— in) W, ;.1/5(2iqry)

eip(q)rz

X Yf(fl) Trir, tm{a, b (q)Tp). 1m)

. ASYMPTOTIC FORM IN OUTER REGION

It is obvious that the asymptotic form (1) cannot
be valid for all values of #,/7,, however small,
since n — ZE(rz/r ) as r;— 0. This form does not
even satisfy Schrodinger's equation in this region.6
It is of interest to determine how small », /7, may
be taken before (1) must be modified. Also, it
might be asked whether the bound-state sum in

(9) gives a contribution to the asymptotic form in
the region where (1) is valid, since as N —» o,

Yy ru{r1) is nonnegligible for increasing values

of 4.

We show below that, provided »3$E >> 2¢73%, the
leading term of the asymptotic expansion is in-
deed (1), and corrections are given by the expan-
sion of Peterkop.! This is done from a considera-
tion of representation (17) of the asymptotic form
which includes both bound-state and continuum
contributions. In Sec.IV it will be shown that the
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continuum contribution alone leads to a correc-
tion to (1) in the outer region which does not fall
off exponentially. We are therefore led to the con-
clusion that the bound-state sum does not fall off
exponentially in the outer region, but must in fact
cancel the anomalous part from the continuum
term.

Let us choose the contour £ used in (17) to follow
the path shown in Fig, 3. If we assume that 7, is
such that, for all points on £, | g2(ry/2¢c) [ >> 1,
then we may use the asymptotic form of the Whit-
taker function,®

Wi, 11 (21qr,) ~ exp [— iqry — (ic/q) In2qr,
+cn/2q].

The dominant part of the phase of the integrand in
(17) is dry(E — ¢2)1/2 — iqr,, which leads to the
saddlepoint at — g, = — 7{VE(r§ + 73)~1/2 through
which 3 passes. It may be shown that, as we move
along g away from — g, in either direction, the
integrand falls off exponentially, even though the
contour passes close to the poles of the I" function.
For large p the width of the saddle at — g, is much
less than the distance from — ¢, to the point B in
Fig. 3. Thus the entire contribution to the asymp-
totic form comes from the saddlepoint, which
leads to

Z.1/2E3/4

®(ry, ry) v, X0y, 1) + “Anp572
- v
X exp (z’qorl + :f—lnzqorl +E —p—%->
-7 4o

_
x T<r1 L, ‘!pE) (18)

which agrees with (1) if we set

i1/2p3/4 ic

_oev g 2/VE

Jop) ==F exp[qo ln(zqo/vE)]
E _iE

XT;<1‘1 'b—’rz —p_

The above argument is valid only when (¢37,/2c)
>> 1, which is equivalent to 73E > 2¢rg. This re-
lation describes the boundary between the outer

(19)

/\'90 N

B

FIG.3. The version of contour £ used in the dis~
cussion of asymptotic form in the outer region.
The point B is — 5 [g,(1 + 1)].
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region where all particles are well separated and
(18) holds, and the inner region where particles 1
and 3 are close enough together to have an inter-
action that significantly changes the nature of the
asymptotic form, Note that,as p = ©, the inner
region subtends a vanishingly small solid angle
at the origin of the six-dimensional space.

It would be interesting if the location of the boun-
dary we have found between inner and outer
regions could be understood in classical terms.
In this connection, we point out that the inequality
7o/VE << r3/2(2c)~1/2 states that the time taken
for particle 2 travelling at velocity VE to reach
the origin from r, is much less than the time
taken by particle 1 to complete an orbit with
average radius ;. We do not understand the sig-
nificance of this.

IV. CONTINUUM CONTRIBUTION TO THE

ASYMPTOTIC FORM

We now discuss the form of the continuum contri-
bution. We shall see that the integral in (15) may
be simplified, rather as is the case with short-
range forces. Unfortunately, we do not know of any
comparable approximation to the bound-state sum
in the inner region.

In the region v fixed,», — =, it is best to use the
representation (11) of the continuum contribution.
Provided that |argqg < 37 we have, as |q|- 0,

e T(L+1 —in)T(L + 1 + in)F,(q,74)

~ = @)t B YRy, (8r10)12),
(20)

where J,;.; is a Bessel function. The rapidly
varying part of the phase of the integrand in (11) in
this region is p(g)r, = ro(E — ¢2)1/2, which gives
rise to a saddlepoint at ¢ = 0, To achieve maxi-
mum fall-off from g = 0, we must rotate the con-
tour near ¢ = 0 through 37 in a clockwise direction.
Equation (19) is therefore valid. Thus we find that
the continuum contribution &, has the form

&(rq,ry) ~ 2ml/2 exp(iVEr )

vir /2

L+1/2, - 1
X f?w(_ ) zLYf(rl)JZLd[—— (87y¢) /2]

X t, 40, VET,), for r, — © and », fixed.  (21)

This result disagrees with a formula given by
Peterkop?, which is based on an oversimplified
analogy with the case of short-range forces.

To study the continuum contribution for larger
values of 7y, it is convenient to use the representa-
tion (15). We use WKB-type approximation to the
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Whittaker function8, valid in the region |arg ¢ | <
im, 7y large:

W 11 /2( % 2ig7 )

~ (14 @-1)-1/4 exp[wc/2q +79],

—C
§ =—1In
q q

— 1n[§1 +a)l/2 —
with
a = g%r,/2c.

=+ -q—— £ a1 + a)]/2

011/2]}, (22)

The phase in (22) is too complicated to allow us
to obtain in closed form the location of the
saddlepoints of the two terms in the integrand of
(15). However, it may be seen that the first term
in (15) has its only saddlepoint at ¢ = 0. Using the
expansion of ¢ about ¢ = 0, which reads

- YN\1/2  2¢ , 2 € 4 5/2
6~— 4C(‘2?> 34 (2c)3 " 104 <2(:>
(23)

to evaluate the saddlepoint integral, we obtain for
the contribution ¢, of the first term in (15)

exp[iVEr, — i(8rc)1/2) Zj)u (ic) “/2
81y ,73/4(2c) /4y 2/2 + 3c(ry/2c)3/2]

(blc

X Y E ) 0,
The second term in (15) also has a saddlepoint
fixed at ¢ = 0, but in addition there is a moving
saddlepoint that lies at q, for v§ E > 2cvg. This
saddlepoint gives rise to the usual ierm (1), while
in this region the ¢ = 0 point gives a contr1bution
<I)2c"

[Et,), for vy — @ and 7, large.

3i(2c)1/4 exp[iVEr, —
81772719/4

x 2 (ic) Y12y 2 )t (0, VE
LM

and r3E 2> 2c73.

i(8r,c)1/2
q’ZCN - ]

T,), for ro —

As the ratio V§E/(2m’§) decreases from large
values, the moving saddlepoint approaches g =0,
which it reaches when *$E/(2crg) = 1. In this
region, we need to include the fourth- order term
in (23) when evaluating the second term of (15),
with the result that

1 [m\1/2
by~ 167 \7

Jo NUTTALL

y exp[iVEr, + 1'(81'10)1/2 + i02/(48)]

< erte (Gt s>1/2> E s LN

(0,VEty), for v, > ©,73E ~ 273,

where
V3 20(”1 3/2
* 2VE 3 2")

__ "2 ¢ <7_1> 5/2

T gE3/2  10\2c )

As the quantity »3E/(2c73) becomes much less
than unity, we may use an expansion of erfc to
deduce, with the help of (24), that in the case 7,

7y Iarge r3E < 2c¢7§, the entire continuum con-
tribution 1s given by

and

VE exp(iVEr,) .
T impt/ieya P 1))

+ i expli(8r,c)1/2]} 23 (1’0)1"1/2
LM
X Y1)t a0, VET,)

It will be seen that this result merges into (21) if
an expansion of J,;,, for large argument is sub-
stituted into (21).

V. REPULSIVE CASE AND GENERALIZATIONS

The case of a repulsive Coulomb interaction be-
tween particles 1 and 3 is much easier to discuss.
The amplitudes ¢, ,,(q,p) still approach constants
as g — 0, but the quantity

DL +1 — )DL + 1 + in) - 22" gn3

= 2ncexp(— 2c/q)n/q3 as q¢q—0

in (11) now falls to zero exponentially. Hence,the
contributions to the stationary phases at and near
q = 0 are suppressed by this factor. The width of
the saddle in the complex g plane goes as r,/7,.
Thus for large r,, ®{r,,T,) goes to zero exponen-
tially as v, /v, decreases to zero.

1t is also possible to modify our results® to in-
clude the possibility of an additional short-range
interaction between particles 1 and 3.

We believe that the form of the results changes
little if particle 2 is charged. Probably it is
merely necessary to add a factor to our results
for the form of & in the region. We hope to return
to this question elsewhere.
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Following the graphical method of Marzke and Wheeler it is shown analytically that if we know the
space—time paths of all particles and light pulses we can deduce the connection and the metric of the
space—time manifold. Specifically if such space-time paths fulfill some reasonable physical hypotheses,
it is proved that space—time is a Riemannian manifold. To reach this conclusion a new definition of
parallelism is introduced, based only on ideal experiments. This parallelism is entirely different from
the ordinary parallel transfers, if the manifold is non-Riemannian; therefore it opens new ways of modi-

fying gravitational theory.

1. THE INVERSE PROBLEM OF GENERAL
RELATIVITY

Usually general relativity is based on the postulate
that space-time is a Riemannian manifold. Once
the metric of such structures is known (by the
integration of corresponding equations), we can de-
duce the paths of particles and light rays as geo-~
desic lines of the metric. But the Marzke~Wheeler
method of measurementl:2 allows us to invert the
procedure. If the space~time paths of particles
and light rays are experimentally known, Marzke
and Wheeler show graphically how one can draw
parallel lines, and construct an ideal geodesic
clock that defines the metric over the whole mani-
fold.

The finest achievement of Marzke—Wheeler method
is the definition of the metric without clocks and
measuring rods of atomic constitution. The metric
only depends on the paths of particles and light
rays.

In this paper we shall adopt the same procedure,
but from an anlytical point of view. First, we sup-
pose that we know the space~time paths of particles
and light pulses, and that they satisfy some natural
physical hypotheses which lead us to their dif-
ferential equations. Second, we show how to define
a natural, both geometrical and physical, paral-
lelism (the Desargues transfer). Third, we find the
parameter measured by a geodesic clock, i.e., the
proper time, Fourth, we analyze the way in which
this time defines a metric on the manifold. Finally,
we conclude that if the proper time and the metric
are defined unambiguously, the natural Desargues
parallelism coincides with the ordinary parallel
transfer of the Riemannian manifold which has
such a metric.

In this way the Riemannian structure of space-
time appears as a consequence of a set of natural
and physical hypotheses.3 We think that this work
might allow us to begin a critical study of these

hypotheses and to classify them according to their
physical soundness. To acquire alternative theories
to the classical one, we should keep those which

are well founded and replace the weaker ones.

But, perhaps, the most interesting novelty is the
introduction, based on physical considerations, of

a new kind of parallel transfer which can also be
interpreted within the manifold itself; without em-
bedding the V, in a Euclidean space of more than
four dimensions., This parallel Desargues transfer
is entirely different from the usual Levi-Civita
transfer, if the manifold is non-Riemannian and
thereby opens new ways of modifying classical
gravitational theory.

2. DIFFERENTIAL EQUATION OF THE SPACE~
TIME PATH OF A FREE PARTICLE

To begin with, we must adopt a hypothesis that
fixes the geometric background in which we shall
work:

Hypothesis Hy: Space-time is an analytical
(differentiable) manifold V,. Every physical field
is defined by an analytical function over V,.

Specifically, each point x € V, belongs to a neigh-
borhood U which is mapped on an open sphere S(U)
which belongs to a four-dimensional Euclidean
space k4 by a coordinate system S, so that to each
point x € U correspond for real numbers S(x) =

(x3).

The changes of coordinates and the functions that
define physical fields in V, are analytical functions.

To assume that these functions are analytical,
i.e., that they lack any type of singularity or any
other mathematical problem, is a usual hypothesis
in physics, one that is probably not completely
essential but is useful in this first approach.

We must define a fundamental congruence of
curves, within V,, which is formed by every free-
particle space—time path and by the space-time
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Following the graphical method of Marzke and Wheeler it is shown analytically that if we know the
space—time paths of all particles and light pulses we can deduce the connection and the metric of the
space—time manifold. Specifically if such space-time paths fulfill some reasonable physical hypotheses,
it is proved that space—time is a Riemannian manifold. To reach this conclusion a new definition of
parallelism is introduced, based only on ideal experiments. This parallelism is entirely different from
the ordinary parallel transfers, if the manifold is non-Riemannian; therefore it opens new ways of modi-

fying gravitational theory.

1. THE INVERSE PROBLEM OF GENERAL
RELATIVITY

Usually general relativity is based on the postulate
that space-time is a Riemannian manifold. Once
the metric of such structures is known (by the
integration of corresponding equations), we can de-
duce the paths of particles and light rays as geo-~
desic lines of the metric. But the Marzke~Wheeler
method of measurementl:2 allows us to invert the
procedure. If the space~time paths of particles
and light rays are experimentally known, Marzke
and Wheeler show graphically how one can draw
parallel lines, and construct an ideal geodesic
clock that defines the metric over the whole mani-
fold.

The finest achievement of Marzke—Wheeler method
is the definition of the metric without clocks and
measuring rods of atomic constitution. The metric
only depends on the paths of particles and light
rays.

In this paper we shall adopt the same procedure,
but from an anlytical point of view. First, we sup-
pose that we know the space~time paths of particles
and light pulses, and that they satisfy some natural
physical hypotheses which lead us to their dif-
ferential equations. Second, we show how to define
a natural, both geometrical and physical, paral-
lelism (the Desargues transfer). Third, we find the
parameter measured by a geodesic clock, i.e., the
proper time, Fourth, we analyze the way in which
this time defines a metric on the manifold. Finally,
we conclude that if the proper time and the metric
are defined unambiguously, the natural Desargues
parallelism coincides with the ordinary parallel
transfer of the Riemannian manifold which has
such a metric.

In this way the Riemannian structure of space-
time appears as a consequence of a set of natural
and physical hypotheses.3 We think that this work
might allow us to begin a critical study of these

hypotheses and to classify them according to their
physical soundness. To acquire alternative theories
to the classical one, we should keep those which

are well founded and replace the weaker ones.

But, perhaps, the most interesting novelty is the
introduction, based on physical considerations, of

a new kind of parallel transfer which can also be
interpreted within the manifold itself; without em-
bedding the V, in a Euclidean space of more than
four dimensions., This parallel Desargues transfer
is entirely different from the usual Levi-Civita
transfer, if the manifold is non-Riemannian and
thereby opens new ways of modifying classical
gravitational theory.

2. DIFFERENTIAL EQUATION OF THE SPACE~
TIME PATH OF A FREE PARTICLE

To begin with, we must adopt a hypothesis that
fixes the geometric background in which we shall
work:

Hypothesis Hy: Space-time is an analytical
(differentiable) manifold V,. Every physical field
is defined by an analytical function over V,.

Specifically, each point x € V, belongs to a neigh-
borhood U which is mapped on an open sphere S(U)
which belongs to a four-dimensional Euclidean
space k4 by a coordinate system S, so that to each
point x € U correspond for real numbers S(x) =

(x3).

The changes of coordinates and the functions that
define physical fields in V, are analytical functions.

To assume that these functions are analytical,
i.e., that they lack any type of singularity or any
other mathematical problem, is a usual hypothesis
in physics, one that is probably not completely
essential but is useful in this first approach.

We must define a fundamental congruence of
curves, within V,, which is formed by every free-
particle space—time path and by the space-time
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paths of pulses of light. We can assume that the
fundamental congruence is experimentally known

a priovi. Of course we know that our experimental
knowledge of the fundamental congruence is not yet
complete. This is why we are forced to make
various hypotheses about the behavior of these
curves. The origin and physical meaning of these
hypotheses are well known,

To begin with we must require that the congruence
satisfies the weak equivalence principle;that is to
say that paths of free particles are independent of
the mass and of all other properties of the particle.
At each point x € V, the tangent vectors to the
curves of the fundamental congruence form a sub-
set I of the tangent space at x :7x. We can then
postulate:

Hypothesis H,: For each point x € V, and for
each vector (A°) € I, there exists one and only one
curve of the fundamental congruence that passes

through x and is tangent to A%,

In other words: if « is a parameter such that A’ =
dx*/du and if we know x and dx'/du, then we know
the corresponding curve and also the second deri-
vative at a point x:

dzxi_ i .dxj
az T\ )

so that the functions f are experimentally known.

(1)

A subset of the fundamental congruence is formed
by the paths of light pulses. The tangent vectors
to these curves define in each tangent space 7,,a
set of vectors C, & 7, that satisfy the following
postulate:

Hypothesis Hy: C, is the boundary of I, and is
also a hypercone of signature +,+,+,—. [ is
the “interior” of this hypercone.

We shall call this hypercone the null cone. Its
equation is

A AA =0, (@)

where (A') € 7_. Naturally we shall call a vector
(A%) “interior”® to the null cone if ;X ‘X =
A;;AA? is the equation, in variables X', of a hyper-
boloid of two sheets in the space 7. In this way,
at each point of V, a tensor A,; is clearly defined
[x,; can be considered to be symmetric because
its antisymmetrical part is irrelevant,as can be
seen from Eq. (2)],A,; is of signature +,+,+,—
and can be multiplie(f by an arbitrary factor with-
out changing the null cone; i.e., we have a conformal
melric. We can also say that A, is experimentally
known. We shall find an adequaf factor A such that
AN, y could be considered as the true metric.

If we develop the analytic function of the right-hand
side (rhs) of Eq. (1), we have

M. AL CASTAGNINO

dzxi X, x dx’ *. dx? dx”®
— =+ T —+ I, ——
du? ? du ® du du
x . dx’1 dx’n
I L ——— s 4 e
evdn gy du ’ @

We know that “gravitational forces” do not exist in
a system in free fall, so that the paths of free par-
ticles must be, locally, straight lines in such a
system; thus we may postulate:

Hypothesis Hy: There is a system S’ in which
the second derivative of the space—time path of all
particles is proportional to the first derivative.

This is of course a well-known feature of the
equivalence principle. We observe that this state-
ment of the principle (although it is stronger than
the weak principle) is weaker than the strong
equivalence principle.

By calculating the new coefficients i inS’asa
function of the I' in S and imposing the condition
H, it is easy to prove that Eq. (3) becomes

a2t X, dx dx® dx’t
_ =i X, o4 4)
i F qu du du’ (

and if we use an adequate parameter,

2 G ok
d____x2 *',kfi_xi x_ _ o (5)
du ® du du

We have ©2 parameters of this type, which can be
obtained from each other by linear transformations.
We shall call them affine parameters and we shall
use them from now on.

x
In this way the coefficients I';, (which are sym-
metric in jk for the same reason as A ; is) are

defined at every point of V,. Thus I}, can be con-
sidered as the coefficients of an affine connection,
which allows us to introduce a parallel transfer
accorgling to, Levi-Civila and a covariant deriva-
tion (V; and D). But we shall see that this notion

of parallelism is not physically correct, in general.
We shall use the covariant derivation as an
auxiliary notation, so Eq. (5) can be written as

* . .
D dx' _dx’* dx'
bl il T il ©®

It is known that a light pulse never becomes a par-
ticle of velocity less than ¢,nor is the inverse case
possible. (At least this is true in all V, except

for a set of isolated points where phenomena such
as photoproduction can take place.) Then we can
postulate that, except possibly for a set of isolated
points, the following hypothesis is valid in all V,:

Hypothesis Hy: If the vector dx'/du is the tan-
gent to a curve of the fundamental congruence and
it belongs to a null cone at one point of the curve,
the tangent vectors at all the other points of the
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curve belong to their corresponding null cones.
(We shall call this particular curve a null curve;
it is the space-time path of a light pulse.)

So if dxi/du has the property

di’ ax’
5 d dn @
at a point of a path of the fundamental congruence,
Eq. (7) holds for all other points of the path., Tak-
ing the derivative with respect to # and remember-
ing formula (6), which is satisfied by dx'/du, we
have

* dx' dx’ dx®

Vel @ dw dw = O

(8)

Then if dx*/du is a root of polynomial (7), it is also
a root of polynomial (8), so the latter is divisible
by the former,i.e.,

dxk,
k du

dx' dx’
o du du

ol dxt dax’ ax”*

Verii Gy du -

(9)

where A, is a vector to be determined. Then*
VA, = 10
e Ve = S ik (10)

Since this equation holds true except for a set of

¥:plated points and we have assumed that A, and
;,, are analytic functions of x, we can say that (10)

is valid at every point of V,.

3. DEFINITION OF PARALLEL TRANSFER ON
THE MANIFOLD V,

We can give a physical definition of parallel trans-
fer on space—time based on affine geometry. We
know by H; that for every x € V, there exists at
least one privileged system S’ that maps all curves
of the fundamental congruence that belong to

Ulx € US V,)onS'(D)[(x") € §’(U) S R,);in such a
way that they will have a vanishing second deriva-
tive in (x’) (if we use an affine parameter);i.e.,

in §’(U) all the curves of the fundamental con-
gruence are mapped on to approximately straight
lines; we can make the approximation as good as
we wish by reducing U. From now on we shall
speak of paths of particles and light pulses as if
they were straight lines, because we shall refer to
their images under the S’ mapping. For this set

of straight lines of Euclidean space R, all theo-
rems of projective geomelry are obviously valid.

On the other hand it is evident that we can con-
sider the paths of two light pulses emitted by a
particle and lying on a two-plane of R, as parallel.
Indeed, in the system S’, where gravitational fields
do not exist, all events take place locally as in the
special velativity,and in the flat space these paths
of light pulses cannot intersect. (If such a thing
could happen, two light wavefronts emitted by one
particle would intersect, which would only be pos-
sible if the particles were travelling faster than
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light.) So we have physically defined the notion of
parallelism, because in each (space-time-like)
two-plane there are two pairs of parallel lines
(i.e.,two improper poinls). These are the inter-
sections of the two null cones (i.e., the two wave-
fronts) with the two-plane. According to the
Desargues lheorem (and some others such as the
Pappus theorem), given two pairs of parallel lines,
we can obtain other pairs of parallel lines.

In its affine version the Desargues theorem says:
Given two triangles ABC and A’B'C’ (Fig. 1) such
that the three straight lines that join the corres-
ponding vertices intersect at point 0, if AC is
parallel to A’C’ and if AB is parallel to A’'B’, then
BC is parallel to B'C’.

If, on a two-surface, we repeat the drawing of Fig.
1,04, 0B, and OC are paths of particles,AC and
A’C’ are paths of light pulses that could be con-
sidered parallel, and the same happens with AB
and A’B’; then BC is parallel to B'C’. This method
is essentially the one used by Marzke and Wheeler
to define parallelism, and, as the author has proved,
it gives rise to an ideal experiment that allows
parallel paths to be constructed.® The reader in-
terested in a more detailed explanation of the
physical meaning of this parallelism is referred to
Refs. 1, 2,and 5.

These considerations are only approximate, but
they become exact if they are repeated on V, with
paths of particles, instead of straight lines of R,
and if we make Fig.1 become infinitely small.

To prove this, let us take a point 0 € V, of coor-
dinates (0,0, 0,0) in an arbitrary system S, and two
vectors At (interior to the null cone) and B (arbi-
trary). A¢ and B’ define a two-plane (Fig.2). Let
us consider a two-surface formed by all the par-
ticles paths which pass through 0 and are tangent
to the two-plane, and let us define

r;BB =B, A ,AB =C.

)\i].AiAj =A, (11)

Let us define an affine parameter « on each path

FIG.2
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of the two-surface that passes through 0 in such
a way that « = 0 for the point 0. All the tangent
vectors ingide the null cone can be written as

; , .
(g%) = coshgA® + sinheB’,
0

(12)
In this way each point of the two-surface inside the
null cono1d at 0 is defined by two corrdinates u» and
g:x" = x'(u, 8).

Let OA be the path tangent to the vector A" (Fig. 2),
and let us take two other paths OB and OC and two

paths of light pulses AB and AC. Let # = u,(6) and
u = u,(6) be the equations of these last paths.

Then the coordinates of the points A, B,and C are,

respectively,

A x' = x"w; 0),
B:xi= xi(uz(ez); 845), (13)
C: %' = x'(u1(6,); 64).
Let us take 6; — 0 and 6, ~ 0 and calculate the
tangent vector
i i
i x(1o(85): 6,) —x (11(64); 0
8'x' = i ( 2( 2), 2) ( 1( 1/ 1). (14)
010, 0,0 92 — 91
Calling the arbitrary limits
i —_ 92._ ’ 3 61 — ot
“Plg,n}’z“"’ 6y —6; * e,—»lol,néz—»o 6y — 6, pr, (19)
we have
ox'=a —x {200); ) + B 55 (u1(6); 6)
’(ax du, . ax ) . ,<ax du,y | E)xi) 16)
= N\auw ") TP \e @ Te )

If we take @' and B’ to be constant along the curve
g = 0 (i.e.,04) and we repeat the construction of
6’x’ at each point of the curve 04, we can con-
sider 6’x* to undergo parallel transfer along this
curve according to the Desargues theorem. In fact,
we have only drawn triangles ABC that satisfy the
hypotheses of this theorem in such a way that the
sides AB and AC can be considered parallel. After
we have made angles #, and 4, tend to zero, the
vector 6x' tangent to CB may be cons1dered paral-
lel to itself along the curve. du,/dg and du,/d6
must be taken in such a way that AB and AC are
light pulses,i.e.,
! ax’
6

Bxi du1
- —+
ou de

ox
k2

ax’® du,
Pu 06

must belong to the null cone.

Then
. . 2 . |
xzii_a_{i du_.l.)__z + 2 Aij_c_za_xi _du_z__lz
i du du 06 tJ ou oJu a0
i j

7 30 06
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Calling
_ o’ axt oxt
e i I R R TL
; . (18)
ax’ ax? 2 1/2
C=7‘ij59‘ﬁ: d=+ ac)/
we have
duy B b . d duy b d
@ ="t e W Ta T (19)

by replacing (19) in (16), this last equation becomes

6% = (ba+—ﬁ> 1——(1@36—? (20)
ou 08’
where we have introduced new constants
a=—(a'+p) B=a —pg. (21)

Let us develop the analytic function x* = xi(u, ) in

a power series:
2 i
ou 2 2
3 5 U+ ofu’).
ou jo

i ax'
X ={—
ou /o

But since each curve is a path, it satisfies (5).
Using (11) we have

(22)

= (coshe A+ sinhg A i)u - é(ﬁ;k)o(coshe Al

+ sinh8 A’} (coshg A* + sinhg A% + o?). (23)

We can define a new vector:

= (1/u)s'x* (24)

parallel to 6'x°, Then Eq. (20), with our compu-
tation of a,b, c,d, of (18) with (23) yields

= (@C + DA’ — aAB' + X'u + ou®), ¥
where

—~ Fi)oA¥((aC + gD — aAB]

+ aA*A"A'B" —BA"O

+ pA'A XS, )(1/2D)(— AB"B"™+ 3CA™B"
—BA™A") (26)

and

2-c*-4aB (27

Differentiating, we have
dox’
du

Let us take u# = 0. In this way we consider only
the points in an infinitely small neighborhood of 0,
and Eqgs. (25) and (28) become

=X+ o). (28)

= (aC + gD)A' — aAB’,

dox’
du

(29)

=x' (30)
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i.e., we have

gzaxi = a@'B"A™ —B'A"AT) 2, A%

+ BAARE A, AB™B" + 2CA™B"
—BATA™).

) (1/2D)(—
(31)

This is the differential equation of the parallel
transfer of the vector 5x* along the curve.

From Eq.(12) we obtain thatA’ is the tangent
vector to the curve,and B is an arbltrary vector
of the two-plane defined by A® and 6x°,as Eq. (29)
shows. We shall call this transfer a Desargues
transfer and we must observe that it is not the
same as the ordinary Levi-Civita transfer. But the
Desargues transfer can claim to be the real physi-
cal parallel transfer,as we have seen.

Nevertheless, the tangent vector A’ can be obtained
by making o = 0 in (29). Thus, it satisfies a dif-
ferential equation of the form

f)bx

T =S (u)ox’ (32)

In this case, then, both parallel transfers coincide.

For further developments let us calculate the
Grassmann lensov of the two-plane defined by A®
and 6x":

A’ Gxi
Al éxj
Bearing in mind that DA*/du = 0 and that 6x* satis-
fies (31), we have
bw
du

i.e., the two-plane is subject to a parallel trans-
fer according to Levi-Civita. Then there exist two
vectors that lie on the two-plane and that are sub-
ject to parallel transfer.® One of them is A,

the other B*, We have

bai bp’
du du

Let us now consider a new Gra§smann tensor of
the two-plane, proportional to W¥

T :
ij_

(33)

= g)w", (34)

=0, = 0. (35)

A’ B
A B (36)
which satisfies

B

i

w
du =0, 37
Equation (29) can be written:
ox' = an; A" + gpA". (38)

If we take o and 8 to be constant and we differen-
tiate Eq. (38), using Eqs. (35) and (37), we obtain

2207

Eq. (31), so that Eqgs. (38) and (35) also define the
Desargues transfer.

Let us finally observe that 6x° can be decomposed
into two components of peculiar characteristics. In
fact, in Eq. (38) the second term of the rhs is paral-
lel to A’ and the first one is orthogonal in the sense
of the conformal metric, because

X AN WHAR= WA A =0, (39)
Then if we put 8 = 0 in Eq. (38), we obtain a vector
that undergoes parallel transfer and which is
orthogonal to the curve everywhere. So orthogon-
ality in the sense of the metric X ;; is conserved
under the Desargues transfer,

4. THE PARALLEL RIBBON

The vector 6x° given by Egs. (35) and (38) can be
regarded as parallel to itself but not as equipollent.
In fact it can be multiplied by an arbitrary scalar
(variable along the curve) and it still satisfies (35)
and (38), as can easily be shown. Now we want to
determine this scalar in such a way that the

origin and the end point of 5x° define two parallel
curves, i.e.,two curves whose tangent vectors are
parallel, as we shall define precisely later.

We shall limit ourselves, for the moment, to the
case of a vector orthogonal to the curve C (Fig. 3).
Therefore Eq. (35) reduces to

ox’ = a(u)AmnWimA".

We want to determine a(x) so that 6x° may be
considered equipollent to itself along the curve.
At each point of the curve C we can construct a
curve tangent to the corresponding 3’ and geo-
desic, in the sense of the connection I, ,, i.e.; 6x°
will be tangent to these curves and w11f undergo
parallel transfer along these curves according to
Levi-Civita. Then if v is an affine parameter to
these curves, we find

(40)

i ax’ D 6xt =0,
bx" = W’ dv
The set of points of these new curves generates a

two-surface endowed with a system of coordinates
x' = x*(u,v). We know that along the curve C

(41)

ig J _
A4 = 0. (42)
If we want the curves v = const to be parallel to the
curve C (let C be the curve v = 0), their tangents
must be obtained by the parallel Desargues trans-
fer of vectors At along the curves # = const. But

(0= const curves | [=cons? curves)
FIG.3
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the Desargues transfer preserves orthogonality;
therefore the former condition is equivalent to
demanding that the net of coordinate curves be
orthogonal. Now if the curves v = const are paral-
lel, the vectors 6x ¢, obtained by (41) as limits when
v — 0, may be considered equipollent. Therefore

*

3 o

I R ‘5x’) = 0. (43)
Bearing in mind that A* = ax*/au, that 6x* = ax*/d0,
and that the coefficients f‘;k are symmetric, we
have

b ,i_ D
E;A = Iu ox". (44)
Consequently Eq. (43) becomes
k i 7 i Dox*
ox (Fn 04 o + x o DX = 0, (45)

This is the differential equation that must be satis-
fied if we want the coordinate net to be orthogonal.

Equation (45) defines the coefficient o(u) of (40) and
it can be integrated if we use Eq. (10). This leads
us to

b

Jg,® P 5,7
_.<d%7tjk)6x 6x "+ 2x;;0% 7 0x

; -
+ AN Bx76x ", = 0. (46)
If we call
8 = x;0x 'ox (47)
and )
Ci — A.m”Aszn, (48)
and if we calculate
ini _ 2
2,,CC' = —AD", (49)
then
5 = —a’AD>. (50)
If 6 is introduced in (46), we obtain
2 d 1 2 i 1 d 2
AD Elogoﬂr 3 AD"A'N, + zd—u-(AD )
%
17 -
+ ' A= 0. (51)
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If we now calculate dD?/du and C'C’, we obtain

* 2
i D daD 2dA
V) =~ —_ ey an
CCduxi]._ Adu+Ddu‘ (52)
On the other hand, using Eq. (10), we have
dA ki X ® i \f k
T = ANV = AN AN = A AT (53)
Introducing (50) and (53) into (51), we have
d d 1 2
u loga + 2 Tu logA — 3 logD” = 0, (54)
so finally,
o = KD/A?, (55)
and the equipollent 51t is given by
6x' = (KD/A2)xmnW'™"A", (56)

where, in addition to the conditions (35), K is a
constant.

We shall call the curve C and a curve v = const

a parallel ribbon that can be approximately inter-
preted as the curves generated by the origin and
the end point of 6x°, when 6x' undergoes parallel
transfer.

Now it is easy to understand that the coefficient o
can be used to make the parallel transfer equipol-
lent in the general case (38), when 6x' is not ortho-
gonal to A’. Specifically, let §°x°, the normal com-
ponent of 5x° at a point A of the curve C (Fig. 4),
generate a parallel ribbon CC'. With formula (38)
we transfer both 6x° and 6°«* in the Desgrgues
parallel way, to the point B. To adjust 6 x' so that
it would belong to the ribbon, we must multiply it
by a,and so, we must do the same with ox*. There-
fore equipollent transfer in the general case is
given by
2

ox* = KA% A, WA + H%A : (57)
znhsre K and H are constants, together with Egs.
35).

5. THE GEODESIC CLOCK

Now we can define a geodesic clock as a pulse of
light that bounces back and forth betwejen two boun-
dary curves of a parallel ribbon. If éx is the vec-
tor that defines the parallel ribbon we want to

find a parameter v (in general a nonaffine one) in
such a way that if the diagonal curves of Fig. 5

are the paths of the bouncing light pulses, the
increment Av of the parameters is the same for
each oscillation of the light pulse.

6x* + % Avdx’/dv is the vector that can be con-
sidered as the path of the light pulse to a first
approximation, so

i dx' Av ) _
Mj<6x ¥ @“z‘) (5" tav2)= Y (58)
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and if 6x° is normal to the boundary curve of the
ribbon, as in Sec. 4, we have

) , 2
=, () 0)6)
0= Xijéx ox" = Aij <d1) (d—’l)- p] (59)
By Egs. (50) and (55) we have
erel) () 0
v 2
thus if we want Av to be constant we must have
2
v=K [“A_da, (61)
5 D

where K' is a constant and » is the time parameter
measured by the geodesic clock.

In this way the notion of parallel transfer and the
existence of null cones allow us to measure times
(and distances too) and will also allow us to con-
struct a metric on V, if we add some hypotheses
to those already given. Fundamentally the method
of measurement given up to now must lead us to a
unique result to make the definition of a metric
possible. For example, v depends upon the parallel
ribbon we are using, i.e.; two parallel ribbons with
a common boundary curve C lead, in general, to
different times ». Let us introduce the assumption
that such a thing would not take place:

Hypothesis Hg :Formula (61) gives us a unique
time, independent of the parallel ribbon we are
using.

If 6x° and 6'x’ define two parallel ribbons with the
same boundary curve C we must have

OfD—du_K"j 7—du, (62)

where D? and D? are the correspondent determin-
ants and K” is a constant. Then

dDz/du

db?/du _
=

—5%

= k@AY, (63)

and A’ and is not a

where k(A% 1s functlon of A ;;

function of B® or 6x°. Then
L A A D Y W
AzAJAkek ij Mia| _ k(Ak)AIA] ij ia (64)
i Map Aip gy

When contracted with A“’, the inverse matrix of
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X, this equation leads us to
k(A)—3<Ad +1212A> (65)
where
dp= }‘”ek"ir (66)
Then, using Eq. (53), we have
kAY = A%y, (67)
where
L= 3(d,+ 2. (68)

1,18 a vector independent of A Equations (64) and
(67) must be satisfied by all A’, Then hypothesis
HS5 implies that

Aai )\ij hai Aij

59, =Sp, (69)
i Mgy Ayl P7E Mg Xy
Contracting with 1, and using (10), we have
Ve = @G a T Dok Dohap (70)
where
=Jg(2hk+10uk—2d —4c,), (71)
= (21, — 2, + 2¢,),
and
L. X
cp =27V 0. (12)
Contracting Eq. (70) with A%, we obtain
Cp=4N, —3u,, d,=-—20—3py,, (73)
Then
@y = pp—Ay, by =X — 3y, (74)
and Eq. (70) becomes
*
Vs = (p = Mg + (0, — %“a»‘bk"' My — 38 gy -
(75)

In this way hypothesis Hj allows us to give an
explicit expression of the covariant derivative of
A4 as a function of two unknown vectors A, and y,.
From now on we shall suppose that Hs is valid, so
that time v» is uniquely defined along each path.

6 THE EXTENSION OF THE METRIC

If it is possible to define a real metric, it must be
one of the conformal metrics, so

&j =M\ . (76)

Besides, on any curve of the fundamental congru-
ence, the proper time » must be equal to the length
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of the corresponding piece of path measured by the
metric & i.e.,

dv2 = —g,-jdx"dxj. 1)

From (76) and (77) we can find x:

oy G (@ 1)
7% du du \dv A\du

Let C be a curve o_f the funda._mental congruence
that joins point %x* to point x*. By definition we
take A =1 at 0x°, which means that we take A, ;; a8
the real g;; in o', In other words, in 0x* we define
the standards of time or length. Then if Agand D,
are the values of A and D in %, then we have

! 3
~K2 40, (18)

’ D4
K2 =— Z% : (79)
and
D4 A3
A =E8-54- (80)

But, of course, A depends on the curve C that joins
xito x*. This new ambiguity must be eliminated
by a new hypothesis.

Finally, we observe that if in (61) we substitute for
K’ its value given by (79), we shall obtain the
proper time 7 according to the standard taken in

OXi.

7. THE RIEMANNIAN MANIFOLD
Let us then make a final hypothesis:
Hypothesis Hg: The preceding method leads us

to a unique metric, independent of the curve we
use.

Let us express this hypothesis as a mathematical
equation. From Eq. (80) we have

d _3dA 2 dD?

@' =X DT @ &Y
Taking (53), (63), and (67) into account, we have
2 Jogn = AH@3N, — 2u,). (82)

Hg4 requires that d logh be a total exact differen-
tial;i.e., x, and u, are related by the following
equation:

3x, —2u, =0,logx, (83)
where now A is defined all over V,. We have now
unequivocally defined the metric g;; and the Des-
argues parallel transfer. We shall see that if we
accept all the hypotheses H -Hg, the Desargues
parallel transfer coincides with that of Levi-Civita,
and is simply the one that corresponds to a Rie-
mannian manifold:i.e., the connection is given by
the Christoffel symbols, so we would arrive at the

M. AL CASTAGNINO

classical theory of Eins/ein. Then we shall prove
the following:

Thevrem: If the hypotheses H,~Hy are valid,
the Desargues transfer coincides with the ordinary
parallel transfer of a Riemannian manifold with
metric g;;.

Specifically, as g;; = A},;, using (75) and (83), we
have
1
' éuk)g,‘j
)\i - %“i)gjk + (7\]- -

»
V& = 200

+( 21083 - (84)
We can restudy the formulas that define parallel
transfer, but now since &;; is defined in a unique

way, we can take it as the original X, i Then we
have g;; =2,;, 1 =1, and from (83), u, = M, . Thus

*

V8 = 2085 T Mg 80 (85)
From (63) and (65) we have

dD2 i

= AN D, (86)

and from (53), (57), (85), and (86) we obtain the dif -
ferential equation of Desargues transfer:

* o8
Déx™ 1,7 i KD ij
T =— e+ 2 WA, 87)
and from Eq. (57)
AZ i i
8 8x* = (KC + HD)A' — KAB'. (88)
Then
i A i (KC + HD)
and
W\, = (A/KD)(— Alsx? + ex’ATN (90)
Replacing (90) in (87) we have
* g
Dbx . i .
= 1(08%; T 0;0,)A%6x %, (91)
i.e.,
d;" (T, + 460 a) B oxt =0, (92)

Thus in this particular case the Desargues trans-
fer is simply the Levi-Civita transfer given by the
new connection:

: * . N
T =T +38° A (93)
I‘;k defines a new covariant derivative, with Vv and
D such that the Desargues transfer equation is

(94)
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Finally Eq. (85) can be written
* h p * p k
0,8 — Tji8m — 2108~ Tri&in — X 0&r =0,
(95)
and, using the new connection;

V.8 =0. (96)

From this equation one can immediately deduce
that

N i
_;k = {jk}!

which proves the theorem.

Let us now see that the paths of the fundamental
congruence are geodesics of the Riemannian V,,
by (61) and (80):

d2' _ 1 D2 [d%’'D2  dx' (D2
dr? ~ K2 AZ [du? A% ' du \AZ)| -

Thus, bearing in mind (53), (86), and (87), the dif-
ferential equations of the paths of the fundamental
congruence are

(97)

ax' _moddat ol O
drz = kdgr dr ~ ®dr ar
* . . dx? di®
= — (T} + 5000 G Za (%8)
i.e., )
D 1
L &)=o (99)

Then follows the law of motion of particles: The
second covariant derivative, in the new connection
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T" is zero. The paths are then geodesics and the
proper time 7 is an affine parameter.

8. CONCLUSIONS

If we accept hypotheses Hy~Hg, the preceding
measurement method leads us to conclude that the
structure of space—-time is a Riemannian manifold
and to formulate the classical theory of Einstein.
H, must be accepted as a reasonable hypothesis in
the macroscopic world, although we know it is not
true microscopically. H, is solidly based on the
experiment of Eolvos. H, is a consequence of
special relativity. H; is a reasonable formulation
of the principle of equivalence. H, is a physical
fact. Hs and Hg are the less solid hypotheses, any
possible modifications of the Riemannian theory
must be sought by rejecting one of them. In par-
ticular, if we eliminate H; and keep H it can be
shown that we reach the Weyl geometry.

Finally we must observe that if the manifold is
non-Riemannian, the Desargues transfer does not
coincide, in general, with the Levi-Civita transfer.
This fact perhaps clarifies the failure of non-
Riemannian theories that use the nonphysical Levi-
Civita transfer.
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In a previous paper the author proposed a representation 7 for the algebra of representations of a finite

group G. Here a corresponding representation ¢ for the algebra of classes of G is established, and the
relations between the two representations are investigated. In particular,the idempotents of ~ and c are

studied in some detail.
1. INTRODUCTION

Having become interested in the geometry of
group vepresentationsl- as applied to theoretical
physics, the author has attempted elsewhere? to
show the significance of these ideas for finite
groups. Subsequently, he discovered the papers
by Gamba3 and Killingbeck4 in which some of

the same results were described. The present
paper develops the duality between the irreducible
representations A of G over the complex field and
the classes C; of G in the foregoing context.

2. REPRESENTATIONS OF THE DUAL
ALGEBRAS

We begin then by assuming G to be of finite order
g with classes C;, each containing g; elements with
corresponding character X;. We assume the

table of characters X has rows A and columns
C,,and write the reduction of the Kronecker or
tensor product5

AX p=dp=ph =2 gy, 2.1)
and the corresponding product of classes
C.C; _cc_chk, (2.2)

where C, =

If we denote the sum of the elements of the class
C, by the same symbol, it follows from Schur's
lemma that the f * elgenvalues of the represen~
tation of C; are all equal to y, ,called the class
multiplier of C,,where$

Py AN
Yi =gixi/f .
It follows from (2.2) that
B_A
? Cij Yk -

As in the former paper,2 the clue to what follows
is the writing of the characters X; along the
principal diagonal of a diagonal math D* for
fixed A, and similarly the class multiplier 7; as
a dzagonal malrix D, ,for fixed {. We shall dis-
tinguish those formulas relating to the represen-
tations A of G by the suffix r and those relating
to the classes C, of G by the suffix ¢. Thus from
(2.1)—(2. 3) we have

=Zy>g)l\lpDU

iy = (2.3)

(2.4r)
and

Di'Dj' = Eciijk' N (2.40)
k

where we denote the representation with conjugate
complex character to that of A by A’ and the class
inverse to i by i’.

In what follows we think of the character table of
G as a matrix X, and we transform (2.4r) and
(2. 4c) to yield

xpV X Lexp¥x!

=T g, X" Xt (2.5r)
v

and

X 'Dy XX 1D;X= T ¢ X 'DyX.  (2.5c)
k
The desired representations of the dual algebras
are obtained by setting
2} =xpVx7t

= (gﬂky ’) (2. 61‘)
and -1 )
€=X"DyX=0(,)

(2. 6c)

While relations analogous to (2.5r) and (2. 5¢)
remain valid for transformation of (2. 4r) and
(2. 4c) by any nonsingular matrix M, it is the

special choice of M = X which y1e1ds the mat-

rices {1} and {C;} with the g‘37 and ¢,
elements.

3. THEOREM AND COROLLARY

In order to prove the statements just made, it is
necessary to recall the expressions m terms of
the characters for the multiplicities g)\“ and ¢;;
We quote the result only7:

8
gﬂy =(1/8) Z)gixixiyxi

i
xl
= T XX, (2,X] /g), (3.1r)
1
which is symmetrical in S3,y,and A’ and corres-
ponds to the matrix multiplication in (2, 6r). -
Similarly, the value of ¢}, is given by8

i g'rgz'
Cprs = z

[&,%X°0
- (57 )rex,

which is symmetrical in 7 and ¢/, but nof in s,
and corresponds to the matrix multiplication in
(2. 6c).

It follows from the above that we may obtain the
desired matrix representations of the two algebras
directly from the rows or columns of the tables of
products, as will be illustrated in Sec.5. In addi-
tion, the extra symmetry in (3.1r) leads to the

1
> & XL
o f

(3. 1c)
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derivation already noted.?2 Thus we have proved
the following.

Theorem 1: (i) {x}{u} = 53,88{v}, i)
{c;Hc =2 kc{;{ck} with the following corollary,

Corollary: X for some ¥ (s) we have

: A # .. ; i
(i) &5,78y0* 0, (i) cpgrcly =0,

then for some v (%) we have

. .y k k
(i) &xp&sar =0, (i) ¢j¢, =0,

which is illustrated in Sec. 6.

Perhaps it is worth writing out in detail the matrix
multiplication involved in Theorem 1 (ii) to illus-
trate the complications which are involved. If we
set

{c.He;} = (chentelny = T e,
then k

(3. 2¢)

using the orthogonality relations of the characters.
A similar reduction applies in the case of Theorem

13i).

It is evident from (2. 6r) that the eigenvalues of
{r} are the elements of the A’ vow of X. Since
the eigenvectors of D* are the E,(0,...,0,1,
0,...,0),it follows that the eigenvectors of {1}
are the XE,, i.e.,the corresponding columns of
X. Similarly, the eigenvalues of {C,} are the
elements of the C; column of v and the eigen-
vectors of {Ci} are the corresponding rows of y.
This last statement follows from the fact that an
eigenvector of {Ci} must have the form X" 1E? =
(f°/g)X!,where f’/g is constant for varying 7.

4. IDEMPOTENTS OF THE ALGEBRAS

Crucial in the development of the representation
theory of any finite group G is the notion of the

C4

ISP S TS
= NN =0
= g v = O
= D g =
(S
[ IR T X

2213
idempotent of the group algebra?
p T° for o=p
P =L xfc,,, TPT%=
g Zz> P 0 for o=p’
>, TP =1, (4. 1c)
p
Substituting {C,} for C,/,we obtain
R p ~1
X{Tfx " = e Zxix{erxh
p i
:f? z X! D,, (4. 2c)

which is an idempotent I” of the matrix algebra
with 1 in the p place of the diagonal and zeros
elsewhere.

If we seek to construct the analog of (4. 1c) in-
volving representations p instead of classes C,,
we run into difficulties. However,their represen-
tations {p} are all of the same dimension, and so
we may set

g.
{s;}==2 x/{n}
g
and, transforming again by X, we have
- g, -
X Hskx =2 ZxIx o} x
P

85 xop?, (4. 2r)
& p

which is also an idempotent I; with 1 in the ¢ place
of the diagonal and zeros elsewhere.

One continues to hope for an explicit mechanism,
analogous to the Young diagram for S,,to relate
the classes to the representations of an arbitrary
group G, even if it does not extend to products!

5. EXAMPLE

We illustrate these ideas in the case of the group
of order 10 defined by10

§5=T7T2 =1, TST =871,
where
C,=1, C,=8,81 C;=82S5"2

C, =T, TS, TS2,TS3, TS,

Setting p= 3(— 1 +V5) and 0 = 3(— 1 — V5), we
have the following tables for X and y:

Y,

M D g N
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whence we derive the multiplication tables

a b c d c, G, Cy C,
a fa b c d ¢, /¢, C, C; Cy
b(b atc+d b+c b C, [C, 2C,+C; Cp,+C; 20,
cle b+c a+tb+d ¢ |'Tr CcylCc; Cy+C, 2C,+C, 20,
d \d b ¢ a c, \C, 2¢C, 2C, 5C, +5C, +5C,

From 7, we obtain

1000 0100 0010 0001
0100 1011 110 0100
ar = ) b: 5 Ct = B d: N
{a} 0010 {0} 0110 te 1101 {a} 0010
0001 0100 0010 1000
so that
1221 1p o
2 4 42 p p2 po p
S =% , St = 2
{s} 012442 (s} = % o po o2 o[
1221 1p o1
1o p 1 100 -1
0 02 op o 000 O
{33}='123 s {84}=I% ’
p op p? p 000 O
10 p 1 —100 1
where e.g.,
1011
0310
bp 1b} = =1a; + {cp + 1d
eyl | L, || =ta) + el + )
1011
and
{{si} for i=13j
s =10 for =y
with

{8} + {So} +{S3} +{S,} =1.

Similarly, from 7.,

1000 0100 10 0001
0100 2010 10 0002
C,}= , 1C.}t = L {c.} = , {c,t =
fe) 0010 1Cal 0110 fest 00 gl 0002
0001 0002 0 2 5550
1111 2 p o O 2 ¢ p 0
222 2 b 2p p2 op O 20 02 po O
{T% = & , {7} =3 S b {r} =2 ) o
22 2 2 20 ogp 02 0 2p p° p2 O
5555 0 0 0 O 0 0 0 0
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1 1 1 -1
{Td}:i 2 2 2 —2
10 2 2 2 -2/
—5 —5 —5 5
where,e.g.,
010
0310
C C,t = =21C +4{C
eHesd={, |, , | —2led e
00 4
and
(pigpy T o =
}0 for i = j

with {79 +{7°% +{T°} +{17% =1. Here

X Ys X =x{7}x"1, X {s,}Xx =x{T°}x"1, XY }X =x{T°}x"1, X 1{s,x=x{r%x"1.

The form of the idempotent matrices suggests

Theorem 2: The idempotents of the representa-
tions 7 and ¢ can be written as Kronecker products

of suitably chosen row and column vectors.

The proof follows immediately by rewriting (4. 2r)

and (4. 2c¢) in the forms

{s,;} = x1,x°1, (5.1r)

{r°} = x"11°X, (5.1c)

where /, and I” are defined in § 4.

6. COROLLARY (ii)

Having illustrated Corollary (i) in the previous
paper,? we confine our attention here to (ii),and
associate the six classes of Sy, omitting C,, with

the accompanying Pasch figure (see Fig. 1). Since
S5 = Ay + (12)A4, it is clear that the even classes
(3,12),(221), and (5) must be collinear while the
odd ones (2, 13),(4,1),and (3, 2) may be associated
with the three remaining points of the figure in all
possible ways. One could develop the analog of
the 6j-symbol here also.

(3,2)
(2,13)

(4.1)

(3.42) =0 (5)
FIG. 1
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4 J. Killingbeck, J. Math. Phys. 11, 2268 (1970).

5 W.Burnside, The Theory of Groups (Cambridge U.P.,Cam-
bridge, 1910), Chap. 15.

6 M. Hamermesh, Group Theory (Addison-Wesley, Reading,
Mass., 1962), p. 109.
7 Reference 5,p.291.
8 Reference 5, p. 285.
9 Reference 5,p. 305,
10 Reference 5, p.296.
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A simple form of perturbation formula is shown to be correct to the fifth-order of the perturbation.
It also has the variational character, namely, it gives an upper limit for a correct eigenvalue when-
applied to a bound state. The formula is in the form of a Padé approximant. The next approximation
is correct to the seventeenth order and has the same variational character. Some examples are given

and compared to conventional theories.

1. INTRODUCTION

The perturbation theory of Schrodinger! is so
powerful and useful that it is discussed in almost
all text books on quantum mechanics. The explicit
expression of the perturbation series, however, is
not commonly given beyond the second-order term.
An expression for the higher-order terms is given
in Condon and Shortley's book?2 but is quite com-
plicated. Brillouin and Wigner3 gave a simple
expression for the perturbation series, but in actual
calculations one has to reduce it to the complicated
formula of Condon and Shortley. A modification of
the Brillouin-Wigner method is given in the form
of a continued fraction, 4 which makes its applica-
tion easier. All existing formulations are applic-
able only to the nondegenerate case. In this paper
we present perturbation formulas which are simple
enough for practical applications and yet accurate.
This scheme is also applicable to the degenerate
case.

We assume that

A=8,+8, =0+ ah, (1)
where a is a parameterAwhich indicates the stren-
gth of the perturbation H;. We also assume that

all eigenvalues and eigenfunctions of H, are known:

(2)

Byln0) = €21n®), HylmO®)=€QImO) ...,
The problem is to find approximate expressions
for the eigenvalues ¢, of H,

Aln) =¢,ln) ®3)

by means of €2, €%, ...,and [#0), [m0), -+,

2. FIRST-ORDER PERTURBATION

If we express the Hamiltonian matrix by taking the
eigenvectors of I?O as the basis, we see thatothe
diagonal matrix elements are of the form ¢, +
(n0|H, [n0), while the nondiagonal matrix elements
are of the form (©0|8, |m0). The secular equation
is then

(€0 + (nO1A, 1n% — €) (€2 + (mOIA, |m9)

—€) (-++ —€) T 0(a?) =0, (4)
where ¢ is the unknown and the last term O(a?2)
represents all terms in which nondiagonal matrix
elements are involved. Since nondiagonal matrix
elements always appear in products such as

(n0| aly |mO) (mO|ak,|n0) in the expansion (4),

O(a2) is of the order of 2 at least. If there is
no degeneracy,
(5)

e,ﬁl) = 57? +(n®|4, In0)

is correct to the first order in o, because €2l+

(nOA, |m0) — enl is of the order of &0 for all
m's except for n.

3. SPACE CONTRACTION OPERATOR

Let us define an operator S‘,?, called a space con-
traction operator

(6)

where 1 is the identity operator and Qn is a pro-
jection operator defined by
Q,=1— [n0)(n®]. (7)

The well-known property of a resolvent

(53 —Hy— Qnﬁl)-l = (&) — ﬁo)_1 + (ES - ﬁo)_1
x QA (e) — Ay —@,H,) (8)
is used in obtaining the last expression of (6).
It is easy to see that
B—eHS0=8,—-€2+(1-§,)8,8 (9)

holds.

4. THIRD-ORDER PERTURBATION

Let us transform the original vectors [n0), Imo),
<+ into 8°|n°), $9 |m®), ... We will show that

the nondiagonal elements (#°|$°7§% |m®) and

(n®|§01AS0 | m0) are all of the order o2 or higher.

By a straightforward calculation we obtain

™m

$2780, =1+ (2 —Ay)"Q, A, +8,Q,(c)— By
+ [(62 - ﬁO)-IQmﬁl — (672 - 63)_131(?”]

X (€0 — AoV 'Q,Hy + 1,Q,(e)—H)™
x [ﬁlén(eg —H)™? — Q,H(e) — et

+ O(e3), (10)

where the last term O(a3) represents all terms
which are of the order o3 or higher. Therefore
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(nOISOTS (w0 = (62 — e,?)'z ((nolﬁ1 120
+ (molH1 [n%) n° A, 1m%

+ O0(a3), if m #=n. (11)
The transformed vectors 52 [n°), P 1w, ... are
not orthogonal to each other, but the nonorthogona-

lity is of the order a2 or higher.

In a similar way we obtain

(nolg,?TFIﬁ,Sl w®) = (e,(n)(nolﬁl |2 + eXnmOA, I

x nO18y m®) (€2 — €22 + 0(a®), if m = n,
(12)
which is of the order a2 or higher.

In the matrix of A — €1 we therefore see that all
nondiagonal matrix elements are of the order a2
or higher, if we use $21#%,321%.%), - - - as the
basis. Applying the same argument as we gave
in relation to (4), we see that

& =18 AS) I/ °130'801n0)  (13)

is correct to the order a3.

5. FIFTH-ORDER PERTURBATION

When we look at (11) and (12) we see that if we
can get rid of the diagonal elements of 4, in the
original representation, we can make all nondia-
gonal matrix elements of & — €1 of the order a3
or higher, and, therefore, obtain an expression for
the approximate eigenvalue which is correct to
the order of a5. It is easy to see that this can be
actually done if we reformulate the problem by
replacing (1) by

A=8,+H, (14a)
where
a,1n% = P (14b)

that is, making the perturbation A purely non-
diagonal, and take

S =1+ (e — A" Q85 (15)
for the space contraction operator.
Following the same argument as before, we see
that
= (18T ASL | O K BP0 (16)

is correct to the order of a3.

6. SEVENTEENTH-ORDER PERTURBATION

Although the fifth-order formula is accurate enough
for almost all practical applications of perturba-
tion theory, it is worthwhile to indicate how we can
obtain higher-order perturbation formulas.

2217

We have seen that when $0[2%), 3| m0, ... are
taken as the basis, all nondiagonal matrix elements
of A — €1 are of the order o3 or higher. If we
reformulate the problem by replacing (14a) by

a=89+8%, an
where
ﬁ(()ﬁ)|n0> — 6515)[710) (18)

and
(mP AP % = m°1SPTAS L 00/

x (mOI308 L 1m®% (n®13DED1 02 (19)
and by taking

S (6] ‘i ( ) . ﬁ‘g5))"1 Qnﬁ{5) 3’55) (20)
instead of (15), then all nondiagonal matrix ele-
ments of A — €1 in the 8(5) [2°) representation must
be of the order (a3)3 = a9 or higher. Therefore,
we can neglect all nondiagonal matrix elements

in the resultant secular equation up to the order

of @17 to obtain

(17) <n0ls(5)7 (5)[’70)/(”0]5(5” (5)|n0> (21)
from the diagonal element only.
7. PERTURBATION SERIES
From (9) we obtain
(n® |§2Tﬁ§2|no) = e,?(n0|§2T§,? In0)
+(n°8,821n°), (22)
therefore,
n°18,821n%
T (@3)
(n”18,)'8,)1n")
Corresponding to (9) we easily obtain
- eBP =0y— P+ 1-§85%, (@9
so that
n®8 8 Vn0
e(ns) = 69) + . . (25)
(018 M15 D), 0
In the same way we obtain
el 9= (26)

<n°|s<5>T (5)In0>

Explicit expressions are obtained by using (6), (15),
and (20). For example, (6) gives
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2010\ _ 1,0 | #9) (mn)
Sy n®) = [n0 + ";n — where
+ 110y (Im) (1) (mn) = (mO|H,1n% in the numerators, and
mEn, e lm m =¢?— €% inthe denominators. (28)
0 .
> |k O) (k1) (Imi)(mn) , @1
m#En, [Fn, k¥n klm
J
Therefore
© o (nn) + 2 [(nm) (mn)/m] + E [(D) (Im) (mn)/bm] +
€,/ =¢, + n
" * 1+ E [(nm mn)/mz] +ee (29)
In the same way we obtain
(5)= @) ' + ’ ’ ’
€, €, +{";n [(nm) (mn)/m] an‘)l#n [(rD) (Im) (mn)/Im) + m#n,lg.k*n [(rk) (k1) (Im) (mn)/kln]
Y (rk) (k) (kD) () Gran) /L) + <-4 41+ 3G () /2]
mEn,ltn, ktn, hin m#én (30)
+ ' 2 2y +...4-1
m#g?l#n (mm) (ml) (In) (1/m21 + 1/mi2) + } ,

where diagonal elements of A, are excluded from
the summations, and
(31)

in the denominators.

= 1) Q)
(101 65‘ — €,

A considerably more complicated expression can
be opgamed for ef,l ® when in (30) we replace 65‘1

by €, in front of the fraction and take
m = e(s) eff,’) in the denominators (32)

and substitute (k4) in the numerators by

" k,
k1) (1) (Gh
200 68 (e
l’ jl
+ +
E—D0—D0—) G-DE—)E—7)
n’ + 1

-+_
ke —DE—-DEk~-n) E—=DE-))

+ 1 + 1 )
—=0Dkh—5 (E-DF-=7

+ 23" (k1) (1) (ii)(ih)(---) +een]

I + ... Y12
x (1 2 (k1) (k) T >
( 3 (hl) (1) . ) 2o (33)
l&h (h _ l)z

where (k1) and 7’ have the same meanings as
before, but
(h—k)= e(,})— eg) in the denominators, (34)
k' = eg) in the numerators, (35)

—

and 2" is a summation over all intermediate states
excluding diagonal matrix elements of Fll and those
intermediate states for which the corresponding
denominators are zero.

8. DEGENERATE CASE

Let us assume that |n?), |ng>, ) |nb> have a
common eigenvalue €, of A. Since the argument
in relation to (4) still holds even if such degeneracy
exists, formula (5) is correct to the first-order

of ﬁl without any modification. In order to obtain

a third-order perturbation formula we replace

Q, of (T) by

) g l— oo — 10D @ ?
(36)

Qy=1- lnl)(no‘

and replace $° of (6) by

§0=1+(2—HA,7q,8,50. (37)
We obtain
(mO|Sf:1SN|nO) = (eg — €2l 1A, I1m°)

x (mO By 1n?) + ,2 (mO\ A |n)) @w) 18, 1n?)

+ O(a3), if m is not amongny,...,n, (38)
and
(molS Tﬁ§N an) = () — €2 _z(eg(nzom P

X (molHl 1n %) + e 7;, (mOlHlln (nO|H1 In)

+ 0(a®), if m is not among #,, (39)

c My



PERTURBATION FORMULAS

If we solve the secular equation
(9 189TASG 10 — n0133189129) ..

n218XMAS2 1Y) — enQ18278011Y) .

n2 1801882100 — e(n?180180(nY) ..

then these solutions are correct to the order of
a3, because all nondiagonal matrix elements,
except for those in the b X b submatrix, remain
of the order «2 or higher during the process of
diagonalizing the b X b submatrix.

Formulas (38) and (39) show that if A; has no
matrix element at all inside the 6 X b submatrix,
then the above procedure gives solutions which
are correct to the order of 3. If A, has any

nonzero matrix element inside the b X b submatrix,

then we should diagonalize this submatrix first
to obtain a fifth-order perturbation formula. The
diagonalization will remove the degeneracy, and
the problem in this case will be reduced to that
of the nondegenerate case.

s(a2/k) + 4(2n + 1) (a2/k)

- P ISTTASInD) — g 1818,y 1)

(09139188010 — 018278019

2219

(40)

—

9. EXAMPLES

In the one-dimensional simple harmonic oscillator,

where

By = B2/2m) + 5kx2, (41)
we may take

By =oax (42)

as a perturbation. In this case we know the exact
solution as

€9 = ot + 1) -
1+

=Hwn + 1) — 5(a2/k)[1 — $(a2/k)2 + -],

which deviate from (43) only in o€ and higher
terms.

It is interesting to compare this result to that of
the Brillouin-Wigner perturbation method.3 In
their method, an approximate eigenvalue which is
correct to the fifth order of ¢ is given from

o ot e (n\, na? [
" €, + hw \mw

€, —lw \mw
N i+ 1)+ 2)(h/mw)2at
(€ — hw)2 (e] — 2 w)

+4n(n — 1D H/ mw)2at
(e, + Hw)2 (e, + 2hw)

(45)

where

€, =€, —hwpn + 3).

65‘5) =hwn +5) + 2n + 1)

521 + 1) (@2/k) + 3(n2 +n + 1) (a2/k)2 +:

€, =hwn + 3) — 5(a2/k). (43)
Our formula (30) gives
!
+ £(5m2 + 5n + 3)(a2/k)3
(44)
—
Equation (45) cannot be solved analytically but
the result can be obtained as the expansion
€ =— 3(02/k)[1 —x(5n2 + 5n + 3)(a2/k)2 + .-+,
(46)
which is to be compared with our result (44).
When we take
B, =3ax? (47

as a perturbation to (41), the exact solution is

€, =Thwin + 5[k + a)/k]?

B [(2n +1)/(hw + 28)]82 +[(2n + D)2 +n + 3)/2(hw + 28)3|84 +

1+ [(m2 +n+1)/2(hw + 28)2]g2 + ---

=lw(n + 3) [1 + 3(a/k) — s(a/k)2 + 5(a/k)3
—T%(a/kyl + zse(a/k)s ] (48)
while the perturbation formula (30) gives
’ (49)



2220
TABLE 1. Magnitudes of exact and approximate eigenvalues of
Eq.(51). (a = 1.)

g2 0.01 0.05 0.1 0.5 1.0
exact 1.01980390 1,095 445 1.1832 1.732  2.24
(1D 1.01980387 1,095 418 1.1829 1.693 2.06
€5 1.0198020 1.09524 1.1818 1.667 2,00
€(? 1.02000 1.100 1.200 2.00 3.0
where

B8 = ahw/ 4k, (50)

We indeed see that when (49) is expanded into a
power series of 8 or a, the result agrees with (48)
to the fifth order of .

The exact eigenvalues of the 2 X 2 matrix

—a b (51)
b a
are well known as
€, =% (a2 + b2)1/2 = £ g(1 +4£2)1/2
=+ q(1 + 262 — 284 + 466 — ...), (52)
where
=b/2a. (53)
The perturbation formula (30) gives
2
€® =gt 298 _ 4 g1 4262 — 264 +266 —...),
" 1+4¢2

(54)
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which deviates from (52) at £6. In this simple case
we can calculate the next approximation without
much trouble. The result is

€17 = € + 24 £3 \? <1 + 242
" 1+ 2

1 §2> /
[1 < - >2<l = >—2]

1+ &2 1+ £2
= € +

2a£6
n (1T + EH{1 + 682 + 9ET + £B)

262(1 + 642 + 104 + £6) (55)

=31aq )
{1+ £2)(1 + 6£2 + 9¢4 + £6)

In Table I numbers obtained by our perturbation
formulas are compared with the exact ones and
those given by the conventional second-order per-
turbation formula, which is

€{2) = £ a(1 + 2£2) (56)

in this case.

10. VARIATIONAL CHARACTER

Since our perturbation formulas are obtained from
the diagonal elements of unitarily transformed
matrices, they obviously have variational character:
When they are applied to a bound state we obtain

its upper limit, and so forth.5 This property is
clearly seen in Table L.

Our formula for €(® is of the form of the Padé
approximant,® and that for €{(17) may be regarded
as a generalized Padé approximant,

* Supported by NSF Grant No. GP-27444.
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The seniority classification of a general two-body Hamiltonian according to the group chain U(N) D
Sp(N) D R(3) is considered. It is found that by using the standard contraction and symmetrization pro-
cess, one can explicitly decompose such a Hamiltonian into irreducible tensors with respect to the sym-
plectic group. An example is given where the explicit angular momentum coupled form of these tensors

are also worked out.

I. INTRODUCTION

The method of classifying nuclear or atomic many-
particle states according to irreducible representa-
tions of various linear groups is well known.
Among the commonly used groups is, for example,
the group chain U(N) D Sp(N) D R(3) which speci-
fies the particle number, seniority, and total angu-
lar momentum of many-particle states formed
from a set of N single-particle states.

The corresponding decomposition of a general two-
body Hamiltonian into irreducible tensors of this
group chain is, however, more difficult than the
classification of states, and not much work has
been done in this direction. This is because a
Hamiltonian is generally a Kronecker product of
irreducible tensors. In order to reduce it, one
needs the vector-coupling coefficients of the group
considered, but these coefficients are usually not
known for the general representations.

In the case of the unitary decomposition, Chang,
French, and Thiol have obtained an explicit form
by a contraction procedure. For the symplectic
group, Judd2 has considered the decomposition of
a one-body Hamiltonian, and Wybourne3 has listed
the irreducible symplectic tensors contained in a
general two-body Hamiltonian, but did not give the
explicit form of these tensors.

In this paper we shall show that by writing a
general two-body Hamiltonian in the second quan-
tized form, one can obtain explicit expressions of
the irreducible symplectic parts by the standard
contraction and symmetrization process. 4

In Sec. II, we give the general form of a two-body
Hamiltonian in second-quantized form. We also
write down the unitary tensors using the results of
Ref. 1. In Sec. III, we consider the general method
of constructing symplectic tensors. Finally in the
last section, we investigate a special case which
may have physical interest, which is when the
single-particle space consists of a single j shell
in a j-j coupling scheme.

II. THE HAMILTONIAN AND ITS UNITARY
DECOMPOSITION

In the second-quantized picture, an orthonomal set
of single-particle states can be expressed as

li) = AT|0),

where |0) is the vacuum state,and i = 1,2, --- .

The fermion creation operators a} together with
their Hermitian conjugates q; satisfy the anti-
commutation relations

{a;. a}'} =0;

and
{a;, aj} = {a;fa;f} = 0.

A general two-body Hamiltonian can now be writ-
ten as

H,= 1 % @, Matata, w

ijkl

in which the two-body matrix elements have been
antisymmetrized so that

(i1 H, D) = — G| H,)17)
= (ji | H, | IR). (2)

Similarly, a one-body Hamiltonian has the form

H = %) @1H,1)ata;. (3)
In this paper we consider a Hamiltonian
H=h+ 7V

=7, (ilh,j)ajaj - i (z'jIVIkl)ai*a]ffakal,

ij ijkl
! @)

which is assumed to be Hermitian so that

@Inlj) = Glrli)* (5a)
and

@G lvIe) = RV I1i)*. (5b)

Generally the single-particle space is infinite
dimensional, but in practical calculations one has
to restrict himself in a subspace with a finite num-
ber N of states. Hereafter we shall consider only
such a subspace, which is then subjected to a uni-
tary transformation of dimension N and forms an
irreducible representation {1} of the group U(N),5
and the many-particle states formed from them
can be decomposed into irreducible representation
of U(N). However, the Hamiltonian H defined on
this many-particle space is not irreducible with
respect to U(N). The two-body part V, for example,
contains the representations {221¥-4}, {}21”‘2}, and
{o}. Likewise k contains {21¥-2} and {0}.

The decomposition of H into irreducible unitary
tensors is done in Ref. 1. Here we shall only quote

2221
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the results. For the two-body Hamiltonian V, we
shall write the irreducible parts as H,(v), where
v = 0 corresponds to {0}, » = 1 to {21¥-2}, and v
= 2 to {22174}, We have

H,(0) = W<g) (62)
Hy(1) = (W= 2) - 1>[,>;,(§ (ileIjk)>
x ata; — 2TW <]2v>n}, (6b)
and
Hy(2) =~ 1 i%?l @1V |k atafa,a, — Hy(1) — H,(0)
=— i ijZ)kl @G |V |kl afata,a; (6¢c)

For the decomposition of the one-body part %, one
has the similar result

H 1(o) = en (72)
and

H, (1) =23 @1kli)afa; — en.
tj

(7h)

Here 7 is the number operator

n

®)

i
=

i
[y

+
‘ a;a;

and (3) = n(n — 1)/2 is the binomial coefficient.
The quantities €, W, and (ij |V | kl) are defined as

e = (1/N) D (ilnlq), (9a)
_ (NY 1, ey
we= (3 D avi, (ob)

and
@1V k1) = @1V kD)
— (N =278,V + 8, Vi — 6,V — 8, Vi)

- (oikéjl - Giléjk)W’ (9¢)
with
I'/ikEZ)(iilVlki)—ﬁ,-kM<N>- (o)
i N A2

It is not difficult to verify that H 2(2) has the follow-
ing very important particle-hole symmetry:

Hy(2) = — 3 2 (jIVIkDatata,a,
ijkl
=1 2 @1VIk)atasata,
ijhi
=—1 2 (ilVIkDaa,ata}, (10)
ijkl

which shows that for the irreducible unitary parts,
the various creation and annihilation operators
essentially commute.
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We shall define the quantity
j = %(N - 1)7
and rewrite the single-particle operators as

Al =a (11a)
and
B, =

m

¢
j+l+me

e TR (11b)
withm =—j,— j +1,°+,j. For the group Sp(V),
N must be an even integer, therefore j is half-
integral. It must be noted however that our change
of notation is only for later convenience,and j does
not necessarily have any physical meaning. Next

we define the quantities

Uy= @A xB)) = ;)[’ 1 J] Al B,
mm/’

mm' M
(12a)
Zi=— /a4 x A}, (12b)
and i ; I
Zy = (1/V2), (B” X By, (12¢)

where square brakets surround the ordinary
Clebsch—Gordan coefficient, and x denotes ordinary
vector coupling. Hereafter we will follow the
notations of Ref. 6. Equations (5) and (6) can now
be written as

H(0) = HI(O) + HZ(O)

Cen w(") (132)
2
H(1) = H,(1) + H,(1)
= 2 (g + W =27 00— DV, ] [11M% 0,
J=0,M (13b)
and
H(2) = H,(2)
=3 IZ}MVJ(Illz)(ZI‘ x z%=yt, (13c)
with the following definitions
j=2j+1, (14)
n= 2 AA
m=-3
_ []‘-]1/2(]0 (15)
1 . . .
= T 1/ J J 7 2137
any [7]m%>n,)[J] z[m e m] (minlw’),  (16a)
1 jdJ
V. K =— 1/2| 7 ]]
M1 m%;n')[J] [m’ M m
X (2 (mk|V Im'k)) (16b)
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and

VI(I,1,) = ) [7 j ’1]
MA172 mym(mim} ).le(Mz) m,y m'l Ml

j i L I I, J

xl:] ]12:](_)M2[1 2 :|

Mo My My MMy M
X (mymy |V Iimgmi), (16¢)
where the subscripts in the parentheses are not
summed over. We note again that since j does not
correspond to any real physical angular momentum,
the Wigner —Eckart theorem cannot be applied to the
matrix elements (m |k |m’) or (mym}y | VImymy).
We shall also notice that

oo = Ty Dl lhim) = (172)
and
1 2w (N
Voo = = (mk | V|mk =—< ) (170)
0= [ & =\
M. THE U(N) O Sp(N) DECOMPOSITION OF THE
HAMILTONIAN

In this section we shall further reduce Eq. (13)
into irreducible symplectic tensors. First, the
branching rule of U(N) - Sp(N) gives

{0} - (o),
{21%7-2f - (12) + (2),

(18a)

(18b)
and

{221V > 0y + 2012 + (2% + (21%) + (14).
(18c)

This is true for N = 8. For N < 8 some of the
symplectic representations do not appear. Also
{212) vanishes for a Hermitian operator.3

The reason of rewriting the Hamiltonian in the
form of Eq. (13) is that in this way the Hamiltonian
is already partially decomposed into irreducible
symplectic tensors. It is well known?2 that the unit
tensors U7 with odd J are the generators of the
symplectic group and belong to the representation
(2), while those with even J = 0 belong to (12).
Therefore we immediately have

H(0,(0)) = H(0). (19a)

HL, @)= 25 [hgy + (N—2)"1n— 1)V,,]
Jodd, M
x (71" Uy (19b)
and
H1,(12) = 25 [hgy + N —2)"n — 1) V]
Jeven#0, M
x (711205 (19¢)

We are now left only with the tensor H,(2) given
in Eq. (10), which according to the branching rule
(18c) contains symplectic tensors with rank 0, 2,
and 4. It is however well known# that symplectic

2223
transformations are invariant under contractions

with an antisymmetic metric. Consequently we
shall define such a metric tensor

S Lil i 8:]

= (—)j_m 5m,—n

nm n

(20)

== Num

and proceed to separate the symplectic tensors of
different ranks.

We write H,(2) as

Hy(2)=—13% 25 (mymy | V] — my — my)
mymomaniy
X (—)2j+m3+m4Am1Aszm3qu
= -3 2, (12|UI34)A,A,B.B,, (21a
41234( )JA1A,B;B, )
such that
(12|U134) =— (12|U43)
= (21|U|43) (21b)
and
(12|U134) = (34|U112), ©2)

where the last equality comes from the assumption
that V is invariant under time reversal. Note that
the particle-hole contractions of U vanish as a
consequence of being irreducible with respect to
the unitary group. For example, we have

41\—1\3"13(12|U’34) = 2 (mymy |V |my — my)=)""

my
=0. (23)
Thus we can decompose U as follows
2, o)
(12{U134) = 25(121T"[34), (24)

i=0
with
(12| 70 [34)
= [N1o034 + O — 17100, 4005 — N13724) |E©,
(25a)
i 17(1\11 —2) 122:;4"12"34(12"]'34)’ (25b)

(12|UD]34) =y, ER + 134E$Y
+ 20V — 2)71n; JESY + nyaELY

- 77135&2 - 772411?&)], (26a)
Efy= ﬁﬂh[sfznm(lzmlw
Taz (26b)

— == 2" (121U134)
N 154, 12734 b
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and _ o
(12|0@(34) = (121U 34) — (12|UW[34)

— (12|7©}34). 27

The above formulas are derived in Appendix A.

In the branching rule (18c), there is only one re-
presentation,? (12), which has symplectic rank 2;
hence we can identify it as U(1). Also the zero-
rank tensor U(® must belong to (0); then we have
H(2,(0) =— 125(12|U©[34)4,A,B,B, (28)
and _
H(2,{12)) =— $25(12|UD[34)4,A,B,B,. (29)

Note that the above tensors still possess the
particle-hole symmetry of Eq. (10).

Finally, the different irreducible symplectic
tensors contained in U2 can be separated by
using the Young symmetrizers.4

(12172, 134) = 4{(121T7?134) + (141T7® [23)

— (13|U@]24)), (30)
(12102 134) = 420121 TP |34) — 14/T?|23)

+ (131 T@]24)], (31)
(121722 |34) = 0, (32)

where the last equation is a consequence of
hermiticity and time-reversal symmetry. We now
have

H2,(1%) = — 2L [(121T®@134) + 2(14|T@|23)]

X ALALBoB, 3
and
H(2,(22) =— : 253[12|U@(34) — (14| TP|23)]

X A1A;B3B,. (34)

Equations (28), (29), (33), and (34) can easily be
written in the coupled form. In particular, if we
define

. AR A §
TO(1, 1T M)= [ 1}
mymm{mshM (M) L1124 m’1 Ml

x|:j 7 12}[1112 J]
mqy my My MleM

X (mymy |UD [mym}), (35)

then Eq. (33) can be written as

H(Z2,(1%) = ()25 (12|T@34)
X (3A1A,B,B, + sBiB,A A, + 24,B,A,B,)
=5 TO(1,1,TM)
IlfO,JM,I2fO
X [~ (zhx Z%)) — (Zh x 2™,

+ 201 x U], (36)
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where the first equality is a consequence of
particle—hole symmetry. From Egq. (B7c) of
Appendix B we can write H(2, (14)) as

H2,() =~ V] T TP 10m)
1. L%, M
X [Tll1 X T121]1‘{4(2), 37

which verifies the fact that # (2, (14)) is a pure
quasispin-two tensor.? Similarly, one can show
that # (2, (22)) is a quasispin-zero tensor.

IV. THE SCALAR HAMILTONIAN IN A SINGLE
j SHELL

We now consider the special case when the single-
particle space consists of a single j shell in a
j=j coupling shell model with a Hamiltonian

-~

H=nj*"?0° + z [[1Y2vi(z' x Z)o,  (38)

which is a scalar with respect to R(3). The opera-
tors U’ and Z! were defined in Eq. (12), with j

now corresponding to real angular momentum.

We get from Eq. (19)

H(0) = im + W(Z) (39)
and

H(1) =0, (40)
with

W= <12V>_IZI) e (41)

The remaining part is
Hy(2) = DMV x Z1)° — (w/2imtn — 1)
1
= 3 M (2" xZ)° — & T@w)s,e;,
1 ijkl
X atata,a,

=157z’ x Z1)°, (42a)
I
with
7=t 2 (v — w). (42b)
From Egs. (25) and (26), we can write
Fo-,~Y¥-1 o (43)
N+ DWW =2) ’
H(2,(0) = : D[0P (2" x ZH°, (44a)
[TO) = EO{N5 ,, — 2V — 1)"1[T]1/2}
and
H(2,{12)) = 0. (45)
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Finally, we give the explicit forms of the second-
rank symplectic tensors:

HE, (19) = L [TV 2" x ZH° + ' x v1)°]
0

AT IOy - GRP2Y T ) @ x 2

2 —(2)-K SRV AN
He, @) =4 3 (7% (a,K + K] 3j ]. K%)
x (z' x Z)°, (47)

where the curly brakets indicate a 6 — j symbol,
and

[_(7(2)]1 = 71__ [U(O)]I
1/2 370
=1 2|7 12
:(1°510)<V S N—2j'

V. CONCLUSIONS

We have shown that, starting from the irreducible
unitary tensors of a general two-body Hamiltonian,
the subsequent irreducible symplectic tensors

can be obtained by first separating those of dif-
ferent ranks with the standard contraction pro-
cedure with an antisymmetric metric, and then
constructing tensors with different symmetry by
using the Young operators. Finally we considered
a special case when the single-particle space con-
sists of a single j shell in the j—j coupling scheme.
In that case one can easily obtain the explicit
angular momentum coupled form of these irre-
ducible tensors.

(48)
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APPENDIX A: THE DECOMPOSITION OF
SYMPLECTIC TENSORS

We consider the decomposition of U defined in
Eq. (20). In general, such a tensor can be written
as?

(12(U34) = (12| U@ |34)

(@)} (1) (1)
+ M12Uszs + Mg Vos — N33 V1s

(1) [¢)) (1)
—M14 Va3 +M24Vys +034U55

+ M12M34U@ + (113054 — M14M23) VO, (A1)
where we have used the symmetry properties

Eq. (21). Here U() is an ith rank tensor. Contract-
ing, we get

20 NM12M34(121U134) = N2U(O) + 2NV(O) (A2a)
1234
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and
> n13n24(12lU|34) =NU© + (N2 - NYV©O = 0,
1234 (A2b)
Solving these two equations gives
VO = — (N — 1)"1y© (A3)

and
U =‘U\T_Y(-5N —L > Myansa(121U134).,
Next, we have

2 15(121U134) = 208D + (N — 2) B =
13
(A5)

which gives

P =~ sy 210, "
Finally, from the equation
M2 (121U134)
12

= 3(1)*’ VP + ngy[N — 20V — 1)@, (A7)

we get
N-—2
- N—-2 _rw
U=+’ (A8)
and 9
o = - @
VU Ewmmow e B (48)
with
@ . M2
Eyp = 2inaa (1210134) — = 25 ny,m3,4(121U134).
34 1234
(A10)
APPENDIX B: THE QUASISPIN TENSORS
It is well known8 that if we define
S, =020 = — (/2)1/2 (A x A4)°, (B1a)
S_ =St =/82°, (B1b)
and
So = 3 (N — @), (Blc)

where Q = %[;], then these three operators form the
quasispin algebra,

[S4,S_]= 2S5, (B2a)
and

[So»Se)==8,. (B2b)
From Eq. (B1), we easily derive the relations

(S4, AL} =0, (B3a)

(s, 4] =B, (B3b)

[Sg, AL, = 341, (B3c)
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which together with similar ones for B; demon-
strate that the operators 4/, and B}, form an irre-
ducible quasispin tensor with rank ;. We shall
write

1/2 =

T, 15= 4, (B4a)
and 2 _
T, 1,2 =Bj,. (B4b)

From them we now construct a quasispin tensor
of rank 1

. 71
1 o .
Ty i =— WD [TV2xpV2),
jJ Jl12 12 1
(1/ m&%)w) mom Mt s ¥
T Y2 7] V2, (B5)
which gives the following identifications
Ty 1=— (/v (4 xah} =2, (B6a)

SHOU-YUNG LI

Ty é = — (1/V2){(1/v2) (A7 x B))!
+ (1/‘/_2_)(8] X Aj)[} = _UI + (9/2)1/2510,

(I even), (B6b)

and

Ty-1=— (/YO (B xB)) = - Z". (B6c)

Finally one can form the quasispin tensors
({1,015 = 0),

— [T* x TRy 0 = (1/V3) (2 x ZR);)

+ (1/V3)(Zh x Z2)7 + (1/43) (Wh x U]

(B7a)
— [T xTENL L= (VD {2t x 2R
~(Zh x 2%y} (B7b)
and
—[Thx TR, 2= (1/V8) (24 x Z),
+ (1/V6) (Z1 x 2By —yE(Wwh xUuR)g.  (BTc)
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In a perturbed periodic classical motion, the angle variable may be eliminated either by Kruskal's trans-
formation to “nice variables” or, if the system is canonical, by the Poincaré—Von Zeipel method. For
systems that possess a Hamiltonian, the present work (i) shows that Kruskal's transformation may be
made canonical order by order, (ii} derives a practical formula for achieving this result, and (iii) shows

that the two methods are equivalent and may be matched order by order.

I. INTRODUCTION

A basic perturbation problem in celestial mechan-
ics and in guiding center motion involves a set of
n first-order differential equations which can be
represented vectorially as

dx/dt = F(x) (D

and which has the following properties:

(i) F{(x) depends on a small parameter ¢ << 1 and
may be expanded in it:

F(x) = FO(x) + ¢eFD(x) + --- ., (2)
{(ii) In the limit € — 0 (unperturbed case) the sys-

tem may be solved and its solution is then periodic
in time,

The problem is then to find an approximate solu-
tion valid for small but finite € and useful for time
intervals of the order of €~1 periods,

Kruskall devised a method for achieving this,
which in many ways resembles the method of
Bogoliubov and Zubarev and of Krylov and Bogoliu-
bov.? The calculation in this case proceeds in two
steps. First, a transformation to “intermediate
variables” y(x) is performed, such that in the
limit € — 0, y, is an angle variable linear in time
while the remaining » — 1 components of y (which
we shall collectively denote by y) are constant,
The equations according to which y evolves, de-
rived from Egq. (1), then have the form

dy _ )
ar =2 <"'eV) (3)
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In these equations, y, appears in the g(k) only as
the angle argument of periodic functions and g(®
has only one nonzero component, the last one3

g®=(0,0,...,0,1). (4)

The second step involves a near-identity trans-
formation to “nice variables” z

z=y+2 ¥y,
k=1

such that in the new equations of evolution, thetrans-
formed angle variable z, no longer appears on the
right-hand side:

(5)

dz ~
a_t_:g)ekh(k)(z), (6)

where as before

z =(z,2,),
(7)

and
h© =g,

A general recursion scheme for deriving z order
by order has been described in an article by Stern4
(henceforth referred to as I). We shall follow the
notation introduced there, which differs slightly
from Kruskal's (a similar scheme for the related
Krylov—~Bogoliubov expansion has been given by
Musen®). After Eqgs. (6) have been derived in this
fashion, their first » — 1 components constitute an
autonomous system for deriving the components of
z, which can then be independently solved. The
problem is thus reduced to one with » — 1 vari-
ables.

If the system furthermore possesses a Hamiltonian,
an additional variable may be eliminated by deriv-
ing a constant J of the motion. It is defined as

J = ¢pedq = Llp'—ai (8)

%z, dz,,
with the integration performed using an arbitrary
canonical set (p, q), over a group of points (“ring”),
all of which evolve according to (6) and possess

the same z but with values of z, that cover the full
range for that variable (this property, if established,
is maintained throughout the ring's evolution in
time).

If z itself forms a canonical set, with z, the mo-
mentum conjugate to z,, then one may use this set
in (8), leading to

(9)

1
J :_[0 zydz, = z,4,

which is a great simplification.

If this is not the case, one is forced to retrace the
transformations x — y — z until some canonical set,
with which (8) can be evaluated, is reached.

Kruskal did not derive nice canonical variables,
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but he showed them to be possible. Specifically, he
proved that in any “nice” set, the following Poisson
bracket relations are always satisfied:

az,, 2, 5] =0, (10)
(2] = 64 (11)

Following Nordheim and Fues,® Kruskalthen shows
that J and z, may be augmented by » — 2 functions
of the z, to form a complete canonical set.

In what follows, we shall assume that the interme-
diate variables y, form a canonical set, in which
case a near-identity transformation like (5) can,
in principle, lead to nice canonical variables. This
assumption is not unreasonable since, if a Hamil-
tonian for the system is known, such y, can in
general be derived by solving the unperturbed
motion via the Hamilton—Jacobi method.

We then

(i) Show that the freedom allowed by Kruskal's
method in the derivation of each order of Eq. (5) is
sufficient to assure the canonical character of the
“nice variables” z;.

(ii) Derive a method for obtaining such z i

(i11) Show that the result is equivalent to what is
obtained by conventional perturbation methodsvbased
on the Hamilton-Jacobi equation.

. THE POSSIBILITY OF STEP-BY-STEP
DERIVATION

If y is canonical

y = (p, ),

then from (10)
d

e (12)

[Zi’zj] - [yi’yj]} = 0.

If (5) is substituted here,the zero-order part can-
cels identically and the expression remaining in-
side the curly brackets separates into orders of

€ and gives

D g, n .
R (ST SN
m-1
+ 2 )= 13)
s=1

This condition is satisfied for any nice set z. If 2
is not merely nice but also canonical, then the ex-
pressions in the curly brackets of both (12) and
(13) are not only independent of z, but actually
vanish,

Let us now assume that the expansion (5) has al-
ready been derived and brought to canonical form,
up to and including order # — 1. Then the first

k — 1 orders of (13) do, in fact, vanish, leaving
(after division by € )
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52 {[c‘f),yj] ~ (5, ,]

(s)

T %9+ o) = 0.

51

(14)

As the next step, one may derive C(k) and thus ex-
tend the calculation of z one more order. The
equation satisfied by § (¥ is [I, Eq. (15)]
h(k)(g') — )\(k)

g ™®/ay, — (15)

where A # depends only on lower orders of {(m)
g;ﬂm) assumed to be known at this stage. If
) denotes the result of averaging over the angle
varlable Y

a®y = APy, (16)
one gets [see I, Eq. (19)]
(k) fyn(x(k) < (k)>)dy,n + p(k)(‘&)

Here p.(k) is an arbitrary additive vector inde-
pendent of y,,allowed by the fact that the derivative
of £(¥ which enters (15) is unaffected by such an
addition. The question now arises whether p(*) may
be selected so as to make the expansion (5) can-
onical to order k.

If this occurs, then the O(1) part of (14) must
vanish. It helps here to introduce the concept of the
conjugate vectors y [I, Eq. (4)]

¥=(q,—p. (18)
Then
(€5~ €T, y,)= P /o5, — o /35, (19)

This has the form of a component of a curl dyadic
in ¥ space, which one may call the conjugate curl,
with components denoted by
@ x5 ™). (20)
Now it has been shown in an article by Stern’
(henceforth referred to as II) that the general
condition for an expansion (5) to be canonical is

(m)
b

g™ = 1(™(g) + 94 (21)

m=1,2,...,
where V is a gradient operator iny space,x("') is
an arbitrary scalar, and £ () are vectors of a
certain form, depending on orders of { lower than
the mth and on their derivatives. Various choices
of £(m) are derived in IL, all of which satisfy the
identity (for canonical §{s))

(m)

Z [c(f)’g(m-s)] (22)

§=1

Vx1

D. STERN

Because the C(S) in this case are known to be can-
onical up to and including order k — 1, Eq. (22) will
hold for the lowest k — 1 values of m; however, it
will also hold for m = k&, for even then the orders
of { appearing in the equation are all lower than
the kth, Substitution in (14) then yields

(k)

(/22 )% £ 1P} + o) =0.  (23)
Now let the transformation inverse to (5) be
y_z+aés (s) (24)

Given the expansion (5), the 11 may easily be de-
rived (see the Appendlx) Alternatively, they may
be directly obtained from expanding the relation
between (3) and (6), in a manner similar to what has
been done for the expansion (5) in I. This is essen-
tially the method of Krylov and Bogoliubov,2 as
expanded by Musen.5 Indeed, the elimination of

the angle variable by Kruskal's method so resem-
bles the Krylov-Bogoliubov approach that the

two ought perhaps to be regarded as one method
(which could be called the Krylov-Bogoliubov-
Kruskal method; however, Kruskal's work proceeds
past the elimination to the derivation of invariants).

Since the inner part of (23) is a function of y, one
must transform

3 3. @ (s) 3
o 8 + -
9z Zaz ay' Z‘:é Z}e 9z, }'ayi » (25)
or
0 0
— = ——+ O(e). 26
5= 3y 0 (26)
Equation (23) thus becomes
2 xpg®-tPo)+o@=0. @0

3,

One may now assume that all variables in (27) are
expressed in terms of y; in that case, each order
in € vanishes separately, including the zeroth. Be-
cause differential operators commute, this means

= i

Txd= [t -t P = 0 (28)
This integrates to

o[£ 1] =y, (20)

¢ —19() = 97 + u§), (30)

where 7 is the indefinite integral of and u is an
additive function independent of z ,allowed by
the integration.

The above condition is satisfied by any C(k) belong-
ing to a nice set of variables vghlch is canonical to
order » — 1, For instance, ; defined in (17) will
correspond to a certain 71 and to a certain additive
function, which may be denoted by u:

®) + V7 + uly).

F ) _ g
¢

(31)
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If one now chooses in (17)

(k) ~
[ =—-u,
then
() _ (k) —
g=g" -0

=£P(e) + 1, (32)

and by (21),¢ N satisfies the condition for canonical
variables, making z canonical to order k. Thus the
requirement can be met.

IoI. PRACTICAL CANONIZATION
(k)

In order to actually derive the “canonizing® p /',
one must first investigate the amount of arbitrari-
ness inherent in that vector. Let

) _ 3¢

extend the canonical properties to O(e k,), i.e.let it
satisfy

Then if one replaces p(k) with
w® =y Pg) + Se), (35)

with & an arbitrary function independent of y , one
finds

E(k) +p (k)();) _ f(k)(c) + V(X(k) + @), (36)
which still has the required form (21). The canoni-
zing choice of p{#) is thus arbitrary within the

addition of a conjugate gradient of some scalar &
which does not contain y, .

In order to isolate p(k) one operates on S34) with
the averaging operator of (16); since p *) is inde-
pendent of the angle variable, it equals its own
average, giving

pP® = R0 TP+ @)

= P) — TP + T . (37)
The last term on the right is a conjugate gradient
of some function of y, and it has already been
established that such vectors, when added to p®) do
not affect canonization. One may thus drop this
part and obtain8

(r) (k)
B (

=P -8 . (38)
To evaluate this, E(k) must be derived from (17),
while £(#) may be obtained by methods given in
II. The most general canonizing additive function
is then

(k)
p

=P -9y + @), (39)

with & arbitrary.
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IV. EQUIVALENCE TO CANONICAL PERTURBA-
TION THEORY

A widely used method for solving perturbed perio-
dic canonical systems is due to Poincaré and Von
Zeipel®: 9712 and operates in the following manner.

First, one expresses the Hamiltonian in terms of
the solution

y= (p, q)
of the unperturbed Hamilton-Jacobi equation, with
y, an angle variable and y, the conjugate action
variable. In the absence of “slowly varying” quan-
tities, the Hamiltonian then assumes the form

H=y, + kZ_}lekH(k)(y). (40)

Next a near-identity transformation to new variables

z=(P,Q)

is sought, produced by the generating function

O(P, q) = EP,-(I,' + Eleko(k)(P’ q)’ (41)
k=

and having the property that the new Hamiltonian
H* (z) is independent of the transformed angle
variable z , making the conjugate z; a constant of
the motion. Since the transformation is a near-
identity one, the lowest order of H* has the same
form as that of H, giving

HYZ) =z, + 2 "B P(3). (42)
k=1
Methods then exist for deriving o(k) and Pk order

by order.

Suppose now that two near-identity canonical trans-
formations are given:

z=y+ E€S§(S)(Y),
s=1 (43)
w=y+ Z_}lestp(S)(y),

either of which eliminates the angle variable from
the Hamiltonian, Furthermore, let

t“y) = vy

Then it will be shown that ¢ ‘¥ differs from ¥
at most by a conjugate gradient of a function ®(y)
independent of y, .

for s=1,2,....(k —1). (44)

Clearly such a property would allow the two methods
discussed in this work to be matched order by
order. If w, for instance, represents a solution of

a given problem by the Poincaré-Von Zeipel

method and z represents a solution by the Kurskal
method, then z can be made equal to w to any de-
s'{xl;?d order. To achieve this, one must first choose
p °’ so as to make z canonical and then add to each
order the appropriate V&(y) which makes the cor-
responding £¢#) and ¥ <*) equal to each other.
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Actually, one could also work in the opposite direc-
tion, since the Poincaré-Von Zeipel method also
contams a certain amount of arbitrariness in each
order, but we shall not consider this possibility
here.

Let
H'@ =2 ¢a*G)
s=0
and
AW =2 YW
5=0

be the two alternative forms of the Hamiltonian.
Since the transformation is time independent,

H* @) = B (W) = H(y). (45)

Also, since it is a near-identity transformation, the
O(1) parts of the above equations must be equal in
form, which leads to

*(0),~
H "(2)= z,,

(46)
7 O)

=Wy
We shall furthermore assume (and later justify)

=H*Y s=1,2,...,(k—1).
Substituting the expansions in (45)

e VG + Demt ) = DeH" G + Zemﬁ;n)))'

*(s)

(47)

(m))

By means of expansion operators T(m) and s (see
I) this may be broken up into a series of equations,
one for each order in €. The equation for O(¢*)
then is

E T(m) * (k= m)@)

m=0

m)*H**(k-m)(;), (49)

where * marks “operates on” and where,

7O_s®_y
T(l) 4 ) V,
s
y"

and in general

=t Pg 4 N ),

(m)
T (50)

with N an operator depending only on orders of
its argument that are lower than the mth. Sub-
stitution and use of (46) give

-1
H*(k)+ C(k)'Vyl + {N(k)(c)*yl + E T(m)*H*(k—m)}
m=1

- }I**(k)+ w'(k)vyl + {N(k)(ll/)*yl

k-1
£ 3 §my gt ey (51)
m=1

D. STERN

The two expressions in curly brackets depend
only on lower orders; they are therefore equal to
each other and may be dropped, leaving

(w(k)

and T

*(k)(y) **(k)( ) =

H (k))

H Vy,. (52)

k)

Now by (24), scalars X(k) must exist such

that
( k)

(k)

c(k)__ f(k)(c) + 6
ll/(k) f(k)(lp) + VT

Since lower orders of the two expansions are
equal, the two £ vectors are equal too, leaving

& _ (B
¢ —v

To prove our assertion we must show that ¢ is
independent of y,. Substituting in (52), we obtain

* (k) _o®
- Pe =2 3, %,
Now ¢ is allowed to depend on y,, only in a periodic
manner, from which it follows that a@/ayn also
depends periodically on y,. However, the left-hand
side is independent of that variable, so that & must
be independent of y,- This proves the main asser-
tion. Incidentally, one also finds

(53)

G(X(k) — T(k)) — %. (54)

*(k)

H (55)

#B) _ ()

H
which justifies Eq. (47).

(56)

’

APPENDIX: THE INVERSE TRANSFORMATION

Adding (5) and (24) and cancelling zeroth-order
terms gives

Z}ek (k) —E€ kc(k)(y)

- 2P+ T ™)), (A1)
if V is in z space and * denotes the operation

(k)(z+ E(m (m)(z))

= exp{Z} €'tn"z)« V)]*C(“( )
=5 s W), (A2)
m=0
where
§P=1, sP=y%w, (A3)
S(2 77(2)V+ zﬂ(l)fl(l)VV

and so forth. If this is substituted in (Al), orders of
€ may be individually equated since everything is
now expressed in z. Separating the m = 0 term
from the rest then brings the O(e k) relation to the
form

(k)

n - )*c (k"m).

1
—7 s (A4)
m=1

(m) (m)

If all lower orders of ¢ are known, those of 7
may be derived and used for constructing the §tm),
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INTRODUCTION

Perhaps the most widely studied perturbation
problem in classical mechanics is that of perfurb-
ed periodic motion. If a motion is given that is
soluble and periodic, the problem may be concisely
defined as the derivation of an approximate solu-
tion for a motion that is slightly different.

This “slight change” applied to the motion is
termed the periurbation and it usually belongs to
one of two types: “small” perturbations and “slow”
(or “adiabatic”’) ones. The difference between the
two is best explained by assuming that the motion
can be described by a Hamiltonian, although this
condition is not essential. In a slightly perturbed
motion the Hamiltonian may then be written

H=HO + ¢g + 2@ + ceey, (1)
where € << 1is a small numerical parameter
characterizing the magnitude of the perturbation
and where the limit e -0 corresponds to the upper-
turbed motion. A typical example would be the
motion of a planet around the sun as perturbed by
the planet Jupiter. In that case H(® describes the
planet's Keplerian motion in the sun's gravity
field while H(D describes the lowest order of the
perturbation induced by Jupiter. The zero-order
Hamiltonian is then proportional to the solar mass
m, while e (D is proportional to the mass m; of
Jupiter: the ratio of the two terms (m; /m) vill be
of the order 10~3 and this dimensionless quantity
provides a natural choice for €.

To illustrate a slow perturbation, consider a

Hamiltonian that is slowly dependent on the time
t (slow dependence may also involve canonical
variables):

H= H(p,q, £).

Then the dependence is said to be slow if the
terms produced by the operation /3¢ are by an
order in € smaller than the terms from which they
are derived,e.g.,

3H
F = O(GH).

2

(3)

Equation (3) is not quite precise, since it implies
that € has the dimension of ¢-1. In fact,one always
requires some natural time period T against which
the rapidity of the time variation may be gauged,
this usually being the period of the unperturbed
system. With this taken into account, (3) becomes

0" . .(eH
s 0<7~‘>’ @
and € is clearly dimensionless.

We restrict ourselves here to problems having a
single zero-order periodicity. If several distinct
zero-order periodicities exist, the methods pre-
sented here must be extended and furthermore,
complications due to resonance effects may arise.

In either type of problem there generally exists

a steadily increasing “angle variable” appearing
in the argument of sines and cosines, describing
the nearly periodic part of the motion. One way of
solving the problem then involves finding a trans-
formation to new variables, such that the angle
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(or “adiabatic”’) ones. The difference between the
two is best explained by assuming that the motion
can be described by a Hamiltonian, although this
condition is not essential. In a slightly perturbed
motion the Hamiltonian may then be written
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where € << 1is a small numerical parameter
characterizing the magnitude of the perturbation
and where the limit e -0 corresponds to the upper-
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provides a natural choice for €.

To illustrate a slow perturbation, consider a

Hamiltonian that is slowly dependent on the time
t (slow dependence may also involve canonical
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H= H(p,q, £).

Then the dependence is said to be slow if the
terms produced by the operation /3¢ are by an
order in € smaller than the terms from which they
are derived,e.g.,

3H
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Equation (3) is not quite precise, since it implies
that € has the dimension of ¢-1. In fact,one always
requires some natural time period T against which
the rapidity of the time variation may be gauged,
this usually being the period of the unperturbed
system. With this taken into account, (3) becomes
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and € is clearly dimensionless.

We restrict ourselves here to problems having a
single zero-order periodicity. If several distinct
zero-order periodicities exist, the methods pre-
sented here must be extended and furthermore,
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a steadily increasing “angle variable” appearing
in the argument of sines and cosines, describing
the nearly periodic part of the motion. One way of
solving the problem then involves finding a trans-
formation to new variables, such that the angle
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variable is eliminated from the equations of
motion. If the system also possesses a Hamiltonian
H, the absence of the angle variable from H implies
that its conjugate “action variable” is a constant
of the motion, and this eliminates an additional
variable from consideration, In slowly perturbed
systems, such constants are call adiabatic invavi-
ants.! In slightly perturbed systems, no generally
accepted name exists (Contopoulos, who investigated
the relation between the two types of constants,2
has termed them “third integrals”), but they are
well known in celestial mechanics and may be
derived in a variety of ways.

The purpose of this work is to show how two
standard methods of celestial mechanics, designed
to handle small perturbations, may be modified to
deal with slow perturbation and lead to the deriva-~
tion of adiabatic invariants. The two methods con-
sidered here are the Poincaré-Von Zeipel
method3~7 for solving the Hamilton—Jacobi equa-
tion and the Krylov—Bogoliubov procedure?-12

(or the related method of Kruskal). In addition, it
will be shown that the direct form of near-identity
canonical transformations can also be adapted to
cases in which some variables are slow.

EXPLICIT AND IMPLICIT ¢

In the example of perturbed planetary motion the
small parameter ¢ can be given an explicit numeri-
cal value. In problems of slowly perturbed motion
this is often difficult to do and one may then speak
of an implicit €.

As the archtype of a slowly perturbed system, con-
sider the “pulled-up pendulum”13 14: 3 simple pendu-
lum is suspended from a hole in the ceiling and

its suspension string is pulled up (or released) at
a slow, though not necessarily constant rate. Obvi-
ously, the angular frequency w of the pendulum will
vary and, since work is being done against the
centrifugal force of the oscillation, so will its
energy E. However,as long as the rate at which
the string is withdrawn is sufficiently slow (and
does not resonate with the oscillation of the pendu-
lum) an adiabatic invariant may be found, equaling
E/w in the lowest order.

Two points should be noted here. First,the per-
turbation need not be small: by the time the with-~
drawal is complete, the length of the pendulum may
well have changed by a large factor. Secondly,
while one can devise an explicit € for the problem
—e.g., € = wT,where 7 is the time in which the
length of the pendulum is reduced to 1/e of its
value, at the given (instantaneous) rate—its value
nowhere enters the calculation.

A more complicated example is provided by the
motion of a charged particle in a slightly inhomo-
geneous magnetic field B. Here “slightly” means
that the derivatives 3B,/dx; are all of order ¢
smaller than the components of the field intensity
and its magnitude B. Thus the slowness is in the
dependence on spatial coordinates and a scale
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length for gauging it is provided by the gyration
radius p,giving,in analogy to Eq. (4),

%5 _ <9@>

ox J P
Again, the value of € does not explicitly enter,
except through the requirement that for the per-
turbation approach (known as the guiding center
theory) to be valid the problem must satisfy
“Alfvén's criterion”

.p_ _a& << 1_

B o
An implicit € may be “made visible” by the follow~
ing device. Consider a Hamiltonian with slow time
dependence: One may artificially introduce ¢ into
its time derivative by writing

(5)

H _  oH 6

ot~ €3 (6)
Since

oH :

= =0(1

ool (1),

this notation clearly displays the fact that the
term is of order €,and for this reason the Hamil-
tonian (2) is often written

H= H(p’q’ Et)-

A similar device may be used when there exists

a slow dependence on dynamical variables;this
can be quite useful in arranging the terms accord-
ing to their orders in €, but two things must be
remembered. First,because of the way in which ¢
is introduced, expressions of the kth order which
have a factor e€* standing in front of them will also
have “hidden inside” a factor e~*. Secondly, be-
cause a definite value of € is never stated, such
factors must be canceled before the final result

is obtained.

An example may be useful here. Suppose a one-
dimensional motion is given with a Hamiltonian
thathas a slow dependence ont, anditis also given
that if this dependence is “frozen” (limit € = 0),
the motion is periodic. The solution of such a
motion usually begins with a canonical transforma-
tion to new variables (P,Q) which are the action-
angle variables of the unperturbed motion. If S
is the generating function of this transformation,
which in general is also slowly dependent on ¢,
then the new Hamiltonian H'is

S
H'(P,Q) =H+ ZT
oS
=H+ €§(E_t‘5

= H© + e, )
In the transformed Hamiltonian, the first-order
correction H'(1) has a factor € preceding it, but
this factor is artificial and is balanced by a factor
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€~1 that is “hidden inside” the term,as is evident
from the derivation. In practice,these factors
must be canceled before, say, the canonical equa-
tions of motion are used.

THE POINCARE—VON ZEIPEL METHOD FOR
SLOW TIME DEPENDENCE

Consider a canonical system with 2N variables
which has a slow dependence on time. We assume
that the Hamiltonian 4 may be expanded in powers
of €:

H=7),ekH®)(p,q,1).

We further assume that the Hamilton—Jacobi
equation for € — 0 has been solved and that the
transformation derived by it has already been
applied, deriving as action-angle variables for the
unperturbed motion

Q) = (qul)
and giving

(8)

HO) = Juw /27, (9)

with w = w(f) the slowly varying angular frequency.

In the limit €~ 0, evidently, w is a constant and so
are all the canonical variables, except for  which
is then linear in time,

To 'solve' the motion we now seek a near-identity
canonical transformation to new variables (P,Q),
with

(*,9%) = (P, Q1)
generated by

o(P,q,?) =2, Pyg, + z ekg®)(P,q, t) (10)
such that the new Hamiltonian H* does not depend
on Q*, This is somewhat similar to,but simpler
than, an approach advocated by Gardner 15 and
investigated by Contopoulos,? in which the same
result is obtained by a succession of canonical
transformations, each of which pushes the elimina-
tion of Q* from H* one order higher.

If H* is expanded in a manner similar to (8) and
the time derivative is expressed as in (7),one
obtains

Z ékH*(k)(P, Q’ t) = Z: EkH(k) (p, q, t)

o®k-1)

0
+ > eR S —— o (11)

This equation contains 4N canonical variables, but
half of them can be eliminated by means of the
transformation equations

dg{m
+2em
t]i i

(12)
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dgtm
3P,

=qi+E€m (13)

To facilitate the elimination it is best to follow a
method introduced by Musen? and use expansion
operators!2 (x denotes operation, 9/9P, etc.are
gradient-type operators):

(m)
H*®)(P,Q, 1) = H*(k)ép,q + L en S t) (14)
’
80'(7") 0 ) *
=€ em « — I H (k)(P t)
P mz=>1( oP  aq &
=7, enTMx H*®)P,q, 1),
m=0
where
7)) = 1,
9o (1) 0
1) — v _
TO=23F 2
(15)
T(2)=E 302 3
i BP, Bql
(1) 5o(1) 82
90 g
2 E ’
5 5 3B agaq,
etc.Similarly
H®(p,q,t) =2, emStm «HW(P,q,1),  (16)
m=0
S$60) =1,
201 3
S1) = L
0@ 2
sf2) = = 17
zi) 9g; P, an
41 o) 30D 22
7 9q, oq; OLop!
and so forth. Substituting all this in (11) and
collecting terms associated with e* gives
ao1)
Z T@) P Gemd — 2 S g Gen) + (18)
=0 m= a( t)
The terms with » = 0 simply equal H#*® and
H® and will be taken outside the summation.
The terms with m = % also have simple form,
for in general
do® 23
() — (k)
SW=2, 53— 3 2 +N (19)

where N®) contains only terms with at least two
differentiations. Substituting (9) then gives

Sglo) _ w_ 20%¥ (20)

27 IR

Because the transformation reduces to the identity
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transformation in the limit of vanishing €, A* ()
equals H®) and due to (9) it satisfies

TOx g*(0) = 0

since T operators involve only differentiation
by the ¢;, which H(® does not contain. One then
obtains the basic recursion relation

2_TT a0 - H*(k)(P’ q,t) = A(k)(P’ d, t); (21)
with
r1
AW = E (T(m)* HY¥G®-m) — § (m) 4 H(k—m))
m=
3g(&~D
—_ge) - =
H® — — (22)

depending only on orders lower than the kth. If
2 enters only as an angle variable with period
unity, any function F(P, q,¢) may be resolved into
an “average” part

(Fy = [ Fag (23)

and a “purely periodic” part with zero average

(F). . =F—{(F.

per
The derivative of a purely periodic function is
also purely periodic and therefore, so is

Jo® 3

IV 1Y

(o ®)

bor + (0 @) (29)

since the contribution of {(o(#)) vanishes. On the
other hand, H*(#) does not depend on Q, so one gets
the recursive relations

@ = — (A, (25)
oW 27
a0 W (Ao (26)

Once these are solved, the calculation may be
advanced to the next order.

EXAMPLE: THE HARMONIC OSCILLATOR16

The Hamiltonian H” of a harmonic oscillator with
a slowly time-dependent angular frequency w(#) is

1

nw_
H"Zm

(P2 + w2m2Q2), (27

If one 'freezes' the time dependence, one can solve
the Hamilton—Jacobi equation and derive a canoni-~
cal transformation to action-angle variables (J, Q),
generated by

1/2
W f (B puned e 2

Following this transformation, the new Hamiltonian
H becomes
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_Jw SCMA P
=5 + EJ<41W> sin (479),

(29)
where the prime henceforth signifies the operation
8/3(et). Let g of (10) generate a transformation to
(J*, *) such that all orders H*® of the new
Hamiltonian are independent of ©*. This,com-
bined with the fact that in the present case the
only differentiation performed by T(n) of (15) is
3/ 992, allows all such operators to be ignored
except for T,

A further simplification is obtained by noting that
H contains only two orders, both linear in J: Using
the argument of (19) this gives, for the terms of
(18) depending on H,

>, §(myx Flem) = k)3 FO) + S(-1)y (D
o)

o2 4w

w ao(k)
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sin(4n9). (30)

In what follows, we will for conciseness write J
instead of J *, restoring the superscript—if
necessary—only at the end. In analogy with (21)

we then obtain as the basic recursion relation,
for > 1:

dgeD ro ,
=— %Q 4";—0) sin(4rQ) — (o -1y, (31)

Using (18) directly for 2 = 0, one simply gets the
equality of H(®and H*©) while for % = 1 this
yields

w 20D peay_ g @l
0 H*M=—J &= sin(479),  (32)
from which we get
H¥Y = 0, (33)
o(1) = J(w'/81w2) cos(4rS). (34)
Higher orders, derived by the use of (31),are
H*®@ =— (J/167){(w")2/ w8,
0(2) = — (J/64r)(w "/ w2)2 sin (8792) (35)
— (J/167w)(w’'/w?)’ sin(4n9),
H*3) =0
J(en\?
o(®) = — oy (w:g) cos(12782)
— J w’\2 ],
12871w[<w_2) jl cos(878)
J v\ 3
+ m(—:;) cos(4n§))
J wl ’ I
— 3211w|:<w2> /w] COS(41TQ). (36)
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Note that any term in an O(¢*) expression con-
tains the prime operator exactly & times, correspon-
ding to the factor €-* “hidden inside.”

At this stage Eqgs. (12) and (13) could be used to
express (J, Q*) in terms of (J*, Q),up to O(e3).

In fact, expressing the result in this manner,in
terms of mixed variables,is not too useful, and

it pays to “invert” the result and express (J*,0Q%)
in terms of (J, ), or vice versa. The shortest
way to achieve this is by means of the direc!
transformalion technique.!7? If

y=(p,q
are the “old” variables and
z=(P,Q)

are the “new” ones, and if the relation between the
two sets has the “direct” form

z=y+ 2 et W(y), (37
k:l
then for this to be a canonical transformation,
t® must have the form
e = -Vx(k) + £, (38)

whereV is a gradient operator in “conjugate phase
space”

}—’ = (q,—P),

the x® are arbitrary functions, and £(® are pre-
scribed expressions involving lower orders. In
particular, if (37) is the “direct” form of the trans-
formation generated by (10), one may choose

x®y) = — o®(p,q) = — o®(y) (39)
(i.e.,P is everywhere replaced by p). The cor-
responding f®) is

1 B
B = — 37 U «Tole-n)(y), (40)

m=1

with U% expansion operators depending only on
the momentumlike components # (") of £(m;

7o) = (Cl(m)’--' ’cj(\'r'D:O:- .., 0),
with

U(l) — ﬂ(l)'v, (41)
U@ = 72y + L1gWp . gy,

and so on.

Of particular interest is the derivation of the
adiabatic invariant
z2,=d% =2 ekJHR), (42)

which will now be outlined.
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To obtain ¢¥)(y) one simply uses the expressions
(34)—-(36) without restoring the asterisk super-
script (as was originally planned). To derive
(41), note that only one component of canonical
momentum enters the calculation, so that
9
_ (1) 9
U= g*(1) 57

’ (43)
2

1 r¥(1)2 a_,

)2

The second-derivative terms may be safely
ignored, since all orders of o(® used here are
found to be linear in J. Finally, the components
of the conjugate gradient V contributing to z,
are simply

0
@ =¥ 2
U J 37 +

ao(k)
_—éQ—.

9o ()
G

For the first order,f(1) vanishes and one obtains

J*(l) _ ao(l)
- 0

=J—-°9'—sin41rﬂ. 44
o sin(4r@) (44)

The next terms are

J fw"\2 J sw\
(@) Sf(¥N , __[Y
J 8 (w2> 4w< 2) cos(47Q?),

J*3) = L <~°-"—'> 3 sin(479Q), (45)

16 w2

— %[(—z-;—) /o{l sin{4n Q).

THE “OLD” NOTION OF ADIABATIC INVARI-
ANCE

In some texts of mechanics® and in the older
literature, the definition of adiabatic invariance
differs somewhat from the one given here. The
alternative definition is usually applied to one-
dimensional systems (though generalizations for
several dimensions exist) and is as follows:

Given a slowly perturbed periodic motion, con-
sider the action integral

J=7%pdgq

evaluated over one period of the unperiuvrbed
system. As the system is perturbed,an “instan-
taneous” J may be evaluated at any time by
“freezing” slowly varying quantities. Then J has
the property of adiabatic invariance: If the sys-
tem undergoes a finite perturbation—e.g.,a finite
change of the Hamiltonian from H,; to H,—the
corresponding change in J may be made arbi-
trarily small by stretching out the perturbation
over a sufficiently long time.

(46)

The action variable J of (46) is the same as the
zero-order action variable with which the previ-
ously developed perturbation scheme begins, but
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its “adiabatic invariance” differs in two respects
from what was earlier defined as adiabatic in-
variance. First,there exists here no hierarchy
of invariants each of which is conserved to some
specified order and secondly, the definition con-
cerns itself with the cumulative change in J over
a long period in time, In fact, this property does
not follow automatically from the definition of
adiabatic invariance used earlier. It is neverthe-
less an extremely useful property, since it allows
one to derive, using only the unperturbed variables,
a quantity with long-term invariance properties,
without even specifying the perturbation.

Since J is the zero-order part of J*, we may use
(12) to obtain [compare also Eq. (44)]

ag®)
YR

=dJ + eJ*¥(1) + O(c2

J¥*=J —e —— + 0(e?)

). (47)

As in (12), 0(1) means 0 (1)(J*, Q, ¢); since J* is a
constant of the motion, only 2 and the slow direct
dependence on ¢ contribute to the variation of the
first-order correction J*(1), The basic reason
for the long-term adiabatic invariance of J, stated
earlier,is that by the arguments of Eq. (24) J *(1
is purely periodic in 2, and therefore “nearly”
purely periodic in £. Over long time intervals,
its variation is therefore bounded, causing the
long term conservation of J to be better than might
otherwise be expected.

To demonstrate this, expand (47) to

IJ=J* — e* N, Q,¢t) + 0(e2?)

g% ek _ g, 34D
= J* - e Ot g 0) - 2t 2o

+ ... 4+ O(€2). (48)
Let a time T = O(e™1) pass. The first term on the
right is conserved, while the second one will vary
only through the variation of . Since the depend-
ence of this term on Q is periodic, the resulting
contribution is bounded and due to the factor pre-
ceding it, of order €. The next term is also O(e)
and the same holds for higher terms in the expan-
sion of the slow direct time dependence of J*(D,
The O(e2) terms may contribute to dJ/dt a term of
form €2y, but its contribution to the total change
of J will again be of order e€:

€2fgtl/dt = 0(e2T) = O(e).

Hence, the long term variation of J is O(e).

The variation of other dynamical quantities, on the
other hand, will be finite. For instance, for #

T T oH ., _ oH
f——dt o prdt = T(at>

= (eT)(ﬂa%j> av (49)
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and each factor here is O(1). Thus by making €
arbitrarily small, but keeping T = O (e?), the
variation of J may be made as small as is desired
while that of H remains finite.

THE POINCARE-VON ZEIPEL METHOD FOR
SLOW DEPENDENCE ON CANONICAL VARIABLES

Let a perturbed periodic motion be given, repre-
sented by a Hamiltonian

H=Ya%p,q), (50)

with (p4, g;) the action-angle variables (J, Q) of

the unperturbed motion,; since we have already
derived methods dealing with slow time dependence,
we will simplify matters by not including such a
dependence here. The motion represented by H(0)
alone is assumed to be periodic and (soluble: we
shall not require at this stage that H" has the form
(9), but we note that it must be independent of ,
since J is a constant of the unperturbed motion.

Instead, we shall assume that the canonical vari-
ables y; fall into two groups: “normal” variables for
which 3/ dy; maintains the same order in € and

“slow” ones for which it raises the order by one
level. 1t is useful to define parameters that dis-
tinguish between the two groups: let y; equal 0 or 1
depending on whether ¢, is normal or slow, and let
6, play the same role for p,. One can then define

0, = elig, (51)

p; = €ip;, (52)
so that (for example) 3H/9 Q, and 9H/3 F, are
always of the same order as H itself.

As before, let a generating function

o(p,q) = EPq, + Z)eko<k>(p qQ) (53)

define a near-identity transformation to a new
canonical set (P, Q), with the new Hamiltonian H*
independent of the transformed angle variable Q*
(a term with k2 = 0 could be included, but since it
may not depend on Q* it is not useful here). Again,
the basic equation is

HYP,Q) = H(p,q) (54)
and this again is expressed in powers of ¢ and ex-
pressed solely in terms of (P,q). Since p no longer
appears, it helps to redefine P, as

Pi = €6iPi; (55)
this will be the definition used in the remainder of
this section. In analogy with (14) one finds
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m (m)
#*®(P,Q) = exp| X" Y a" 2 g+ ®p q) = exp 2 emen 90 " 8 lLy*(P,q)
=1 i q a}Pl aOl
(m-s; 7)
=exp), e an i —%—*H*(")(P,q) =Y emy mepr® (56)
m i i m=0

with V'™ suitable operators and ¢”™ vanishing for

all nonpositive values of m. Expanding the ex-
ponential gives

V(O) =1,

G-3;-7)

o0 PIRA; d
() ~s o 7

and so forth; because these operators are expres-
sed solely in terms of P, and Q,, their action on
any function maintains the ordering in powers of
€.

Similarly,
H®) (p,q) = 23 "R (P, g), (58)
m=
with
RO =1,
(1-8;-v;)
dor oYY g
) = o 9
RW = 2:) 350, 3P (59)

and so forth. Substituting these operators and
collecting terms associated with ¢* then gives,in
analogy with (18)

k
3 (Yt m _ plm, pG=m) _ ¢

m=0

(60)

Again, the terms with m =0 and m = k are separat-
ed. For the latter terms one gets, in analogy with
(19),

(k-5.-v,)
og %’ g (®)
*) = .
OS2 T g, T
(k=8;-7;) (61)
® _ < g0 Y B
RP =2 S ——aP + N®,

with M and N® involving only lower orders. By
taking 2 = 0 in (60), one again finds

H*(O) H(O) (62)
so that (60) becomes, for the general case
(k-8;-y) a7y (0) (k=8;~)) 217(0)
*(0) s (80 OV QH T 90 VYV 9H — (R
H 2,3< 3P, a0 30,  op,) =&
(63)
where
1
CP=H® 13 (RO * H-m) — yod s H* (k-nd)
m:l
+ (M® — NPy © (64)

r

involves only given functions and lower orders.
For every k a relation of this type is obtained,
constituting a kth-order recursion formula for the
derivation of H*(¥) and ¢ ®.

Now the action-angle variables associated with the
zero-order periodicity (and used here in mixed
form)

(J*, Q) = (P]_, ql)
are assumed to be “normal,” so that the left-hand
gide of (63) will include a term

ao(k) aH(O)

EITe
If o®)appears nowhere else, the equation assumes
the form of (21) and is solved in the same manner.

On the other hand, if o® appears anywhere in (63),
it may not be possible to derive it, for the equation
tl3en becomes a partial differential equation for

To prevent this from happenmg, it is required
that for all (p,, q,) appearing in H© other than the
action-angle pair, we have the relation

6, tv; > 1. (65)

Hence the recursion can be carried out if:

(i) H © has normal dependence on p, but does not
depend on ¢;

(ii) H¢9) may depend on any “slow” variable;

(iii) HO may depend on any “normal” variable,
provided its canonical conjugate is slow.

Furthermore, it may be shown by extending the
present calculation that

(iv) H may include a term H¢1) of order ¢-1, pro-
vided it depends only on slow variables having
slow conjugates. Such terms are then transformed
intact to the new Hamiltonian.

As an example, the Hamiltonian of a charged par-
ticle in a time~dependent electromagnetic field, in
the regime of guiding-center motion, may be
brought to the form15,18

(66)

Here (p,, ¢,) are canonical variables associated
with the rapid gyration, (p,, g,) represent the
motion along field lines, and (5, g5) describe the
identity of the guiding field line, which changes
slowly with time (in the references, subscripts (1)
and (3) have reversed meanings); the variables
(1,491, P2) are normal, whereas the remaining
ones are slow. Furthermore, the gyratlon fre-
quency w and the lowest order ¢> of the electric

H=p,2/2m + p0/21 + € 1edp© + O(e).
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potential are both functions of slow variables only.
The last term is of order €1, since its derivatives
are proportional to the components of the lowest

order of the electric field E, which are of order 1.

Evidently, H meets all the previously stated condi-
tions except for one: If ¢(® contains g,, condition
(iv) is violated, since p, is not slow. One therefore
must impose an additional requirement that 9¢© /
dq, vanishes: This reduces to the well-known
restriction in guiding center theory that the elec-
tric field may have no zero-order component paral-
lel to the magnetic field.

DIRECT CANONICAL TRANSFORMATIONS WITH
SLOW VARIABLES

The generating function o gives the transforma-
tion equations as in (12) and (13), in mixed form.
To bring them to the “direct” form (37) it is use-
ful to generalize (38) for cases in which slow
variables are present, and this will now be done.

Let

= (p, q)

be a canonical set and
y = (q, - P)

be its conjugate.l? One may now define an index
T, equaling O or 1 depending on whether y, is nor-
mal or slow, and an index A; which has a similar
relation to j, . With this notation, it is possible to
define vectors Y and Y satisfying relations similar
to (51) and (52):

Y, (67)

— 1
; = €'Y,

Y, = €%y,

; (68)
As with quantities defined in (51) and (52), 3/9Y,
and 3/9Y, are always O(1).

We now seek the condition for a near-identity
transformation (37) to be canonical. Actually, in
what follows the recursion may still be carried
out even if the transformation is not a near-
identity one and ;io terms are included (satisfying
appropriate conditions), but we shall not develop
this possibility here. One then finds, as a condition
for canonical behavior

[y,;yy'] = [zi"z']
= [y, + 25 %%y, + T e
= [yiryj] + Z; fk{[t;@, y] [C] 1yl]

L (69)
+ 25 [, g
m=1

Expressing derivatives in terms of Y and Y gives
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da ob
a, b
[a, 8] = ans I
AsTs 9a da b
ZS; 8Y oY’ (70)
In particular
[a’ yi] = €% _8_(1_ (71)
o7,
Thus
(2 ()
0= Z B ——acf
2y, a7,
(-m)
d .
+Ze pory, B o, : (72)
ne1 3Y, 9K
Dividing by ¢%i"%
*)
0= 2 ek‘Ai acl k—A acz
k=040 41 ag aY
(e-m)
. an El2 a
bt b, 3 0% § a5 ) (13)
s m=1 BY; Y,

It is useful at this point to redefine % for each
term so that all powers of € become ¢* and also to
replace m by
M=m— A ('74)
Because the exponent of ¢ differs for each term
in (73), the new summation over & will begin at a
different value for each term;this summation limit
may, however, be uniformly set equal to 1 if it is
assumed that C( vanishes for nonpositive values of
u. With these changes, (73) gives

(k+A) (D)
0 €,e<a§ ey
k=1 ay} aYi
A M+4) -M-T0 +0)
B=0;-1 ) i 9L, $7sF
T DD apa A > (15)
M:l-Ai s aYS 8};

This suggests the introduction of new “staggered”
vectors

a (5] C(k+A ) (76)
ie.,
=¢®, if A =0,
® _ ) )
=g, iA=L
It is also useful (in analogy to what was done in
Ref. 17) to introduce a curl operator in Y space.
With this notation (75) may be rewritten as
SN aﬁ 3(/?MF a))
(§yx 3@)“ = _‘Z ‘—L“—'— (78)
S

m=1 d }_’s 3 Y,



CLASSICAL ADIABATIC PERTURBATION THEORY

T&is equation may in principle be used to derive

recursively, but this turns out to be a rather
inconvenient approach. It is more useful in deter-
mining the degree of arbitrariness associated with
a near-identity canonical transformation of the
form (37). Let two such transformations be given,
characterized by staggered vectors 3('" and x*"
which are identical for orders up to and including
the (k¥ — 1). For the kth order one finds that the
right-hand side of (78), which depends only on
lower orders, is identical for both expansions,
giving

U, < (3% —x®) =0, (79)
from which we get
a(k) - x(le) +—v—yx(k)‘ (80)

Thus the arbitrariness in specifying the canonical
transformation at each level of 3 is contained in
the gradient in ¥ space of an arbitrary scalar yx*
The general form of 3" for a canonical transfor-
mation may be written, in analogy with (38),

@ _ <7—YX(%) + F(k), (81)

3
where F¥ is a vector involving orders of 3(’")
lower than the kth and constitutes one particular
solution of (78). In the following sections two such
particular solutions will be derived, analogous to
those found in Ref. 17 for small perturbations.

DERIVATION BASED ON o(P,q)

Let a near-identity transformation of n = 2N
variables

=(p,a)~ z = (P,Q) (82)
be given by (37), and let a generating function (53)
be assumed to produce the same transformations
via Egs. (12) and (13). In what follows, the relation
between (37) and (53) will be established in a way
resembling what was done in Ref. 17 for the case
when no slow variables are present. As before, the
calculation may be broadened somewhat beyond
what is done here, since the method only requires
that canonical momentatransform innear-identical
fashion.

With the notation of (51) and (55) Eqs. (12
give

) and (13)

(84)

All functions on the right depend on mixed vari-
ables (P, q); to introduce a dependence on y, it is
useful to define “partial vectors” adding up to C()
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ﬂ(k) - (C(k) .. c(kzl’ <o, 0), (@5)
® (2 ®
0% =(0,---,0,8, -, LY.
From this
P =p + 2Py, (86)
Q = ¢ + L@ (87)

If the vectors ™ are known, they may also be used
to expand any function of mixed variables (P, q) in
terms of y, e.g.,

F(P,q) = Fly + Le®)

exp L (s 5)] * Py
o5 T (00 5
T L r(y),

k=0

i

1l

)

(88)

where, if we collectively denote all “slow” com-
ponents of ¥kby R and all “normal” ones by r and
if 1: " and %, denote vectors composed of the cor-
respondmg "components of ¥, then

L(O) =1,

L(l) 51) aar’ (89)
L% =2 air + }(21) aZR + oy )"(1) gr gr’

and so forth. Note that since ¢ is implicit, 7 and

7@ should have factors € and €2 “hidden inside,”
since they are teamed up with the correspondin
positive powers in (86). For the same reason I 2
should contain a factor €2 and, indeed, inspection
of the last equality in (89) shows that all terms
have such a factor.

Substitution in (83) yields

®)
Pi =p ~ Eek*")’iZe’"L(m)*.a_o___
; & 30;

06 Yo k—yi () ac(lrm-yi))
=P, *‘”E€< 30, +mZ=;1L *—'561—“ ’ (90)

where all terms of ¢ are viewed as functions of y,
i.e., with p replacing P, wherever the latter origin~
ally appeared. This should be identical to (83), and
therefore

£=1 m). 30 (e-m-y;)
30,

® _ 9
i T 0,

(91)

m=1

The highest order of L appearing on the right is
k2 — 1 [0(® only appears if y; = 1, for if it depends
on “normal” variables, the transformation is no
longer one of near- 1dent1ty this is the reason for
the change in summation limit] and this is there-
fore also the highest order of #®) appearing on the
right. Thus, (91) is a usable recursion relation for
deriving 7,
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Expanding (84) in a similar manner gives

o = 3%(;7-'—) + :?11 L% a"(;::-n) , (92)
where the definition of P; reverts to (52).
Now if
Y= 4,
then
Y,=— P, A=20;
and if
Yi =P
then
}_’-i = Qj, A= Y

Inspection then shows that (91) and (92) may be

combined to one equation:
(k -A;) k=1 (~m=-0;)
k m) 00 i
—)0,€ + * e ], 93)
2 ( 7 E 7 ) (

The dependence on A; may be removed by introdu-
cing 3 defined in (76) Then, using the gradient
operator in Y space, (93) becomes

k-1
= — Tpo®) — 3 LONT,0tkm),

m=1

3® (94)

Since it has already been established in (81) that
%) is arbitrary within some gradient in Y space,
the summation term represents a particular solu-
tion of (78).

LIE TRANSFORMS WITH SLOW VARIABLES16

If L, is the operator denoting Poisson bracketing
with a function W of the canonical variables

Lw(f) = [f, W]:

then it may be shownl7, 1921 that the transforma-
tion from ¥ = (p, q) to

(95)

z = exp(eLy)*y (96)
(with the exponential operator defined by its series
expansion) is canonical. In what follows, the form
of the Lie transform in the presence of slow vari-
ables will be derived, again following closely the
derivation for the simpler case when all y; vary
on the same scale.17 Let W be expandable in €

and let operators L, () be defined through
=D efL®, (98)
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If one defines [compare Ref. 17, Eq. (35)]

x#®) = — w1, (99)
then
(k)
= Pemyp 2
s ays 0y,
(2-Ten)
ax 0
=3¢ L, 100
Ys aYs (100)

where the lower limit of %2 in the last summation
may be chosen as 1 if quantities with negative or
zero index are understood to be zero. This gives

(kT g=Ag)
axFrees) g
(k) X
Ly =2 —=——. (101)

W, oy,

s

Expanding a typical component of (96) gives
2 =[1+(DLP) + 4T L2 + - oy,

= T ePMPx(eTiy,)
_ EekM(MFi)*Y,-, (102)

where the M(®) all have the form

M® = L(k) + N®) (103)
with N *) some operator involving lower orders.

One gets

Z(k) t(hAl)

= M&T),y,
:L(I;J'Fimi)*Yi + N(hri+Ai)*Yi

2y ®

=2 _ + N(Ie+I“i+Ai)*Yi, (104)
Y,

i
which again is the sum of a gradient in Y space

and an expression involving lower orders which
(presumably) is a particular solution of (78).

THE KRYLOV-BOGOLIUBOV~KRUSKAL
METHOD WITH SIOW VARIABLES

Krylov and Bogoliubov®~ 11 investigated the solu-
tion of a set of n equations vectorially represented
by

W _ S erg® 10

=Ly, (105)
with

g® = (0,0, ...,0,g9) (106)

ensuring that in the “unperturbed” limit € — 0, y,
alone varies and all other components of y (to be
collectively denoted by §) are constant. It is fur-
ther assumed that the unperturbed system is peri-
odic and that y, is an angle variable appearing only
in the angle argument of periodic functions. The
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zero-order growth of y, is then agsumed to be
lmear from which follows that gno may depend on
¥ but not on ¥,,.

To eliminate the periodicity from this motion,
Krylov and Bogoliubov used a near-identity trans-
formation to new variables z, given in a direct
form inverse to that of (37)

y =2z + ), em®(z)

The new variables, which can be derived by a suit-
able recursive method, have the property that the
equations by which they evolve do not contain the
transformed angle variable z, on the right-hand
side, but have the form

(107)

;l_? = T erh®)(3), (108)

The first (z — 1) equations of this set, representing
dz/dt, then form an independent set not involving
z, which can be solved separately.

If y represents a perturbed periodic cancnical sys-
tem with a Hamiltonian of the form (50), then the
canonical equations of motion have the form (105)
and the Krylov—Bogoliubov method can be used to
eliminate the angle variable y, = Q. Unfortunately,
unless precautions are taken,22,23 the z variables
will in general nof be canonical, so that the trans-
formed variable corresponding to the canonical
conjugate of y, will in general nof be a constant of
the perturbed motion, as is automatically achieved
by the Poincaré—Von Zeipel method.

On the other hand, the Krylov—-Bogoliubov method
has a much wider validity and can be used in non-
Hamiltonian systems. A similar elimination pro-
cedure, which derives the transformation in the
form (37), has been devised by Kruskal,8 12 who
followed it by the derivation (for canonical systems
only) of a constant J of the motion, obtained by an
ingenious application of integral invariants (it is
the same constant as is obtained by the Poincaré-
Von Zeipel method).

Here the Krylov—Bogoliubov method will be
generalized for the case when slow variables are
present. As with the Poincaré—Von Zeipel method,
this allows the restrictions on the form of the
zero-order equations—embodied in g©--to be
eased. Specifically, some variables other thany,
are now allowed to have a zero-order variation
and this variation (as in the canonical method) is
passed intact to the “reduced” equations involving
z. The calculation will be done for the transforma-
tion (107); the treatment of Kruskal's method, using
(37, follows practically identical steps and will
therefore be omitted.

Following the notation of (89), let R and r denote
the slow and normal components of z, and let n,gk
and n{*) be corresponding components of 7). Sub-
stituting (107) in the left-hand side of (105) gives,
with the definitions (67) and (68) extended to z
variables,

2241
dy dz L on® dz,
_— = — 4 € _
dt dt rs 9z, dt
®Ty)
dz s
S ) PLANS e
dt ks Az, m=0
k-1 (k—m T )
_d PITIDD o =y (109)
dt mo OZ §

Expressing a typical term of the right-hand side of
(105) in term of z gives, in a2 manner similar to
(88),

(k)(y) _ (k)(z +3 €mn(m))

exp (,,E em n(m) .

g

) g (B (z)

= exp(Z Em—r)(m I' do_9 37 > g(k)(z)
5

= E €mK(m)*g (k)(z) s (1 10)
The operators K™ resemble those of (89) but with
7o) everywhere replacing 7(»), Substituting prece-
ding results in (105) gives

(t-m—T.)
-1 an K
(m) (k-m) Z) (m)>
— * — [EEE—— Y ]
dt ,eZ(;) [?1( € sz,
*), _© ™
Oy 1 .0 (®
+ (K%g™) Zs) oL e + (1= 6, }

s

(111)

where the factor preceding the last term denotes
that it be omitted for ¥ = 0 (in that case it is al-
ready counted as the term involving K®*)) and
where in the summation preceding this term h(©),
has been replaced by g©®, which equals it since in
the limit ¢e— 0, Eqs.(105) and (108) coincide.

Comparison with (108) shows that the expression
in the square brackets equals h®*)(Z), and this
equality forms the basis of the recursive deriva-
tion of h(#) and 5(®,

The situation now resembles that of (63): In order
that the recursion be at all possible, unknown com-
ponents of 7(¥) must appear in (111) only once,
otherwise the result is a partial differential equa-
tion and cannot be easily integrated. One term
which always contains #(®) is contributed by the
last summation in (111) and equals

k)
az

n

©,
g,

since gn@) does not vanish and z,, the transformed
angle variable, is normal. No other appearance is
permitted; hence

(V)]

& =0 for I, =0 (112)
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or, stated in words, only slow variables and the
principal angle variable are allowed to have a zero-
order variation.

In addition, (¥} could enter through the term con-
taining K®), which has the form {compare Eq. (89)]

kg = (_ma (113)

r

with N(®) containing lower orders. No problem
arises here provided nf,k is derived first and ng)
only afterwards: Because of (112), this term is
absent in the first part of the derivation, while in
the second part those components of §(®) that
appear in it are already known. In either case one
gets

a n(k)

0z

n

where (¢ > 0)

29 + n®z) = A®, (114)

(k—ms—rs)

n
K(m) (B-m) — E : L
< g s

s

ar

®

m=1

m)
hs’"
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(k-T'¢)
o ‘°’> (115)

+ <K(k)*g(0)) + g(k)__ » g

SEn aZs

depends only on lower orders. The solving of (114)
then resembles that of (21).

CONCLUSION

In the preceding sections, the main methods of
classical perturbation theory have been extended
to slowly (or adiabatically) perturbed systems with
a single zero-order periodicity. At the same time,
the basic concepts associated with such systems
(e.g., adiabatic invariance and implicit €) were
examined and clarified.

The restrictions on the forms of the zero-order
equations for slow perturbations have been de-
rived and are generally less severe than for small
perturbations. The extension of the methods them-
selves is relatively straightforward, involving
mainly the shifting of indices for quantities corres~
ponding either to slow variables or (as in the case
of 3(®) to variables with slow conjugates. With the
use of expansion operators the treatment is only
slightly more complicated than for small perturba-
tions,
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The main purpose of this work is to find an analog of the Regge—Newton equation for the problem of
finding tensor and spin-orbit potentials, acting among particles of spin 3, from the knowledge of the S-
matrix as a function of angular momentum at a fixed energy. We first find a transformation which makes
the Schriddinger equation containing a central, a spin-orbit, and a tensor potential the matrix analog of
the Schrodinger equation for spin-z particle in a central and a spin-orbit potential. Next, guided by the
work of Sabatier for the case of central and spin-orbit potentials, we are able to find the desired inte-
gral equation. The necessary existence and uniqueness of the solution to this integral equation is studied,
and it is shown that indeed the wavefunctions for tensor and spin-orbit potentials can be represented in
terms of the solution of this integral equation. A series representation of the wavefunctions, which are
necessary for finding the potentials from the S matrix, is found, but the actual construction of the poten-
tials from the S matrix is not considered in this work.

1. INTRODUCTION

Information about nuclear forces is mostly obtained
through scattering experiments, but the quantities
which are found experimentally do not give us the
interparticle forces directly, The problem of find-
ing the interaction from the experimental data is
called the inverse scattering problem. Because of
the complicatednature of this problem, it it usually
broken up intotwo separate parts. The first partis
concerned with the problem of finding the S matrix
from the experimental results, that is, cross sec-
tions, polarizations, etc., and the second part deals
with the determination of the forces involved from
the knowledge of the S matrix. If we assume that the
energy range which we are considering is such that
nonrelativistic quantum mechanics is valid and the
corresponding potentials are spherically symmetric,
so that we can make use of partial wave analysis,
then the problem of finding the interaction from the
S matrix can be conveniently separated into two do-
mains. The first is called “inverse problem at fix-
ed angular momentum,” It deals with construction
of potentials from the knowledge of the S matrix, at
a fixed angular momentum, as a function of energy.
Because of the completeness and orthogonality of
the radial wavefunctions of one angular momentum
and all energies, and the existence of the Gel'fand—
Levitan integral equation? and its analogs, there
exist a great many results for the inverse scatter-
ing problem at fixed angular momentum when the
potential is independent of energy. Indeed one such
result, specially relevant to this work, is on the
subject of constructing the tensor force from the

S matrix at fixed angular momentum which was
considered in detail by Newton.?

The second inverse scattering problem deals with
construction of potentials from the knowledge of the

S matrix at one energy as a function of angular
momentum, Because of the lack of completeness
and orthogonality of the radial wavefunction of one
energy and all angular momenta, the inverse scatter-
ing problem at fixed energy for the case of spinless
particles in a central potential resisted solution for
some time until it was finally solved by Newton3 and
later on this solution was extended by Sabatier.4 In
lieu of already existing well-established results for
constructing potentials from the S matrix at fixed
angular momentum, one justifies the need to do
inverse scattering analysis at fixed energy on physi-
cal grounds. That is, althoughthe inverse scattering

problem at fixed angular momentum is mathemati-
cally elegant, from the physical point of view, the
assumptions made are not consistent. In other
words, the assumption that the energies involved
are such that nonrelativistic quantum mechanics is
valid and the assumption that, for large values of
distance, the nonrelativistic wavefunctions, the S
matrix, are given even for energies as high as in-
finity are not compatible.

The important point to be noticed is that all the
results mentioned above were possible because one
could at least formally deduce the analog of the
Gel'fand-Levitan equation for the problem at hand,
without any difficulty. But this is not the chse for
the inverse scattering problem at fixed energy for
two spin-3 particles in a tensor and a spin-orbit
potential. This lack of existence of analog of the
Gel'fand~Levitan, or equivalently of the Regge—~
Newton,5,3 equation has been the major reason why
this inverse problem has resisted solution, Indeed
it is the main task of this work to find such an ana-
log. As we shall see, the key for finding such an
analog is the remarkable fact that the Schriodinger
equation for the tensor force® problem can be made
to satisfy a matrix analog of the differential equa-
tion satisfied by a particle of spin } in a central
and a spin-orbit field.7 Having found this analog,
then the work of Sabatier8,? for the inverse scatter-
ing problem for the case of spin—orbit and central
potentials, gives us the necessary indications on how
to go about finding the analog of the Gel'fand-Levi-~
tan equation for the case of two identical spin-3
particles in a central, spin—orbit, and tensor poten-
tial.

In Sec. 2 we first review the relevant parts of the
inverse scattering problems for the case of central
potentials and for the case of central and spin—~
orbit potentials, Next we introduce the transforma-
tion which makes the Schrodinger equation for cen-
tral, spin—orbit, and tensor potentials the matrix
analog of the Schrédinger equation for central and
spin—orbit potentials, In that section we also intro-
duce the relevant equations which we expect to be
the formal analog of the equations found by Sabatier
for the case of central and spin-orbit potentials,
But since this analogy between the Schrédinger
equation for cental, spin—orbit, and tensor poten-
tials and the Schrodinger equation for only central
and spin-orbit potentials is purely formal, this
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extension of the work of Sabatier for central and
spin—orbit potentials to the case of central, spin—
orbit, and tensor potentials is not straightforward.
Aside from matrix complication, indeed some of the
functions needed in this formalism will not exist,
and, therefore, the formal method must be modified
and proofs changed. These necessary changes and
proofs are given in the remaining sections. In

Sec, 3 we consider analytic tensor and spin-orbit
potentials and find analytic properties of the wave-~
functions and prove that they can be used in repre-
senting other analytic functions. This fact will be
essential in the necessary existence proofs. Sec-
tion 4 deals with the proposed integral equation
which we expect to be the analog of the Gel'fand-
Levitan equation, We prove the uniqueness and
existence of the solution to this integral equation in
Appendices A, B,and C. InSec. 4, we also show that
the regular solution of the tensor and spin-orbit
differential equation can be represented in terms
of the solution to the mentioned integral equation.
The generalization of Gell-Mann “nonsense
term,”10 which is introduced by our new transfor-
mation of the Schriodinger equation, is amusing but
it is also a source of some difficulty in this work.
Section 5 is concerned with a series representation
of the wavefunction, which is needed when one tries
to connect the S matrix to the kernel of the above
mentioned integral equation. Of course,knowing this
kernel, we then are able to find the corresponding
potentials, In this work we will not be directly
concerned with the problem of constructing the
tensor and spin—orbit potentials from the knowledge
of the § matrix, but in Sec. 6 we will deal with the
problem of constructing the potentials when this
mentioned kernel is already given. An example is
also given to demonstrate the construction of poten-
tials from a given kernel,

Let us again point out that the inverse problem
which we have in mind is for the case of two identi-
cal particles of spin 3 whose interaction depends
only on their positions and spins. A general form
of such an interaction is6

V(r) = V(r) + V,(r)oy -0, + V,(7)-S;,, (1.1)

where S,, = 30, 70, # — 0, " 0,, 50, and 30, are
the spin operators 7 is the unit vector in the direc-
tion of r. Use of partial wave analysis decomposes
the potential matrix into three blocks,11 two of
which correspond to the singlet state and the trip-
let state of parity (—)/. The last block corresponds
to the triplet state of parity (—)7*1. The Schro-
dinger equation for the latter can be written as12

2
— 72%5%. + L(L + 1)¥, + 72V (¥, = 22y,
(1.2)
where

1
Vi =51y
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[(21' + 1)V, — 2(7 — 1V, 6[§(j + 1)]1/2y,
X

6[7(5 + 1)]1/2v, (25 + 1)V, —2(j + 1)V:]’

i—1 0
Vd:Vc+VG’ L:
0 i+

and ¥, is a 2 x 2 matrix whose first row indicates
the components of y; belonging to the orbital angu-
lar momentum j — 1 for each of the two possible
boundary conditions, and likewise the second row
of Y. corresponds to orbital angular momentum

j + 1. The boundary condition of the first column
of Y, is that, at time ¢ — — «, the orbital angular
momentum of the particlesisj—1. For the second
column the initial orbital angular momentum is
j+ 1.

Since no restriction on the S matrix is known which
assures that it corresponds to the potential given
in (1. 1), one also needs to introduce the spin—orbit
force in the above interaction. The spin-orbit
potential is found to make the following contribu-
tion to the potential matrix12 for the case of trip-
let state of parity (—Y"":

| j—1 0
Vis(r) = . Vo).
0 -3 —2

The form of differential equations (1. 2) can be
considerably simplified if we subject the solutions
of (1. 2) to the transformationl3

j+1)1/2 j1/2
7 e — G+ vz
Applying transformation (1. 4) to the Schriodinger
equation (1. 2), one obtains

(1.3)

Isl

(1.9

e diig@ + r2WIG, + DG, = 722, (1.5)
s

where
_ Vy(r) +2V[7) 0
W(’I’) = »
0 V(r) — 4v(r)
W = Ex12¥-172, AT F %,
and

A2 — %
D(A):l:

—2a2 - Hv2
— 2(22 — hHr/2

A2+ 7/4 '
(1.6)

Under transformation (1, 4), the spin—orbit force

(1. 3) takes the form
(A2 — H1/2
2 Vis(nE! =[ 5 | Vo

(A2 — H2 -

-1

(1.7
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The inverse scattering problem at fixed energy then
reduces to the question of whether it is possible to
find the potentials V,, V,, and V,, given the S matrix
for all angular momenta, and, if it is possible, what
is the procedure to be followed in order to con-
struct these three spin-independent potentials from
the information on the S matrix?

2. A REVIEW OF PREVIOUS RESULTS AND A
REDUCTION OF THE PROBLEM

The main tool in the construction of central poten-
tials from the § matrix at fixed energy is the
Regge—Newton equation. That is, from the informa-
tion on the asymptotic behavior of the regular
solutions one is able to define an integral equation
whose solution is directly related to the wavefunc-
tion and the central potential of the scattering
problem. More specifically let us consider the
inverse problem at fixed energy for a spinless
particle in a central potential #(r). The wavefunc-
tion 7,(7) for this particle satisfies the following
equation:

2 friz 5(7) + 72[1 — #N]5,(r) = (A2 — D7, (),
(2.1)

where we have chosen units in which 22 = 1, =
I+ 3,and v A7) is assumed to be the regular wave-
function satisfying the boundary condition

lim (r/2) 01 + D) Y20, = 1. (2.2)

If we now let v, () be the regular solution to Eq.
(2. 1) when %(7) is replaced by u(r), then, following
the method constructed by Newton3 and its genera-
lization by Sabatier,4 we define the following input
function:

f(r’ T') - Z%Z ’U)\(?’)‘U )\('rl) Cy»

Ae

(2.3)

where the set @ depends on the nature of the poten-
tials being considered and the coefficients c, are
left arbitrary for the moment and are to be found
later from the information on the asymptotic be-
havior of v,(r). Next the Regge-Newton equation
is defined:

r
kir,v") = fr,v") — Jodpp=2k(r,p)flo, 7). (2.4)
Then it can be shown that v,(7), the regular solu-
tion to (2. 1), satisfies the following equation,
(2.5)

1 (7r) = o, () — fordpp‘zk(r, Pl (p), A =0,

if the coefficients ¢, are chosen in such a way that

#(r) —ulr) = —2-1 c—ld7 {r—1e(r, r)}. (2.6)

Since we are interested in the inverse problem, in
other words, since #(¥) is our unknown function and
the asymptotic behavior of the ,(r) are the only
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things which are specified, therefore Eq. (2. 6) can
be viewed as the definition of u(r) if the coeffi-
cients ¢, are chosen in such a way that the right-
hand side of Eq. (2. 5) has the proper asymptotic
behavior.

At this point we should realize that the question

of finding the potential %(7) from the S matrix is
now reduced to finding a set of coefficients, which
are dependent on our choice of the comparison
potential »(r). In other words, having chosen a
comparison potential u(r) and a set of coefficients
c, that make Eq. (2. 4) have an acceptable solution,
Eq. (2, 5) gives the regular solution to the differen-
tial equation (2. 1) in which the potential %(r) is
defined by Eq. (2. 6). The only condition which is
then to be realized is that the set {c,} should have
been chosen in such a way that the regular solution
given by Eq. (2. 5) has the desired asymptotic be-
havior, In order to satisfy the asymptotic condi-
tion on the regular solution defined by Eq. (2. 5),
one needs to note that the substitution of (2. 3) in
(2. 4) and use of (2. 5) implies that

klr,r’) =}\Z{})5)\(r)vx(r’)c,\ . (2.7

Next, substitution of (2.7) in (2. 5) will give us a
representation of the regular solutions which is
essential for relating the coefficients c, to the S
matrix,

50 = 0,(1) = 5 e, Sy dop=2u p)urp).  (2.8)

aeld

It is shown in Ref, 3 that if the comparison poten-
tial is suitably chosen, in the limit as » — «, Eq.

(2. 8) gives the coefficients ¢, in terms of the phase
shifts. Clearly, the coefficients c, havingbeen found
from the asymptotic form of Eq. (2. 8), then the
regular solutions defined by (2. 5) will have the de-
sired asymptotic behavior and therefore the poten-
tial #(v) defined by (2. 6) is the desired potential,

For the sake of completeness let us also note that
it was found by Sabatier4, 8 that when the potentials
under consideration are analytic, then the set © in
Eq. (2. 3) can contain only the positive integers and
half-integers and, for example, for the case when
17(1;) = 1 and u(r) = 0, the coefficients ¢, are given
as

C}\.:_Zk/n,
=0

for positive integers
. T2.9)
otherwise.

From Ref. 8 we also note that, given the potentials
u(r),u(r) and the coefficients c, such that Eq. (2. 6)
holds, v, () can be represented in terms of v,(r) in
a form similar to Eq. (2.5):

ur) =500 + Jo dpp~2k(p, 75 (0), A= 0.

(2.10)

Having seen the basic approach to the inverse
problem for spinless particles in central potentials,
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let us now briefly review the work of Sabatier? for
the case of scattering of a spin-3 particle by a
central and a spin-orbit potential,

It is shown in Ref. 9 that the differential equations
of interest are

2
v L g+ U — 2102l = 02 - Dyl
v
(2.11a)
2 _ - -
r2 L o+ 206 + 2029y = (0% ~ Doy,
(2.11b)

where ¢, and ¢; are the regular solutions to (2, 11)
and U(r) and Q(7) are related to the central and the
spin—orbit potentials. Again one tries to reduce

the problem of finding the potentials from the S
matrix to the problem of finding a set of coeffi-
cients from which the potentials and the wavefunc-
tions can be easily defined. In Ref. 9, this is accom-
plished by introducing the following input functions:

fEr,r") =)\Z‘é s\(M)s,(r)ci, (2.12)

where ¢ are the set of coefficients which are to be
found from the S matrix, the set S contains positive
integers and half-integers if the potentials under
consideration are analytic, and s,(7) is the regular
solution to Eq. (2. 1) for the case when u(v) = 1.
In other words

s\(r) = (3a7)Y 2(r/2Mr(1 + W} (2.13)
Next the analog of the Regge-Newton equation is
defined as

r -
kx(r,r") = F¥(r) 2 (r,r') — fo dpp~2k¥(r, p) f£(p, ")
(2.14)
with
r

F(r) = exp{+J; dopQ()}. (2.14))
k*(v,»’) having been defined, it is again possible to
show that the regular solutions to Egs. (2. 11)
satisfy the following equations:

r

oE(r) = FE(r)s,(r) — [y dpp~2k%(r,p)s\(p), (2.15)
if the coefficients ci are chosen in such a way
that14

21;;*(7, 7y — 27"1[1 + 72Q(r) )kt (r,7)
= {r2u(r) £ 2r2Q(r) £ v3Q(r) + r4Q2r)} Fi(r).
(2. 16)

Again we note that from the inverse scattering
point of view, Egs. (2. 16) are to be used as the
definition of our unknown functions U(7) and Q(r)
and the coefficients cf are to be chosen in such a
way that the right-hand sides of Eqs.(2. 15)have the
desired asymptotic behavior. Although the analogs
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of Egs. (2. 4) and (2. 6), that is, Eqs. (2. 14) and

(2. 18), are now coupled, it is still possible? to

find U(r), Q(r), and ¢f if the coefficients cf are
given, and therefore the problem is again reduced
to finding the right set of coefficients c¢f which
gives the desired asymptotic behavior of the regu-
lar solutions.

For the inverse scattering problem of two identical
particles of spin 3 in a central, a spin—orbit, and a
tensor potential, we also would like to reduce the
problem in the above manner. But, having seen the
complication which arises when one tries to intro-
duce even the spin-orbit potential alone in the
Schrodinger equation, we first would like to make
Eqgs. (1. 5) as similar to Egs. (2. 11) as possible. It
is remarkable that the following simple transfor-
mation makes the Schrodinger equation containing a
tensor force become the matrix analog of the Schré-
dinger equation containing only a spin-orbit force:

[(A +32)1/2 0
T, = .
0 (-2

Subjecting solutions of Eqs.(1.5), when the spin-orbit
force is also present, to T, for values of A = 3, we
obtain

(2.17)

y2 42
dr?

+ M1 - r2V(r) 1, = (A2 — D) @,,

&, + {—72W(r) —1 — N1 + M)[1 — r2V(r)]
(2.18)

where

— -1 0
Wr)=—1+Wr)-3v,0n, N :l: ] ’
0 1

0 1
’ V(T) - %VO (7)
1 0

and &, = T\{j.

Special attention is needed for the case of A = 3,
because for that value of the angular momentum the
transformation matrix (2, 17) is singular and there-
fore there is no reason why Egs. (2. 18)-should be
related to (1.5). Of course,at A = 3 even the Egs.
(1. 5) deserve special consideration,15 because at

A = 3 the differential equations (1. 5) are uncoupled
and the elements16 11y, , and 12y, , correspond
to states with the orbital angular momentum — 1
and 21y, ,, and 22y, , correspond to states with
the orbital angular momentum 1. If we now remem-
ber the definition of ¢ at time ¢ » — o, we note that
the only term in xfl ;2 Which has a physical meaning
is the function 22y,,, and, as far as the physics is
concerned, we lose nothing by assuming the other
elements of El /2 are identically zero. On the other
hand, we can certainly take the nonphysical ele-
ments of ¥, ,, not to be identically zero, as long as
we accept them only as mathematical functions and
the defined ¥ ,, is a solution to (1.5). At this point

M =
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let us note that at A = 3 the element 22§, ,, of &, ,
satisfies the same differential equation as the one
satisfied by 22y, ,,, and,therefore,they are identi-
cal if we choose the same boundary condition for
them at » = 0. It follows that ¢,,, and ¥, ,, are
physically equivalent and the fact that they can dif-
fer in their nonphysical elements is immaterial.
Therefore, in this work, Egs. (2. 18) are considered
as the Schriodinger equations for the interaction
containing the tensor force and the spin—orbit
force even at A = 3.

Inspection of (2. 18) reveals that it is the matrix
analog of (2. 11b), where — W(r) — 1 /72 —

[N + M)/r2][1 — »2V(7)] is the matrix analog

of U(r), (M/72) (1 — r2V) is the analog of Q(r),and
¢, is the analog of ¢,. We can make the analogy
complete, if we introduce the matrix function &f
which is a solution to the differential equations
obtained by changing the value of A to — A in Egs.
(2. 18). At this point we would like to point out that,
although we have found a matrix analog to differen-
tial equations (2. 11), there is no reason to believe
that the method developed by Sabatier for represen-
tation of solutions to Eqgs. (2. 11) should generalize
to the case when these equations include potentials
which are not multiples of the identity matrix, be-
cause, besides the possible commutation difficul-
ties, the proposed analogs to potentials U(7) and
Q(») are such that, at » = 0, the functions »2U(r)
and 72Q(7) need to be different from zero and this
is exactly the opposite of the assumption made for

the case of only central and spin—-orbital potentials.

Disregarding the mathematical questions for the
moment, if we apply the method Sabatier developed
for the case of central and spin—orbit potential to
Egs. (2. 18) and modify the method in such a way

as to circumvent some mathematical difficulties,1?
we expect the analog of Sabatier's equations for
the case of central, spin—orbit, and tensor poten-
tials to be as follows:

K_(r,7) = R_f_(r,7) — Iy dop=2K _(r,p) (0, 7",

(2.19)
Ky(r,7) = Ry folr,7") — [ "dpp=2K,(r, p) filp, 7"),
with

flr,r) = p% (— & £ Ny )N V2,

R, =3lrg_7 r7lgy,vg_t7r71g)),
r
g, = exple [ dppv(p)},

S; =11,3/2,2,-- -, and for now y, are a set of
arbitrary constant 2 X 2 matrices. Next let us use
the row vectors K_(7,7’) = (A1 K(», »"), 12K(», 7))
and K (7, 7’) = (21K(r,r"), 22K(r,7r")) to define the
2 X 2 matrix

K (r,7")
K(r,r") =[ :‘ (2. 20)
K. (r,7")

INVERSE SCATTERING PROBLEM
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Having defined K(7,7’) by analogy with the work of
Sabatier, if the 4, are chosen in such a way that
21'((1',1') — 2r 1 + M[1 — r2V(r)] } K(r,7)

= N(1 + M1 — #2V(r)] — 72[W(r) + 2V(")1]
— 272V(r)M — 3V(HM + r4V2r)1RE),

(2.21)
where

R_
R,

then we expect that the regular solutions to Eqs.
(2. 18) have the following representation:

(2.22)

LA Ao At1/2
&, = T{{R(r)r** V2 —fo ar'y" “K(r,r'yr |
(2.23)
with
T{ =(—z1+2N). (2.24)

It is our main task in the remaining sections to
show that the functions &, and K(r, ') introduced
in this section are indeed well defined and that ¢,
is a solution to the differential equations (2. 18)
and, therefore, the inverse scattering problem for
tensor and spin-orbit potentials can be completely‘
solved if one is able to find the set {y, } suchthatthe
functions ¢, of (2. 23) have the desired asymptotic
behavior,

3. ANALYTIC PROPERTIES OF THE WAVE-
FUNCTIONS

From the point of view of the inverse scattering
problem, Eqs. (2. 21) indicate that not any arbitrary
K(r,7") defined through Eqs. (2. 19) is acceptable,
because, in derivation of the equations in Sec. 2, it
was necessary to assume that W(r) is diagonal and
V() is a multiple of the identity. In other words,
the set {y,} must be such that not only Eqs. (2. 19)
have a solution, but also this solution, that is,
K(r,7), must be such that when it is substituted in
Egs. (2. 21) it will give us a diagonal potential

W(r) and a potential V(r) that is a multiple of the
identity. Indeed, it must be shown that such a set
of {y,} exists.

A step toward this proof is to assume that the
potentials are analytic and to see whether there
can exist a set {y,} such that Eqs. (2. 21) are satis-
fied if we replace K(v,r) by

i A+1/2
E (b)\)/)\?’ ’
XeS

where &, is the regular solution to (2. 18), with
W(r) a diagonal potential and V() a multiple of the
identity,and S = {3,1,%,---}. In here we are not
assuming that y,,, = 0, because we would like to
find out what condition the potentials must satisfy
so that y, ,, can be put equal to zero, Also,under-

standing of any condition that (2, 21) may put on
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y 1,2 Will be of use in extending the class of poten-
tials with which we can deal.

To study the analytic properties of &,, the regular
solution to (2, 18), we need to define a boundary
condition on &, at » = 0. In the absence of any
well-established boundary condition on the regular
solution to the Schrddinger equations when a ten-
sor force V, () is present and in the desire that
the regular solution to (2. 18) be representable in
a form given by (2, 23), we find that it is convenient
to define the boundary condition through the follow-
ing function for the case when V, = r2V, = v2V =
Oatr =0:

Q, = H1+ M)zt + (1 — M)zje” V2

x[(2 + 2uN)/(n2 — 1)}8,,, forn>1. (3.1)
Q,(2) satisfies the differential equation
9 d2 ~ d =~ _ ~
—,(2) + (2M + n + 1)z = Q,(2) = W,(2)%,,
dz2 dz 5.2)
3.2

where W, (z) = 22{W,(2)1 — nV(2)M}+ 1W_(2) X

( + M)N + 22{1 — 22V(2) + (22/2)W_(2)}N(1 + M),
W(z) = W.(2)1 + W_(2)N and W, and W_ are mul-
tiples of the identity.

If we assume the potentials are analytic in a circle
of radius Ry > 0, |z| < R, then we can represent
them as

2 _ R m 2 _ X m
2°W(2) = Llamz ,  2°V(z) = Elfmz
0 2 o0
W(z)= 230,27 and 2 W,(2)= 2 4, 2"
m=1 m=1

(3.3)

Now the boundary condition on 5)\ in terms of fzz)\
can be represented by the following conditions:

Q.0 =C —[(1 + MY/(n + 2)]
{1 + Ha, — a?)N} n>1,

for (3. 4)

The exact value of Q at z = 0 given by (3. 4) was

motivated by (2. 23).

Having defined the boundary condition for the solu-
tion to differential equations (3. 2), we now would
like to show that it can be represented by the
following relations18:

- =)
Q,(2) = %Cn.mzm (3.9)
“
where
_ m+n— 2M ml
Com = mim + 2+ n)(im — 2+ E)I,Z_}OA"-'"“’C"'P’

n>1,

and C, , is given by (3. 4).
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To prove that the above representation is valid,
let us define|All = max, ., olAll, Clearly there
exists a number b(R) such Yt li(@/dz)w,(z)lI<

(1 + n)b(R) for |zl< R <R, Consequently

A, nealls (1 + mb(R)/Rm and an upper bound for
C, ,, can be defined through the equation

_2(1 + n)b(R)
T+ Dm+tn—1

: dn ,()R—m};

d R-1

n,m+1 n,m-1

Vit d

with d, o = lIC, , |l (3.6)

The so-defined numbers are clearly larger than
the corresponding |IC, ,, ll, and they can be rewrit-
ten as

i _ (%7 2n + Db(R) + R™1p(p + n — 2))
¥ L () TR =5 ) 0"

(3.7

Following the method used in Ref. 9, we find that

2Y'. . = 2Rb(R)
dn.m+1s<ﬁ> by G = TBX pO<M(—+—py dn,?’ )
3.8

whe}re po = max{p;p < 2Rb(R) and p is an inte-
ger}.

Therefore ﬁn, n > 1,1is analytic in a circle of
radius R/2.

Calling ©; = &,,,, we find it is also analytic in the
circle of radius R/2,if a; + f; = 0. In this case
the differential equations satisfied by elements of
{1, are given as

. ~
2242 110, — 22{W,(2) — W_(2) + V(2)}11Q, = 0,

2
@z (3.9a)
2292 203 _ 22w (e) + W.(2) — V(2)}220,
dz2
=2 223 (3.9b)
22 dd—zlzn — 22{W,(2) — W.(2) + V(2)}126,
= —2{1 — 22V(2)}220,, (3.9¢)

where we have assumed 21§21,which satisfies the
differential equation (3.9b), is identically zero, The
values of 118, 12, and of their denvatwes at

z = 0 are assumed to be 11C, 4, 12C, 07 1101 ; and
1201 ﬁ which at present, except for the assumption
that "iC, , = 0,are arbitrary numbers. 272 220, (2)
is assumed to have the value of atz = 0, Need-
less to say, these boundary cond1t1ons on ﬁl are
again motivated by (2. 23)., The solutions to (3.9)
will have the following representations:
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o0 1 m-2
11Q1(2) = E 11C1 mZ with 11-C1’m = m E A:n‘p llcl,p for m = 2,
m=0 m=0
o0 1 m’
29 _ 22 ; 22 I
Py() = 2y P20y p2 with 22Cy = ) 2 2t A" Cly dor m 3, (3.10)
o0 m
128, (2) = Z%) 12Cy 27 with 12C, = m(—_—_m 1) E AL Ci,~22F, 22C , for m =2,
m= m=0
r
where iy n
252" 5 NQ — M)(m + 2) — 2221
. n=0 m=0
22010 =22C1 =0, 2%y, =%, Fy=1, -
F,=—f, for n=>1, + N+ Mon + 2)241C, g o ¥
]
A} =a,¥%,, A}=a,¥, and Ay =a,%f, b, Al =Mz + (1 M2mY nz?ocl'"y_lz”
for n= 3.

We would like to point out that 228}, is usually re-
ferred to as the “sense” solution and that it is
customary to give the name “nonsense” solution
to 113,. By analogy, 12, is a generalization of a
“nonsense” solution. Of course, in order to define
11, and 120, uniquely, Eqs. (3. 10) inform us that
we must spec1fy 11C, 4, 12C; 4, 11C, 4 and 12C, ;.

Equation (3.10) enables us to give a power series
solution for €,:

11C1 m

w . 120,
() =2, C 2" where C, = .
m=0 ’ ’ 12Cl,m 22Cl m

(3.11)

Having seen the analyticity properties of the solu-
tion to (2. 18), let us see whether the desired ex-
pansion is possible, that is, find the set {y, }

which satisfies the following equations:

Ha + Mz=2 + (1 — M)} }_‘,ci:mz

?

A+1/2

Z} =g B, t+ig_ l+M)fdzz.'1

X{—=2"3W, + 21 — 2'M-— (2'2V) + 2’4V2]

iz
— WIN| + g1 = M) [ dz'z'

x(——z’z(W+ + 2V)1 —z’MEdE,(z’zV)

2
+ z2'4v2] — 2(1 — 2’2V +§—W_)z’2g§N>.
(3.12)

Equations (3, 12) are nothing but Eqs. (2. 21) written
in integral form, In this equation B, is not given,
but is to be found. Since we would like K(0,0) = 0,
we have , however,assumed that it is of the form
By = (1 + M)B’. The other B, can, of course, be
found using the values of a,, n,J;, andB Replac—
ing <I>>\ by §,, and using the representatlons given
in (3.5) and ?3 11) in the left side of (3. 12), one
finds

PR, -
=§0an Ve = Yasz - (3.13)

Comparing coefficients in (3. 13), we are led to the
following relations:

B() = (I +M){%]l + %(az‘ al)N +(21 + N)Cl 1'}’1}
—f3 — 2aya, + 2a§ + 2a,/, + b,)

X{(1 +a) +(1—a)NHI — M),

v o= 1 11 T )
a = 2C1,o/ Cioo Capxa =By,
- — w3 - -
Cn,o'yn =B, + EO cm+2.n-m7m+2! for n=3,
m=

(3.14)
where

En: (1+ M) '(ﬁzn__—);NBm-Z +'n—_1{__2

a.B
G416, - 1 1
x [:Bn n+1 +b,B,- Zjl [(N + m)cl,ml
alClﬁ C _
B CEP R 71}
, U= MNGB, —Cy %)
n
and 5
~ m +
Coaem =1+ 00) 2l 1)3(1— 22 WNC s 2eom
(m + 2)N01Cm+2'n_1_m
n+ Dn+2)
—1 m+ 2 .
-~ [m +m+ 2 + 5 an:](ﬁmz,n—z—m
alcm+2n 3~m pn m
T Dn D) T 2Plmraan z
(l - M)[pn mNcm*Zﬁ ~4-m (m + 2)(’m+2n -2- m]
2n
with 9
% a4 /
b = [7 Ja = m} "
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and

1 if m<n-—3
-
0if m=n—3
Since the inverse of C, ;, which is given by

Cro=(1+2/m1 — (1/m){l — Hay — aIN}1 — M),
(3.15)

exists for the relevant values of #n, (3. 14) will give
us the desired values of y,. To see whether this
defined set of 4, will indeed make the left side of
(3.13) analytic in a circle of nonvanishing radius,
so that relations (3. 13) can be satisfied, let us find
some bounds on 3, . Because of the bounds on B's
and C's, clearly in a circle of radius n < R/2, we
can find a finite constant ¢(n) such that B, |l <
n"*2. q(n) and I, II< 7 ™2 dg(n). Calling

q'(m = 2q(n) [suplC, gll],
nx2

we can define T, > |5, Il with T, = lI5,/l by the
following relations,

T=¢Mn"?+ 0T, + - n"%N,), (3.16)

from which it follows that

T, =n""*1+ g0 7T, (3.17)
%0 = {g"(m} ™.

Since
13,0 = £ Ic, 1217 i3 ';Lm ,

it follows that 27~ ,§ % z™ is absolutely bounded,
uniformly in z, by the convergent series

1 — 12 t/n}‘lfi2 |2 Mg,

This implies that the left-hand side of Egs.(3.13)
is analytic, the necessary interchange of summa-
tions is justified, and therefore we can conclude
that given the set of potentials analytic in a circle
of radius R, we can find an acceptable set of 4,
which makes the relations (3. 13) true in a circle
of nonvanishing radius less than R.

(3.18)

4. INTEGRAL EQUATIONS

In this section our aim is to show that there exist
many sets of {y,} such that the corresponding
W{r) is diagonal and V() is a multiple of the iden-
tity. In other words we can find sets of {y, } such
that the function K(7, »') defined through Eqs.
(2.19) and (2. 20) exists and the corresponding
potentials defined through Eqs. (2. 21) are such
that the potential W(») is diagonal and V(7) is a
multiple of the identity. We will also show that
the regular solution to Egs. (2. 18) is given by Eq.
(2. 23). But, in order to state the above purpose
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in a more precise way, we find it convenient to
break up the problem into two cases.

Case 1: The diagonal analytic matrix function
W(r)-and the analytic function V(r), which is not a
matrix, are such that, at » = 0, the functions
2W () = r2V(r) = W.(r) = vWr) + rV(r) =0
and the defined numbers q,, b,,and f, are such that
ay —f3 — 2a,ay + 2ai + 2a.f, + b, = 0. In this
case, there exists a set of constant matrices Yar
v1,2 = 0, such that the following is true: Let us
define

) = 1 nA+1/
frv) = ,\Zc;s (= 3 £ Nr) 2y
1 R_(7)
§,=11,3/2,2,5/2,...}, R(r):[ ]’
R(r)

Ry(r) = Hrg_(r) 7 77 g, (n), g (1) £ ()78, ()}
and g,(r) = exp{+ J,dr'7'V(r")}, and suppose K,
are the unique row-vector solutions of the integral
equations

Kilr,7") = Ry(r) fulr, 7)) — [o dpp=2K (7, p)f,(0,7").

(4.1
Form the square matrix K(r,r’):
K. (r,7r")
Kr,r) = .
K, (r,7r)
Then
Kr,00=0
and
{= N1+ M1 —72V(r)] — 2| W) + 2V()1]
— 2r2V(rM — ¥3V(r)M + r4V2(r)1} R(r)
= 2K(r,7) ~ 2r-1K(r,7) — 2r-1
X |1 —72V(r)]MK(r,7) (4.2)

and K(r,7’) solves the partial differential equations

rzzd;; - rzW(r)sK(V, )

d? "iar d
2 L 1 — 92 —_
r e r'{1—r V(r)jMdY, + 1

+ (N + M+ NM)[1 —7r2V(r) | K(r, 7).  (4.3)
The proof of the above statement is given in Appen-
dices A and B,

Application of the differential operator defined in
the left-hand side of Eqgs. (2. 18) to

&, = (— i1 + AWROWN Y2 — [ arr Ky, v)
x priv1/2} , (4.4)
together with two integrations by parts and use of
(4. 3) and (4. 2) and noting that (4. 4) satisfies the
boundary conditions given in (3. 4), verifies that
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(4. 4) is the regular solution of Egs. (2. 18) for the
case of A > 3. Although, from the point of view of
the inverse problem, we do not need the form of
®,,, for Case 1, since y,,, = 0 in this case and
®,,, is not needed when one tries to find y, from
scattering information, for the sake of completeness
and possible physical use let us mention that the
“sense” solution and a “nonsense” solution can be
given as follows:

228,,5 = r2g_(r) — for dr'r'=1{21K(r r")

+ 22K(r, 7"}, (4. 52)
11¢ 1/2 = %g+(’r) — % for d,rl,rl—l{l ]‘K(’V,’}”)
— 12K(r’ rl)}. (4. 5b)

The proof is the same as that of (4. 4), except that
for proof of the fact that (4. 5a) is the “sense” solu-
tion, one needs to observe that the function

no(r) = r2g_(r) — for dr'r'=Y{11K(r,v") + 12K(r,r")}
(4.5¢)

satisfies the same differential equation as the one
satisfied by a “nonsense” solution, that is Eq.
(3.9a). But since 7,(0) = 1,(0) = 0, this implies
that ny(r) is identically zero. For this case we are
unable to give a form of 12¢, ,,(r) in terms of
K(r,v’). Againfrom the point of view of the scatter-
ing problem we do not need to know the form of
12%,,,(7) in this case, but as we shall see for the
general case, when y,,, # 0, the lack of having a
simple relation between 12&, , and K(r,7’) will
unfortunately complicate the form of the integral
equations defining K(»,7’).

We conclude this case by noting that we can find
the analog of equation (2. 7) for the case when the
Schridinger equation contains a central, a spin-
orbit, and a tensor potential if we again substitute
the representations of fi(r, r*) in terms of 7 in
Eqgs. (4.1) and then simplify by making use of Egs.
(4. 4):

Kr,v') = 5 8,(riyr' VY2, (4.6)
XESI

Having found the desired relations for the case
when y,,, = 0, or equivalently when a; — f; — 2a,a,
+ 2af + 2a4f, +b; =0,let usnow consider the case
when y, ,, 0.

Case 2: The diagonal analytic matrix function
W(r) and the analytic function V(r),which is not a
matrix, are such that v2W, = 2V = W_ = W, +
vV = 0, when » = 0, and the‘defined numbers a,, b, ,
and f, are such that a; — f5 —2a,ay + 2a3 +
2a,f, + b, = 0. In this case, againi there exists a
set of constant matrices y,; with y,,, = 0, with the
following properties. Let

f) = 5 N2y

Slz{l’w,zs”'}, L
) = = xf), faln) = (1 + M)y ,0x — flx) — (%),
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Y12 =~ (ro/2)(1 + N)(1 — M),and y, = 0, a number.

Let ¢ satisfy the differential equation 725 — r2 x
(W, — W_ + V)p = 0 and the boundary conditions
@(0) = 3 and ¢(0) = — 3a,, let Ry () be defined as
before, let P = 4(1 — N)( 1— M), let the row-vector
¢ = (@, ¢), and define

A, ) =R_(r)r' — @r~ly'P’;

then there exist K, (7, #’), the row-vector compo-
nents of a 2 X 2 matrix K(7, »'), which solve the
equations
K_(r,r") = RL(P{f_(rr') + (r'/7) f(r2)} + fy(r,7")
— Jo dop=2K_(r, p{f=or") + (') flpm),
K(r,7") = Ry frr') — [y dpp~2 Ko (7, p)f(pr").
(4.7

Furthermore,

K(r,0) =0,

2K(r,7) — 2r-1{1 + [1 — r2V(») MK (r,7)

={— N1 + M)[1 — 72V(r)] — r2[W(r) + 2V(r)1]

— 272V(r)M — v3V(r)M + r4V2(rNIR(r)  (4.8)
and K(r,r') is a solution to the partial differential
equations '

2 2
as _ W) 2 4%
dr? dr'2

r2 K(r,v) =

—2r [1—- rZV(r)]IVI;g; +1
+(N+ M+ NM)[1 = er(r)]EK('r,r’). (4.9)

Proof of existence of the set {'yx}x GWithyy =0,
€

such that the defined function K(r,r’) exists and
satisfies Egs. (4. 8) and (4. 9), is similar to that of
the case when y ,,, = 0 and is given in Appendix C.
By using K(7,7’),the regular solutionto Egs.(2. 18),
for values of X > 3, the “sense” solution for A = 3,
and a solution to (3. 9¢) can be written in the form

&, =(—31+ AWHR@ MY 2 - fordr'r"z
xK(r,r’)r’)"l/z},

229, ,, = r2g_(r) — for dr'r' =1 {22K(r, »")

+ 21K(r,7")}, (4.10)

-1
12, = ;0 [3r2g_(r) + sg,() — o(¥)

- fordr"r"l 11Ky, ")},

with

Kr,v") =2, &),
ES,

A+1/2

Proofs of above statements are the same as those
of Case 1, and need not be carried through, Follow-
ing the same procedure used for Case 1, we find
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Kir, ) = 5 &k 2, (4.11)
ACS
where
[0 124)1
/2
S=1{31,3/2,---} and & ,= .

From the point of view of the inverse scattering
problem, Eqgs. (4. 7) as written down are not in a
desirable form, because given the set {n}, in order
to solve for K(r,r'), we have to know both V(r)and
(Wp — W), and we must solve for ¢(»). A possible
way out is to note that, given the set {4, } and V(r),
one is able to find K, (r,»’) from Eq. (4. 7) without
having to know the function (W, — W_). Having found
K. (7,7'), one then forms

T7(r) = — g, + for dr'y'-1

x [21K(r,7r") — 22K(r,7r")]}. (4.12)

It is shown in Appendix C that the so-defined 7
satisfies the differential equations

2
r2 ‘—Zd—z—r?(W,,_ + W —V)— 2:7(v)
r

= 2(1 — r2V)gp(r). (4.13)

In general, Eqgs. (4. 12) and (4. 13) enable us to find
¢(r), if we know W, + W_, without having to solve a
differential equation. W, + W_ can be defined in
terms of K(r,r) if we consider the elements of
Eqs. (4. 8):
re (W, — W) + 3r2v —riv2 -1

= v %g (K + EK,) + g_(K,_ + EK,_) — r"1g K,

— 18K, (4. 14a)

3r2V + 73V — 1 = r~2g(K, + EK,))—g_(K,_+ EK,_)

—r g K, +rg Ky, (4.14p)

Y2V + ¥3V + 1 = r~2g, (EK, + K,) + g_
X(EKy_+ Ky ) —771g, Ky — 78 K, , (4.14c)
r2(W, + W) + 2V —r4V2 + 1 = v 2g,(EK, + K,)
—g(EK,_ +K,)—r1gK,+rg K, ,

(4. 14d)
where

Kl(r) = llK(«y, 1’) + IZK(T, r);
K, (r)=11K(r,7) — 12K(7,7),

Kz(r) = 21K(7’ ’V) + 22K(Tr 7)7

K, (r) = 21K(r,7) — 22K(r,7),

and
E@ry=1—r2v(r).

From (4. 14) we find that
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r2(W, + W.) = 73V + r4y2

—2g (EK,_+ K, )+ 2rg K, . (4. 15)

Substituting (4. 15) in (4. 13) gives us the desired
representation for the row-vector ¢:

@ = 6(r)K_(r, 7)1 — M)N + [6(r), 6(r)],
with
8(r) = — g_(n)1(r),
- d2

6 ={{r2 E r2[rV — V + r2ye
r

(4.16)

— 22 (K, — 7K, )]— 2$T> 2E.

Substituting (4. 16) in (4. 7), we find that K_(7, »')
satisfies the following integral equations:

K_(7,7') = R_flr,7,v") + fo(v,7") + K_(r,7)P

~ Jo dpp™?K_(r,p)flp, 7,7"), (4.17)

where

Hp,7,7") = fApr") + (v'/7) flpr),
for, 7)) = R(r)r’ — (6, 0)r=1v'p’,
P =7r-1y'600 — M)P’,

Inspection of (4.17) indicates that we no longer
need to know the function (W, — W.) in order to
find K_(r, r’).

We conclude this section by pointing out that the
above analysis proves that if the set {,} indeed
corresponds to a tensor and a spin-orbit potential,
then the integral equations (4. 17) have at least one
solution and that this solution, together with
Ki(r,7'), satisfies the differential equations (4.9)
with the boundary conditions defined by (4. 8).

5. A SERIES REPRESENTATION OF THE WAVE-
FUNCTIONS

In this section we intend to derive a series re-
presentation of the wavefunctions of the central,
spin-orbit, and tensor potentials, similar to Eq.
(2.8),in terms of the wavefunctions of spinless
particles. We assume the central, spin-orbit, and
tensor potentials satisfy the conditions stated in
Case 1,or Case 2,and the comparison potential
u(r), which is associated with v,(»)—the wave-
function of the spinless particle—is such that the
coefficients ¢, corresponding to this potential

u(7) and the potential #(») = 1 are such that

€19 = €375 = 0. In other words u(») is chosen

in such a way that the set 2, appearing in Eq. (2. 3)
for the case when #i{») = 1,is identical with the
set {1,2,5/2,3,7/2,-'} . We should note that in-
deed such potentials exist and «#(r) = 0 is an
example of such potentials, because from Eq. (2. 9)
we note that ¢, corresponding to potentials u(») = 0
and #(r) = 1 are such that ¢, = c5/5 = O.

Before considering the representation of the
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wavefunctions corresponding to two spin-3 partic-
les interacting via a central,a tensor,and a spin-
orbit force in terms of the wavefunctions v)\(r) of

a spinless particle in a central field, let us con-
form with notations used in Sec.2 and renormalize
the wavefunctions of the two spin-3 particles,
which are given by Eq.(4.4) or (4. 10) in the follow-
ing way:

E)\("') = q’x(”)E)\, (5.1)

where E)\ =e,41(1 + M) + e, (1 — M) for AeS1
and £/, = eqp, With ¢, = (n72) 1/ 2(% (1 + ] L.

Since the results hold true for potentials W and

V satisfying either conditions of Caselor of Case
2, we do not need to distinguish between the wave-
functions related to potentials of Case 1 or of Case
2 in this section. Therefore,unless specifically
stated otherwise, what follows is applicable to
either case.

Multiplication of (4.4) or (4.10) by E , on the right,
and use of (2.13),implies that,for x = 1,

B, () = T g-Ms) 1M + M) + g, (r)s,_, ("1 —M)
— fordr’r"zK(r,r’)[r"lle(r’)(l + M)

+ 78, 1)1 — M, (5. 2)

J
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where T is given by (2. 24) and s,(7) by (2. 13).
Substituting Eq. (2. 5), for the case when u(v) = 1, a8
a definition of s,(r) in (5. 2), and performing the
necessary change of order of integrations in the
resulting equations, we get

3,(r) = T &), (N + M) + g0, )0 — M)

- fordr’r"zif‘(r, 7Yy (7")

— fordr'r"?'}?*(r, 1")1))\_1(7')1l (5. 3)
where
K, r') = {gi(r)k(v, ¥ + K(r, r')r*l

—J dop™2klo, 7K, PO F D) (5.9)

and k(r, ') is given by (2. 7), with %(») = 1.

In order to give an expression relating W(r), W),
u(r), and K*(r,r), we first find K(r, ) in terms of
K*(r,r) and k(r,7) from Egs. (5. 4). Next sub-
stitute this expression of K(r,r) in Eqgs. (4. 2) or
(4. 8) and note that u(r) and k{r, r) obey Eq. (2. 6),
with u(r) = 1. The resulting equations will have

the following form:

= NO + M1 — 72V0)]— 72(W(r) + 1 — u()1 + 2V | — 272 V(r)M — ¥3 V(r)M + r4V2(r ) }R(r)

= %{V'1K+(7’, ) + vE(r,v)} — r"H{1 + (1 — v2 V() |M} 1K+ (r, vy + vE-(r, »)}.

Having seen the relations between W(r), W(r), and
u(7), and also between their corresponding wave-
functions ,(r) and v,(¥) in terms of K*(r, »’), let
us next try to eliminate these auxiliary functions,
K*(r, '), in the mentioned relations. A step
toward this purpose is to find Kt in terms of

&, (r) and v,(r), which can be accomphshed by flI‘St
rewriting the integrals fw in (5. 4) as f f
and then substituting the definition of k(r r’), (2 7,
and that of K(»,»’), (4. 8) or (4. 11), in the resulting
equations. Next perform the necessary change of
order of summations and integrations and make
use of the existing relations between the wave-
functions corresponding to a central, a spin-orbit,
and a tensor potential and K(v, »’), (4. 4) or (4. 10),
and between v,(v) and &(v, 7’), (2. 10). The result-
ing equations give us the desired representations
of K*(», '), which are

K¥r, vy = 238,05, 05,00 F M)
AES
(5. 6)

+ DT 180160 F M),
)\ESZ

Wheres {27 5212"'}, Sz—{l 2,2, 727“'}7
€y = 3C,, with ¢, corresponding to coefficients
associated with potentials u(r) and %(») = 1.

@)

(5. 5)

f

We have, also,

~,\ i1/ 2e,_ M1 + M) + (1/2e,.)(1 — M)],

( — D7z + N,
=— g (s (r) —
X sl(w)}(ﬂ + M).

W=
T,
B,( fordr'r’"f’K(r, r’)

(5.7)

In above derivations use was made of the fact that
y1/ must always be of the form y,/, = y(1 — M).
Therefore we never needed to consider the function
v,(») with negative values of x, which we have not
defined in this work. The functlon v_; so(¥) which
appears in (5. 6) is a symbol introduced only for
the sake of simplicity of the form of Egs. (5. 6); it
may be assumed to be identically zero. The neces~
sary interchange of order of integrations and
summations, in the above derivations, is justified
if y, satisfies Eq.(3.17) and c, is like (2.9).

Representation (5. 7) of d> can be changed so that
&, is given directly in terms of K=(r,7'). The
procedure to be followed is exactly the same as
the one used in deriving (5. 3):

=~ Heg_ (v, N1—-Mm)

x vy(r")].

— fordr;,',l—zk—(y’yl)
(5. 8)
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Substituting (5. 6) in (5. 3) and (5. 8) and doing the
necessary change of the order of summations and

integrations, we obtain the desired series repre-
sentation for & ,:

3,0 = T'A<g_(r>vm(r) (1 +M) +g, ()0, ) (1—M

— DEMFJUIO0 + m) + L0 — 1)

aES
— DT B MELY A + M)

oc682
— 2 Ty B ELYI N ~ M)) for A€S,,

s (5. 9)
60(7) = %{g_(r)vl(r) - nga(T)?aLé_l(’}’)

AES)
(5.10)

- 2 T8, ,nNE LMK + M),
oes,

where Ls('r) = ford‘r'rl_zv}\(r')va(r’).

Let us apply the procedures used for deriving (5. 9)
and (5. 10) to the “sense” solution of the wave-
function at A = }; we find that

U100 = By (g_mvg,z(r) -z F (5, L3200

- % T’wla?a_l(r)aaz,yz(r)) (1 + MR,
€Sy

where

. 0 0 00
d/llz = and Po = .
0 228 jp(r)eg sy 01

(5.11)

In the above derivations, as before, use was made
of the fact that 5, ,, must always be of the form
y1/2 =y — M). So, for the sake of simplicity of
the form of Eq. (5. 9), we introduced the symbol
L1 5(v) which may be taken to be identically zero.

We should note that Egs. (5. 9), (5. 10), and (5. 11)
are the analogs of Eq. (2. 8) and, in principle, one
should be able to use Egs. (5. 9), (5. 10), and (5. 11),
in a manner similar to the method used in Ref. 3,
for finding the set {y,} from the scattering in-
formation. In other words, by considering the
asymptotic behavior of Egs. (5. 9), (5. 10), and (5. 11),
as » > o, we should be able to find the set{y,} in
terms of eigenphase shifts and mixture para-
meters1? of the wavefunctions corresponding to a
central, a spin-orbit, and a tensor potential. How-
ever, in this work we will not consider the pro-
blem of finding the coefficients y, from eigenphase
shifts and mixture parameters.

We would like to point out that since y,, used in
(4.7) is such that 11y, ,, = 12, , = 0, one does
not need to know the form of the “nonsense” solu-
tion in the problem of finding the constants y,
from eigenphase shifts and mixture parameters.
Therefore,we have not given a representation for
it either. For the case yy, = 0,0f course, we do
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not need to know the form of 128, ,, in order to
find {y,} from the S matrix. For the case vy, * 0,
it appears that we need a representation for
129, ,, similar to (5. 9) in order to be able to find
{y,} from the S matrix. But since it seems there
is no such simple representation of 128, »,, and,
since any other representation of 126, ,, should
be in a form which is convenient for the method to
be used for finding {y,} from the S matrix, in this
work we have not tried to give a representation of
12<I>1,2 in terms of v, (r).

6. CONSTRUCTION OF POTENTIALS FROM
THE INTEGRAL EQUATIONS

Up to now we have always assumed that the cen-
tral, the spin—orbit, and the tensor potentials are
given, and have proved that if they satisfy certain
conditions, then we can find a set {Vx} , such that
solution to (4. 1) or (4. 7) exists and satisfies (4. 2)
or (4.8). Bounds on {y,} are given by (3. 17). In
this section we would like to answer the reverse
question for Case 1: If a set {%,},.; obeying the
bounds (3. 17) is given, then how aré we going to
find out whether this set {y )\}M{ s, indeed corres-
ponds to a central, a spin—orbit,l and a tensor poten-
tial, that is, to potentials W(r) and V{») where the
former is diagonal and the latter is a multiple of
the identity. We will also find the functions W ()
and V{r) corresponding to the given set {y)\})\gsl, if
the set corresponds to a central, a spin—orbit, and
a tensor potential.

A possible way to answer the above question is to
define the following integral equations:

Hr,v') = Ha + Myr + 1 — M)r=1]} fi(r, ')

— | dppm2Hy(r, p)ilp, 7, (6.1)
where the f,(7, 7’) are the same as those given in
(4. 1). In order to relate H, to the function K de-
fined by Egs. (4. 1), let us choose an arbitrary func-
tion V(»), which is a multiple of the identity and is
to be defined later, in Egs. (4. 1), and define G(r) to
be

G = [G-(V)] _

g 21+ Mg_(n) + 31 — Mg, (),

(6. 2)
where £,(») are defined in (4. 1). Then multiplying
(6. 1) by G,(»), respectively, we find
Y
G H,(r, 7') = R0V /4y, v') — [ dpo2G (") Hy(r, p)
x filp, 7). (6.3)

The observation that Egs. (6. 3) are nothing but
Egs. (4. 1) leads us to the conclusion that

K7, 7') = G Hy(7, 7). (6. 4)
Since the functions Hy are independent of V{(») and
are known for the given set {'y)‘};\e s the problem of

finding K. is then equivalent to the problem of find-
ing G(»). To find the potential V(»), or the function
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G(r), we add and subtract the analog of Egs. (4. 14b)
and (4. 14c) for case y,,, = 0. Noting that one of
the two resulting equations is a perfect differential
integration of that equation and finding from the
analysis of Sec. 3 that,at » = 0, » 2{K,(r,7)

+ K,(r, 7)} = 2, we conclude that the analogs of Egs.
(4. 14b) and (4. 14c), for the case y,,, = 0, are
equivalent to the following equations:

2r2V(r) — 2 = — r 20, (V{K, (v, 7) + K, (r, »)}

+ g_(r){Kl_(r, y) — K, (7, 7},
22V() — 2= — »1g80) <L g (K, (r,7)

— Ky )] + 82098 £ g, ()2

x [K,_(r,7) + K,_(r,7)]. (6. 5)

Now it is only a matter of finding K,,K,,K,_, and
K o- in terms of G and H,, substituting them in
Egs. (6. 5), and then multiplying Eqs. (6. 5) by g2(»)
and using the facts that g = * 7Vgy, to arrive at
the following equations:

HMI2(r) + [ HWI) + vt(r) = H(),

SJHWI2() + H@)Hr) + 5H(V)t'(r) = ¢H(r),(6. 6)
where
oH(¥) = HX (v) — HI(7),
1H(r) =2+ HZ=(v) + H=(r) =7 2[HX*(r) + H3+(r)],
LH() = r2[HZ* () — HT¥(),
sH() = — QHE~(r) + H{~()] + v[HE~() + Hi~(r)],
JH(r) = — 2[H==(r) — H;~(r)] — 7 L [HEH()

— B )] + AH=(r) — H3=(r)] + 2,

sH(r) = v — v HHH(r) — Hi¥(7)]

— *[HZ™(r) — H{*(7)],

oH = r HHZ*(r) + HZ¥(n),
with
Hr) = g2(r) and HSE(r) = F{11H,(r, v) @ 21H,(r, 7)}
x R H12H (v, v)a 22H (v, »)}

fora=+,—and = +,—.

So we conclude that a set {y,\},\es1 corresponds to
a diagonal potential W and a poténtial V which is a
multiple of the identity if there exists a nonnega-
tive function #(»), with ¢(0) = 1, which is a common
?olu)tion to both of the nonlinear equations given by
6.6).

For the cases when ,H, ,H, or (and) _H is (are)
zero, it is easy to check whether such a common
solution exists directly from (6. 6), For the general
case, we can reduce the nonlinear differential equa-
tions (6. 6) in an obvious way to a first order dif-
ferential equation and an algebraic equation:
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[r H(r) — H@) HDN]2(r) + [r,H) — Hr) H)]
X i(r) = v H(r) — SH(r),H(7), (6. 72)

[raHO) — JH() H)]E) + [ [ H ) H7)
— JHO) HNHY) = LH(r) H ) — H) H¥).
(6. Tb)

So in order to answer the question whether a given
set {y)\}‘,‘es1 corresponds to a tensor and a spin—
orbit potential, we can, at present, only calculate

H, for the given set {y, s and then see if there
exists a nonnegative functioh #(»), with £(0) = 1,
satisfying both of the equations given in (6. 7). Of
course, the analysis of Sec.3 and 4 indicates that
there exist many different sets {%},cg such that
the corresponding #7) satisfies both gf the equa-
tions in (6. 7), but this knowledge is of little com-
fort when we are faced with a specific set of y,;
we still have to go through all the steps mentioned
in this section and at the end we may still find out
that the set in question does not correspond to a
tensor and spin-orbit potential. Indeed it is unfor-
tunate that, for the case of the inverse scattering
problem at fixed energy when a tensor force is pre-
sent, we are not able to find a simple test for the
set {y\hes, Which can inform us whether it cbrres-
ponds to tensor and spin—orbit potentials or not.
The only simple test that we have on the set

ke s, 15 obtained from Eq. (4. 5c). Power series
analysis of Eq. (4. 5¢c) indicates that, for potentials
W and V satisfying conditions of case 1, y, must
have the following property:

1y, — 21y + 12y — 22, =—2 (6.8)

So, given a set {y, hcg., if it does not satisfy (6. 8),
then we can be sure that it does not correspond to
a tensor and a spin—-orbit force.

If a set {y,} s, is such that Egs. (6. 7) have an
acceptable common solution, then the solution #(r)
will define G(») and V(»). Substitution of this G(»)
in (6. 4) will give us K(», »’). Then, using the analog
of Eqgs. (4. 14a) and (4. 14d), for the case when y, , =
0, we arrive at the functions W, (r) and W_(»), in
other words, the diagonal potential W(»). Thus we
have completed the procedure of obtaining V and W
from the set {7} -

To give an example of the above procedure, let us
assume that we are given the following set of coef-
ficients17?

y, = $N(1 + M), and y, = 0 for allx > 1, (6.9)

and we would like to find eut if this set, {y,hcs ,
corresponds to a diagonal potential W(r) and a'mul-
tiple of the identity potential V(»). In this case,
Egs. (6. 1) reduce to

H_ (r,7") = — 330 + M)r5/2 + 3(1 — M)r1/2
r
_‘4)‘ dpp—l/ZH_(V’ p)}-yl'r 3/2,
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Hyr,7") = {30 + Myr5/2 + (1 —
- for dpp 1/ 2H ,(r, )by 7' 3/2.

M)yl/z

Writing H.(v, v’) as Hy(r, 7') = X,(r)y #'3/2, we find

that
X () =—H0 +M)r5/2 + (1 — M)r1/2 — X_(v)r2y,}
and

X:0) = Ha + Mrsiz + 1 — Mpr1/2 — X, ()r2y |

Solving for X3 from above equations and substitu-
ting them in the definitions of H,, we find

H+(1;)

) = $r1/2¢'3/2N(1 + M),
H_(r,7") =

$r1/2y'3/2N(1 + M). (6. 10)
Next, we evaluate the functions ;H defined by Eqgs.
(6. 6) and, substituting them in Eqs (6. 7), we find
that in this case the two equations (6. 7a) and (6. Tb)
are identical and are given as

2t(r) + 7i(») = 2.

It is easy to note that ¢(*) = 1 is the solution to the
above equation, It is acceptable and it corresponds
to V(r) = 0 or G(r) = 1. (6.4) and (6. 10) imply

K(r,7') = 31 — iN)(1 + M)r1/2y'3/2,

From (4. 14a) and (4. 144) it follows that W, (») =
W_(r) = 0 Next we find &, from Eq. (4. 4):

&, = 3(— 21 T AN)[(1 —M)r71 + [#/(x + 1)]
X (A1— EN) (1 + M)]rr+1/2,

And, as expected, one can show directly that the
above function is indeed the solution to (2. 18) for
the case V(r) = 0 and W(») = 0,and it also satis-
fies the boundary conditions (3.4).

At this point we would like to point out that, as in
the work of Sabatier?,the method constructed
here can be easily generalized to potentials which
are analytic functions of a rational power of z, Of
course, the set S, will now contain certam posi-
tive ratlonal numbers greater than 3. But the
more important point to be noticed is that in this
work the analyticity of potentials was extensively
used only for the proof that there exist many sets
of {,} xes, Which make the corresponding K(v,7’)
such as to define a diagonal potential Wand a V
that is a multiple of the identity and which satisfy
a certain condition. In other words, we can find
many functions #(r) satisfying the necessary con-
ditions. We can generalize the class of potentlals
which we can deal with if we require that fi(r

be such that the corresponding #(») satisfies the
necessary conditions, that,at v or ' = 0, 7" 1#/-1
Silr,7") be finite,and that f,(r,»’) should satisfy
Egs.(A3). The last condition is needed for the
proof that K satisfies (4. 3) and that ®, is a solu-
tion of (2.18). Clearly the class of f; defined by
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the above conditions is not empty, but it would be
very interesting if one could prove that the above
class defining 1 is larger than the class of f,
corresponding to the class of potentials which are
analytic functions of z,or analytic function of a
rational power of z.

We will not consider here the general case of con-
struction of potentials from a given set {y }reg for
the case when y,/, = 0. Of course,if both {y, }, <
and V(r) are given and if indeed they correspond
to a diagonal potential W(r),the tensor force, then
we can find a function K(», »), from Egs. (4. 7) and
(4. 17), such that Eqs. (4. 14b) and (4. 14c) are
satisfied and K(r,7’) is a solution to (4.9) with

W (r) defined through (4. 14a) and (4. 14d). The so-
defined W(7) is the tensor potential corresponding
to the set {y,},cs and V(r). Extension of the
method to a larger class of potentials, similar to
Case 1,is again possible.
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APPENDIX A

For the case when y,/, = 0, the proof of the state-
ment that if there exists a K(r,#’) satisfying
relations (4. 1) and (4. 2), then it is a solution to
differential Eqgs. (4. 3) is substantially the same
as the one given in Refs.3 and 4, That is, the pro-
blem of showing that K(r,7’) is a solution to the
differential Eqgs. (4. 3) is reduced to the question
of existence of a nontrivial solution to the homo-
geneous version of Egs. (4. 1). So,to prove
K(r,r’) satisfies Eqgs. (4. 3), one first writes (4. 3)
for the two vector components of K(r,7'):

2
(7-2 d_ — TZ(W

P w_ + V)) _r,r")

2
— 2 4 K (r,r")— 2(1 — »2V)’

d
P o K, 7)),

2 d2 2 !’
¥ ———r(W++W WK, (r,7")

dr?
(1"2dd + 2>K+(r r')y—2(1 —7»2v)

4 _ ,
X (7’ ar ]>K-(7:’V )-

Next define the following auxiliary functions:

(A1)

2
£ (ryv') = rzd——rZ(W+—W_+ V)—r'2
dr?
x 42 lg (ryv) + 21— v2V)r' ==
dr2y ar’
x Ky (7, 7).
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d2
¥, T y22— —y2(W, + W_ — 272
Elr, 7)) = 225 —r2W, V)
d? , ,d
Xd’r_’z K+(r,r)+2(1—-'rzv)(rd—,—1>

x K_(r, 7). (A2)

Our purpose is to show that the £, are identically
zero, in other words, K; indeed satisfy Egs. (Al),
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§.(r,r") =~ f;dpp‘z £,.(r,0) (p, 7). (A4)

In other words, proof of K(r,»') being the solution
of (4.3) reduces to the uniqueness question about
the solutions of (4. 1). In order to consider the
uniqueness question, let us rewrite (4. 1) in the
following form20;

which is equivalent to the statement that K(», ') Ki(r') = Z(v') + forde:(p)Si(p,r’) (A5)
is a solution to Egs. (4. 3). Application of the
operations defined on the right-hand side of (A2) where
to the integral equation (4. 1),defining K, , integrat-
ing by parts,and using the following identities, Ki(r') = (') K, (r,7'),
fZF(r; 0) :f:F (0’,},/) = 0, z:(’r,) = (TT,)_lRi(V)f;t(?’; 7,)7
SE(w,v") = (rr') Y (v, 7).
R ) i) = 7t
d2 d2 Applying the generalization of the Fredholm
2 4% _ 2 4%
L S,y =7 dr’zf;(r,r’), (A3) " nethod for coupled equations?! to our matrix
d integral equations (A5), we find
vy U7 + S )] = £ ), f
Ki(r') = Z2:(v') + dpZi(p)Yi(p,r’')  (A6)
d _ ’ _
r2 s [r=1f_ (ryv") + v 1f (r,v")] = — foulr, ), v 4 A% (r) ’
shows that £ are solutions of integral equations if A%(») = 0. The Fredholm determinant and
of the form minor have the following representations 16:
J
0y, O,y . , am
— m = T 71,7 r
Y)=1+ 2 Sy [TvTa Tl gy gy
) m=1 g 0‘1!"?“ =1 fO fO Y15Vasees? 1 my
m 01, 0py 00,0,
(AT)
& __lm 2 r r a,al,(yz,...,am
@BY2(p,7r’) = > — (Z1m bD fo...fOYi Ps7 13V gy ey ¥y | AVyened?,y,
m=0 T .. =1 A D SV
B,0y,00,...,0,
where the symbol Y% stands for the determinant
@, aq,...,0, [a, B,%,9FF  [a,81,%,9]%. . [0,8,,%,9, ]
Ve XyXqyeosrX, [al,ﬁle,y]i[01,31,_3(1,3)1] 0--[0'1’Bn’x1yn]i
v,y 19+ ’yn : M . :
ByBl’ tees by, [an,ﬁ,xn,y]i [anrﬁlyxﬂ’yl] .o [O’n,Bn,xn,yn]i
with [(,Y,B,x,y]:tz aBSi(x’y)’ a’B: 172’ (AB)

If each element of S*(p,+’) is bounded in the
region 0 < p, 7’ < v by a number S(r), then con-
vergence of the series in (A7) follows from the
Hadamard's theorem, 22 i.e.,

laxn[ <1+ ,il(MI)_l{zys(r)}mmm (A9)
172 (p, )| < 35 (m!)=L{2rS@)} mS(r)(m + 1)ont 1¥ 2

m=Q

Now it is only a matter of repeating the argument
given in Ref.4,to come to the conclusion that if we

—

let 7 and 7’ take complex values z and z’, then
Eqgs.(A6) can be analytically continued inthe domain
where f4(z, 2’) are analytic. The so-defined

K:(z’) are meromorphic functions of z, with poles
corresponding to zeroes of A*(z) and independent
of z’. Furthermore, since the Neumann series for
(4.1) converges inside a nonvanishing circle
centered at the origin, none of these mentioned
poles can be at the origin. Therefore,in the domain
of analyticity of K, (2,2"), A%(z) = 0, Egs. (4. 1) have
unique solutions and the homogeneous version of
Eqgs.(4.1) have only the trivial solutions. It follows
that £, (z,2’), defined by (A4),are zero and from



2258

(A2) we can conclude that K(z,z’) is a solution of
(4.3) in its domain of analyticity.

APPENDIX B

To prove that there indeed exists a set {n} AES.
with y,,, = 0, corresponding to the analytic po-
tentials W(») and V(), such that the integral equa-
tions (4.1) have a solution which satisfies the con-
ditions (4. 2), we recall the functions <I>)\ and Qz ,

which are solutions of (2.18) and (3. 2), respectively.

By assuming that Q , Satisfies the boundary con-
ditions (3. 4), then (3 14) will give us a set of
{'y)‘}sz with bounds given by Egs. (3.17). Next
define tHe following function from the above set of

'V)\}Aesl.

Glr,r') = Ag, &, (r)y, r 2. (B1)
1

By construction G(r, 7’) satisfies the conditions
(4.2) and the differential equations (4. 3). There-
fore, ¥, (r) defined by the equations

7,00 = ~ Jy dpp ™G, p)
Xp (BZ)

(— 31+ AN){RO) 2

7\+1/2}

is a solution to the differential equations (2.18),
and the corresponding {,, satisfies the boundary
gonditions (3.4). By uniqueness,we have y, =

. It is now only a matter of multiplying the Eqs.

(B2) by )\r'Hl/Z and summing over the sets S,

in order to arrive at the conclusion that G(r r’)

not only satisfies relations (4. 2), but it is also a
solution to the integral equations (4.1). Because

of the existence of absolute and uniform bounds on
the functions involved, if the bounds on v, are given
by (3.17), the necessary exchange of summation
and integration, and taking the derivatives inside
the summation and integration, are all justified.

APPENDIX C

For the case when y, /5 #0, the proof that if
K(r, r') satisfies Eqgs. (4. 7) and (4. 8), then it must
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be a solution to the differential equation (4. 9) is
exactly similar to the procedure of Appendix A.

But the algebra in the demonstration that t(r, r'),
the analog of £, (r,7’) of Case 1, satisfies the integ-
ral equations

¢, = — Iodon 5ol _lor) + (Z)rier

and
80, 7') = — Jodpp 2. (r, pVilo7")

becomes more tedious. Again, using the same
argument as before, we find that § (»,r’) = 0.
Therefore, K(r,r’) is a solution to (4. 9).

The existence of proof in Case 2 is also similar
to that given in Appendix B. In this case the
boundary condition for the solution to Egs. (2. 18)
when A > 3 is given by (3.4) and for A = 3 is

11

1
C1 1= — 2043,

C1o=%
_ 12
cll_o

22 _ 2
and C1,2— 3

To prove Eq. (4. 13), one first subjects Eq. (4. 12)

to the differential operator defined by the left-hand
side of Eq. (4. 13). Integration by parts and use of
the fact that K, (»,0) = 0 leads us to the following
equation:

(W, + W_ V)}T(T)
dar

=2(1 —» V)v_'(r),

{2 d
v —7'—-2—7’

where

) = 1g,0) — 5 7 drr MK, v) — PR, )
Next one subjects 7(r) to the differential operator
defined by the left-hand side of (3.9a). Again,
integration by parts and use of the fact tha.t

K _(r,0) = 0 implies that 7(r) is indeed a “nonsense
solution, sat1sfymg the boundary conditions 7(0) =

3 and 7(0) — zal Therefore, by uniqueness we

conclude that 7(r) = ¢(r) and Eq. (4.13) follows.
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It is shown that any Ising model with positive coupling constants is related to another Ising model by a
duality transformation. We define a class of Ising models M,, on d-dimensional lattices characterized
by a number n = 1,2,...,d (n = 1 corresponds to the Ising model with two-spin interaction). These
models are related by two duality transformations. The models with 1 < < d exhibit a phase transi-
tion without local order parameter. A nonanalyticity in the specific heat and a different qualitative
behavior of certain spin correlation functions in the low and the high temperature phases indicate the
existence of a phase transition. The Hamiltonian of the simple cubic dual model contains products of
four Ising spin operators. Applying a star square transformation, one obtains an Ising model with com-
peting interactions exhibiting a singularity in the specific heat but no long-range order of the spins in

the low temperature phase.

1. INTRODUCTION

This paper deals with a general concept of duality
and with phase transitions without a local order
parameter.

Dualityl~5 is an inherent symmetry of the two-
dimensional Ising model without crossing interac-
tion bonds. This symmetry relates the partition
function and the correlation functions®~8 of a two-
dimensional Ising model at temperature T to the
partition function and the correlation functions of
its dnal Ising model at temperature T*,where T*
is a decreasing function of T. In this paper the
duality transformation is generalized to arbitrary
Ising models with positive interaction constants
(Sec.2). This concept of duality is applied to a
class of Ising models M, on d-dimensional
lattices (Sec. 3). To obtain the Hamiltonian of the
model M ,, ,one takes the product of all spins
located at the two ends of lines (# = 1), at the
perimeter of surfaces (#n = 2), and so on. There-
fore,n = 1 describes the usual Ising model with
two-spin interactions. The systems M ,, and

M, ,_, on dual lattices without external magnetic
field are connected by a duality relation (Sec. 3A).
For even dimensions d = 2%, one obtains self~dual
models (models which are identical with their dual
models). If there is only one singularity in the
partition function of a self-dual model, then it must
occur at T = T*. Self-duality implies a symmet-
ric singularity of the specific heat around the
critical temperature (Sec, 3C). If an external
magnetic field is present, the systems M ,, and
M, ;-n+ On dual lattices are connected by duality
relations (Sec.3A, 3C).

Most known phase transitions can be described
by a local order parameter. 2714 The models

M ,, with 1 <n <d exhibit a phase transition
without a local order parameter (Sec.3B). The
existence of a phase transition is indicated by a
singularity in the specific heat (at least for

n =d — 1) and by a qualitatively different asymp-
totic behavior of certain correlation functions at
high and at low temperatures (Sec. 3B). For

n > 1 the Hamiltonian consists of products of
more than two spins. Applying the decoration,15,16
the star triangle3~5,17 and/or the star squarel?8
transformations, one reduces these models to
Ising models with two~-spin interactions (Sec.2D).
Thus the simple cubic dual model can be trans-
formed to an Ising model with competing two-spin

interactions. This model exhibits a singularity in
the specific heat, but below the critical tempera-

ture there is no long range ordering of the spins

(Sec. 4).

2. THE DUALITY TRANSFORMATION

The duality transformation for general Ising
models is derived in this section. First (Sec.2A)
the Ising models with general interactions are
defined, and some properties, like the degeneracy
of the ground state and the spin correlation func-
tions which vanish for all temperatures, are dis-
cussed. In Sec. 2B the duality relation for the
partition function is stated and proved. The dis-
location correlation functions are expressed both
in terms of spin correlation functions of the ori-
ginal model and of the dual model in Sec.2C. We
show that a dual model exists for any Ising model
(with positive interactions) and that this model
can be reduced to an Ising model with only two-
spin interactions and an external magnetic field
(Sec. 2D).

A. The Model

The most general interaction of a system of N
Ising spins S(7) = % 1,located at sites 7 of a
lattice, is

H = —23, I(b)R(b),

in which () is the coupling constant of the inter-
action bond labeled by the index b and

R() =1,81° ", 8(r,b) c{o,1}.

2.1

(2.2)

We express all quantities which may assume two
values by the two elements of the set {0, 1},

Sry=1"",  oweioi},
p(v) {0,1}.

kp) = (17",
We define the field operations of addition (modulo
2)

(2.3)

(2.4)

060=191 =0, 081=140=1 (2.5)
and multiplication (modulo 2)
00=01=10=0, 11=1 (2.6)

for the set {0,1}.
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Then Eq.(2.2) can be written

p(d) = @, 6(r,b)o(r). 2.7

The operation symbol & with an index denotes
summation (2. 5) over this index. Let N, be the
rank of the matrix 6(r,b). Then there are 2%°
different configurations1? { p(d )}. We now restrict
ourselves to systems with positive interaction
constants, {b) > 0. The ground states of the sys-
tem (2. 1) are defined by R(b) = 1 for all &.
Therefore, the ground states are determined by
the solutions {o,(7)} of the homogeneous equations

®, 8(r,b)oy(¥) =0 for all b. (2.8)

This system of equations has 2" solutions with

N, =N, — N,. (2.9)

Therefore, the ground state is 2™_fold degenerate.
We associate the unitary operators

Hog} =1, 8,(#) 0" (2.10)

with all ground states {00(1')}. The operator S, (7)
flips the spin at site 7,

S2(r) =1, S, (r)Sr)S,(r)=—S). (2.11)

The operators U commute with all operators R:

U{og} R®) Uo g} " = Ry (— 1) ° D% < Rep),
(2.12)

Therefore, all the operators U commute with the
Hamiltonian:

Hoot HU{o,} ™ = H. (2.13)

A product of spins IL S(r)* , w(r) € {0,1},is
transformed by U{c,} into

Hog} 1L, () 0{oo} T = I, S(r)* (— 1)@ YO
(2.14)

This product of spins commutes with all operators
U if and only if

&, 00(r) ¢ (r) = 0 (2.15)

for all configurations {0, ()}. There are 2Vs™Ne =
2¥e golutions {¢(7)}, since the configurations
{oo(7)} form an N,-dimensional linear manifold.

The product of operators n,E@b)*?, o) c{o, 1},
can be expressed as a product of spin operators,

¢ =1, S(,,)z/: (r)

I, E()
with

Y(r) = @, 0(r,b) $(b).

(2.16)

(2.17)

Since the rank of the matrix 6(»,b) is N,, the
products of E(b) in Eq. (2. 16) represent 26
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different products of spin operators characterized
by the sets {y(#)} of Eq.(2.17). The products of
Eq.(2.16) commute with all operators U. Since
there are only 2Yo gifferent spin products which
commute with all U, it follows that a product of
spin operators commutes with all operators U

if and only if it is a product of operators R. A
product of spin operators which does not commute
with all operators U{oo} vanishes, since from

un, S(n*C vt = — 1, ()" (2.18)

and from Eq. (2. 13) it follows that

(Mm,S8n*) =@, s v ) = (un,sr)*P v
- @, s =o. (2.19)

Therefore, the expectation value of a product of
spin operators vanishes if this product cannot be
represented by a product of operators E.

It follows from Egs.(2.16) and (2. 17) that those
products of operators R which are unity for each
spin configuration {S(r)} are determined by the
2%5-Ng solutions {qbo(b)g of the system of homo-
geneous equations

@,0(r,b) $o(b) =0
Hereafter we will call any product of operators

which is unity for each spin configuration the unit
element.

for all 7. (2.20)

B. The Duality Relation for the Partition Functions

We call two Ising models which are characterized
by matrices (7, b), 9*&7*,b) and coupling para-
meters K(b) = BI(b),K*(b) = B*I*(b) (B and B* are
the inverse temperatures of these systems) dual
to each other if they fulfill these three conditions:

(a) the closure condition

@,0(7,b)6*(r*,b) =0 (2.21)
for all pairs of v, 7*,
(b) the completeness relation

Ng + Ny =N, (2.22)

in which N, and N} are the ranks of the matrices
9 and ¢* and N, is the number of bonds b, and

(c)
~2K*(b)

tanh K(b) = e (2.23)

for all bonds b.

The symmetric partition functions Y{K} and
r*{k*},

Y{k} = z{K}2 V<211, [cosh2K(b)] V2, (2.24)

-BH{S}
’

z{k} = 2isene (2.25)
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(and similarly for Y*{K*}) of two dual Ising models
obey

Y{K} = Y*{K*}. (2.26)
For the particular case of a planar Ising model
without crossing bonds, this relation was proved
by Wannier.3 We prove now Eq.(2.26) for the
general case, comparing the high-temperature
expansion for Z with the low-temperature expan-
sion for Z*. From

Z{K} = Z{S(‘f)) e—B

K@®R ()

M~ Sisonse (2.27)

one obtains

Z{K} = 1, coshK(b) T, oy Tl tanh K(5)*

7
x E{S(r))an(b)¢( g (2.28)

since

eXORO) . coshK(b)[1 + R(b) tanhK(b)]

= coshK(b) Dy ) tanhE(0)* P R®)*”  (2.29)

follows from R() = = 1,

If the product of the operators K in Eq.(2.28) is
the unit element, then the sum over all spin con-
figurations yields 2Vs; otherwise the sum vanishes.
The product of the operators R is the unit element
for all sets {¢(b)} of Eq.(2.20) and only these
sets. Therefore, it follows that

Z{K} = 2"s 11, coshK(b) Dy 11, tanhK(p)%®,
(2.30)
The partition function Z*{K*} can be written

~BH*{S} K*(b)R*())

Z*{K*} = Z;{S(y*)}e

E*@®)
= Hbe E{S(v*)}nbe

= 2usepTlpe

—~2K¥ () p* () (2.31)

since R*(b) = 1 — 2p*(b). From the closure con-
dition (2.21), one obtains

@, 0(7,b) p*(b) = ®p@,+6(r, b)6* (#*, b)o(r*) = 0.
(2.32)

Therefore, each set {p*(b)} obeys Eq.(2.20) with

p*(b) = d(b). It follows that

K*(b 2K *(®) ¢, (B

z4K*} =1,e D Mo e 900
2.33)

Here N{¢,} denotes the number of configurations

{S(#*)} which obey

Polb) = ®,x6(r*,b)o(r*) forallb.  (2.34)
If for a given set {¢4(b)} Eq.(2.34) has no solu-
tions, then N{¢,} = 0;otherwise N{ ¢} = 2"s* 770",
In particular,for 8* = 0 it follows that

NY
z* = 2% =L{¢o(b)}N{¢0}. (2.35)
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*
There are 270 6 = 276 gets {¢(0)} [we used the
completeness relation (2.22)]. Therefore all N
obey N{qbo} =2%s*No* From Eq.(2.33) one
obtains

* * o K*
zHK*} = 2% 1, ¢ O D oy, OO, (2. 36)

From Egs. (2. 30) and (2. 36) one obtains Y{K} =
Y*{K*}, Eq. (2. 26),using Eq.(2.23).
If the completeness relation (2.22) is not fulfilled,
but

N,—N, —Ng =N, >0, (2.37)

and if all K(b) and K*(b) are positive, then it fol-
lows from Eq.(2.33) that

* * _
z4K*} = 2% e O T, oy T,e 2 0%, (2. 38)

Using the analogous inequality for z{K},one
obtains the inequality

27" y{k} = v{K*} = 2" v{k}. (2.39)

C. Dislocations

We now consider systems with magnetic disloca-
tions. Let the operator M(b) change the sign of
the interaction constant /(b) in the Hamiltonian.
Then one obtains

(1, M(0) O K} = (1, e 72 OKORDY
= (II,[cosh2K(b) — R(b) sinh2K(b)]**®)

(2. 40)
and

(M) ) (K} = z{(— 1)KV 2IK}

= v{(- 1)”'K}/r{K} (2.41)
with ¢*(b) ={0, 1}. From tanhK = e"2E* Eq.
(2.23), it follows that

- JRrp.
tanh(— ) K =e 2EF-ing*

(2.42)
Substituting Eq.(2.26) into (2. 41) and using (2. 42),
one obtains

*
(1, M(0)* Oy {K} = Y*{E* + L ing*}/v*{K*
_ i-Ebw*(b)< Hbeim*(b)k*(b)/z) {k*}

= (I1,R* ()" {K*}. (2. 43)
Therefore, the expectation value of a product of
dislocation operators equals the expectation value
of the corresponding product of operators R* in
the dual lattice. Since R* is a product of spin
operators S(r*), one may introduce corresponding
operators u(#*) in the original model and repre-
sent M(b) by

*(r*.b)

M) = T, eplr*)°® p2(r*) = 1. (2.44)
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Then one obtains

(ML) Y {K} = (8040 ¥ ) {K),
(2. 45)

For the particular case of the two-dimensional
Ising model without crossing interactions this was
derived by Kadanoff and Ceva.?

D. Construction of a Dual Ising Model:
Reduction to Two-Spin Interactions

A dual Ising model exists for any given Ising
model (with positive interactions) of Eq.(2.1). To
obtain this dual model, one has to find a complete
set of solutions {¢,(8)} of Eq. (2.20). This set is
complete if each solution {¢(b)} of Eq.(2.20) is
a linear combination of the solutions of that set.
Associate with each solution of the set a point
r*{¢>0}. Then the lattice which is defined by the
matrix

6*(7’ *{(Po}y b) = ¢0{b}

is dual to the original lattice.

(2. 46)

The Hamiltonian of the dual lattice may contain
products of a large number of spins S(» *). We
list three transformations29 which reduce these
systems with many-spin interactions to Ising
models with two-spin interactions and possibly
a magnetic field.

The Decovation Transformation13:16

The interaction —/R,R,,in which R, and R, are
products of spins, can be reduced to an interaction
—I,R,S — L,R,S,in which S is a new spin or a
product of new spins

PRaiat :lzfz;selels‘LKszS (2.47)

with
f2 =[cosh(K; + K,) cosh(K; —Ai,)|™1, (2.48)

tanhK = tanhK, tanhX,. (2.49)

This transformation reduces products of more
than three spins in the Hamiltonian to products of
three spins.

A Generalized Triangle TVﬂnSfOVmati0n3‘5a17

An interaction — IS;S,5, can be reduced to two-
spin interactions and an interaction with a mag-
netic field by the transformation

exp(KS,5,S;) = 3/ L exp[K oS + (K ;S + Ky)
X (S1 + S2 + SS) + 1{3(8152 + 8153 + 8253)]
(2. 50)
with
=1 3 R = i s
(2.51)
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P A N P AT I 0 Y P

Sy =cosh[K, +(2n—3)K,]. (2.52)
For the particular choice K, = — K, the equations
simplify to
7% =[cosh4(2K,) cosh(4K)]-1,

8% = cosh4(2K,)/cosh(4K ),

¢ = ¢ 783 = cosh(4K,). (2.53)

A Star Squave Transformalionl8

If the Hamiltonian is invariant under flipping of all
spins, then one may prefer to conserve this in~
variance. Products of more than four spins in the
interaction can be reduced to four-spin inter-
actions by the decoration transformation (2. 47).
The four-spin interactions are reduced to two-
spin interactions by a star square transformation

exp(KS;5,8,5,) = & f2i5 exp[K,S(S; +S, + 83
+85,) ¥ K1(5,Sy + 5,55 + 5,54 +5,5;

+ 85,8, +835,)] (2. 54)
with

¢®® = cosh(4K )/cosh(2K ), (2.55a)

e %51 = cosh(4K,), (2. 55b)

f8 = 1/[cosh(4K ) cosh*(2K)]. (2.55¢)

For real K the right-hand side of Eq. (2. 55a) is
less than or equal to 1. Therefore, K must be
negative or zero. To obtain negative K's, one may
apply the decoration transformation with negative
K, and K, Eq. (2. 49).

Therefore, we have shown that there exists a
dual Ising model (2. 46) to any Ising model and
that this can be reduced to an Ising model with
only two-spin interactions and possibly an inter-
action with a magnetic field.

3. THE MODELS M, AND THEIR PROPERTIES

In this section we consider the models ¥ ,,. In
Sec. 3A we define the models and derive the duality
relations which relate the systems M,, and

M, 4.,+1 in an external magnetic field and the
duality relation between the systems M, and

M, .., without an external magnetic field. The
behavior of the spin correlation functions at high
and low temperatures is discussed in Sec. 3B. We
prove that there is no local order parameter in
the systems with » > 1, In Sec.3C we discuss the
thermodynamic properties of the systems.

A. The Models, Duality

We consider a d-dimensional hypervolume divided
into C, hypercells B 9, These are bounded by

(d — 1)-dimensional hypercells B ‘¥ (total number
C 1), these again by (d — 2)-dimensional hypercells
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B @-2) (total number C,_,),and so on,until we
arrive at 0-dimensional hypercells which are
simply the C, corners B of the d-dimensional
hypercells. For this original lattice L, one may
construct a dual lattice L* by placing one dual
corner BO* in each original hypercell B“, then
connecting the dual corners by dual edges BW*
each of which intersects one hypercell B4, then
connecting these dual edges by dual faces B‘®*,
each of which intersects one hypercell B2 and
S0 on,until we obtain the d~dimensional dual
hypercells B“* each of which contains one ori-
ginal corner BY, Denoting the number of the m-
dimensional hypercells by C ,’:l ,we obtain

*

z:C

m

c (3.1)

d-m>»
since by construction there is a one~to-one cor-
respondence of the m-dimensional dual hypercells
to the (d — m)-dimensional original hypercells.
Let us denote the intersection point of B ™ and its
dual hypercell B4 ™* py 09—y (&m* Tpep g
hypercell B(r ™) and a dual hypercell B*(» ™)

is assotiated with each point # ™,

Let us consider some examples. A linear chain

(d = 1, Fig. 1) of points * @ = i (black circles) (we
denote integers by i, j, k) divides the line into one-
dimensional cells (segments). The dual lattice
consists of the segments between the points » ¥ =
i + 3 (open circles). The square lattice (d = 2,
Fig. 2) consists of the squares bounded by the con-
tinuous lines; its dual lattice consists of the
squares bounded by the broken lines. The corners
¥ = (4,7) of the original lattice are denoted by
black circles, the corners * (2> = (i + 3,7 + 3) of
the dual lattice are denoted by open circles and
the edges of the original lattice intersect the
edges of the dual lattice at the points (1) (triangles).
In Fig.3 a cube of the original cubic lattice

{d = 3) and a cube of the dual lattice are drawn.
The corners *® = (i, j, k) of the original lattice
are denoted by black circles and the corners
¥3=(i +%,j+3z,k+ %) by open circles. The
edges (continuous lines) of the original lattice

and the faces of the dual lattice intersect at points
@) (open squares), whereas the faces of the origi-
nal lattice and the edges (broken lines) of the dual
lattice intersect at points »(2) (black squares). We
have considered only self-dual lattices, that is,
lattices which are topologically equivalent to their
dual lattice. Not all lattices are self-dual.

Now let us return to the general case and introduce
the functions © and ©*. Let ©(r (L, y My = 1 if

¥ (m1) lies on the boundary of B(» (™); otherwise,
O(r L,y (my = 0. Let ©*(r ), v Onl) = 1 jf
lies on the boundary of B*(» ("1)); otherwise

(m)

(m~1)
e,

o*¢ ™ r" )y = o(r (3.2)

that is,if » ™ D lies onthe boundary of B(» ), then
(™ lies on the boundary of B*(»(»-1)),

Since the m-dimensional boundaries of B ("D form
a closed m-dimensional hypersurface, two m-
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dimensional boundaries B (™ of B (") meet in each
(m — 1)-dimensional hypercell at the boundary of
B 1), Therefore, one obtains

&, mor " P rer™ r™y 0. (3.3)
The Ising model M ,, on the lattice L with n dimen-~
sional bonds consists of Ising spins S(r) =+ 1 at
all sites » = » 1 interacting via

0 @) s S
. S(7).

- ﬁHd:z = KEr(n) HTS(V) (3' 4)
The product in the first term of the Hamiltonian
runs over all spins S(») lying on the boundary of
the n-dimensional hypercell B(» W), For n = 1, the
model (3. 4) describes the Ising model with two-
spin interactions between spins lying at the two
ends of an edge and an external magnetic field

B=kyTh/ug. (3.5)

FIG.1. The linear chain.

FIG.2. The square lattice and its dual.
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FIG.3. The simple cubic lattice and its dual.
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For the lattices considered above we obtain the
Hamiltonians

—BH,, = K23,S(5)S(i + 1) + h 25, (), (3.6)
— BHy, = K25, 8(4,7)[S(E + 1,7) + S(,5 + 1)]

— BHgy = K255 S0, 5, R)[SGE + 1,7, k) +S(4,5 + 1, k)
+S(i,5,k + 1)) + h 2,5, S, 5, k). (3.8)
For » = 2 the Hamiltonian contains the products
of spins lying at the boundary of the faces B2,
—BH,, =K25,,8(i,7 + 3)S(i + 1, + 3)
X8+ 35,)SE+3,7+1)
+ 25806, + 2) + SG + 3,9,
~PBH3z, = KEijk[S(isj +3,R)S(E + 1,7+ §,k)
XSG+ 3,7,R)S(E + 5,7 +1,k)
+ S(i, 5,k + 3)SG + 1,5,k + 3)SUG + 5,7, k)
XS(i + %,k + 1) + S, 4, k+ 3)
X S(i,j +1,k+3)S(E,7+ 3,k)S(E, 7+ 3,k +1)]
+ 02580,k + 3) +S(,5 + 5, k)
+ 8 + 3,7, R)].

(3.9)

(3.10)

For n = 3 the Hamiltonian contains the products
of spins lying at the boundary of the volumes B ©);

— BHyy = K2;;, 0,0 + 5,k +3)S(i + 1,7 + 5,k +3)
X S(i + 5,4,k + 3)S(E + 3,5+ 1,k + 3)
XS +3, 7+ 5, BSE+5,7+5,k+1)
+ 125 ;[SG, T + 2k + 3)
+S(G + 5,5,k +3)+8(@ + 3,i+ 3,k)]. (3.11)

In general, the model M ,, on a hypercubic lattice
consists of N; = (, Z;)N Ising spins located at

the centers of the (n — 1}-dimensional hypercubes.
(N is the number of the d-dimensional hypercubes).
The Hamiltonian consists of the sum of the pro-
ducts of the 2z spins at the %n~— 1)~dimension%})
hypersurfaces of the N, = ()N hypercubes B "',
Let us denote a subset of #» unit vectors ¢; along
the main axes by E, ; then the model M,, for the
d-dimensional hypercubic lattice is defined by

—BH,, = KT ,0., Ry O E,)

+h D05 S +u(E,,)) (3.12)
with

UE,) =3 2,z s (3.13)
RO E)=1,¢ S0P +0(E,) —be)

xSr@ +uE,) + Le). (3.14)
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Similarly one defines the Ising model M}, on the
dual lattice L*. The Ising spins S(r*) =2 1 are
located at the sites v* = (# " D* = y(d-2+1) gpg
interact via

*)O*(y *.y(n) *)

— B*H}, = K*25 oxT,aS(r

+H* S ). (3.15)

We now show that the models M, and M}, ., are
related by the duality relation

de(K? k) = Y;l.td—na-l(K*)h*)
with
tanhK = e 2",

(3.16)

tanhk = e 2%*.

(3.17)
If we label the interaction of the spin S(» (")

with the external magnetic field by b(»¢*1)) and
the interaction of the spins on the boundary of

B(r ™) by b(» "), then we have

Q(T(n-l),‘b(r(n))) PO (3. 18a)
o(r ", b(r ")) = 6, w1y, (3.18b)
e*(r?, o)) = 5,0, (3.19a)
o*r @ b V= et r" V). (3.190)

Substituting Eqgs.(3.18) and (3.19) inio Eq.(2.21)
and using Eq.(3.2), we find that the closure condi-
tion is fulfilled. From Egs.(3.18b) and (3.192a) it
follows that Ny = N, and N = N7. Since N, =

N, + N}, the completeness relation is fulfilled.

We now compare the models M, and M}, , with-
out external magnetic fields. Then the bonds are
connected with the sites » (" by Eq. (3. 18a) and

8*(,’,%’1), b(v'("))) - 9*(3,0:*1), ,},(n)) _ @((r(n),y(n*l))_
(3.20)

From Egq. (3. 3) it follows that the closure condi-
tion is fulfilled. We now discuss the completeness
relation (2.22). In the Appendix we derive rela-
tions between the N's, C's, and the topology of the
lattice. Here we summarize the results: The ex-
ponents N, and N; of the orders of the degeneracy
2%z and 2M2* of the models (3. 4) and (3.15) are

n-2
Ny=t,+ 2 (—1)""C,, (3.21)
m=0
a n
Ni=:+ 2 (—1)""C,, (3.22)

m=n+2

in which /, and t; depend only on the boundary
conditions and on #. From a generalization of
Euler's theorem?21

d

m=0

(3.23)
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in which f depends only on the topology (boundary
conditions), from

N=C,y, N=C, NY = C.a (3.24)
and from
N, =N, —N; + N, — N} + N, (3.25)

which is derived from Egs.(2.9) and (2. 37), it
follows that
N,=t, + X + (=)™t (3. 26)

Therefore, N,, depends. only on the topology of the
system and on n. For a d-dimensional hypersur-

face wrapped on a (d + 1)-dimensional hypersphere,

one obtains N, = Ofor 1 =n =d — 1. Therefore,
the duality relation

de (K’ 0) =
with
tanhK = e-—zK*’

Yy, (K*,0), (3.27)

(3. 28)

holds for this boundary condition. For the two-
dimensional Ising model {d = 2,n = 1) this was
shown in Ref.3. For systems with periodic boun-
dary conditions ene obtains N,, = {J). In the ther-

modynamic limit the factors 2V7/2 in Eq. (2. 39)
can be neglected, and, using Egs. (2. 24),(2.25),and

— BF(K) = In Z(K), (3.29)
we obtain for the free energy
B*F:dvl(l{*) = BFdn(K) - %(N; + N:—Ng _Ns)

X In 2 + 3 N, In sinh2K. (3.30)

B. Correlation Functions

In this section we discuss the behavior of the spin
correlation functions of the systems M ,, without
an external magnetic field. We showed in Sec.2
that an operator

g, ()
Uog) = 1,8,(r) ° (2.10)
commutes with the Hamiltonian H and all opera-
tors R if

@, 0(r,b)o(r) =0 forall b, (2.8)
The only solution for » = 1 besides the trivial
solution oy(r) = O is

o(7) = 1. (3.31)
For n > 1 we obtain solutions
ao(r) = 0@, ), (3.32)

which can be verified using Egs. (3. 3) and (3. 18a).
Therefore, each operator R is invariant under
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flipping of all spins lying on the (n — 1)-dimen-
sional hypercells B(r), which meet in the hyper-
cell B(r =2}y, This leads to the high degeneracy
2% where N, is given by Eq. (3.21). Since, for
v < r' there exists a neighbor » (*2) of v with
e (w2) ,7} = 1 and ©(7 (2} ") = 0, we obtain
from Eq. (2.19)

(S(ryS(T")) =d,,,. (3.33)
Therefore, there is no long-range spin autocorre-
lation at any temperature. The only products of
spins whose expectation values do not vanish can
be represented by a product of operators R. These
products are the products of all spins lying on the
(n — 1)~dimensional boundary of an n-dimensional
hypervolume which consists of #~-dimensional
hypercells.

We now consider the long~range behavior of

(11, S(r); of the model M ,,,Eq.(3.12), where the
spins of the product lie on the boundary of an n-

dimensional hypercube. From the high tempera-
ture expansion it follows that

(I, (7)) = [tanhK + 2(d —n)tanhk)™"** + .-

forn > 1. (3.34)
and
(I, 8(r)) = 3{tanhk +[2(d — 1)}"/?
X (tanhK)2 + ---}* + L{tanhK
—[2(d —~1)}¥/2 (tanhK)2 + ---}” form =1,
(3. 35)

where v is the volume of the hypercube {(for n = 1,
v is the distance between the two spins;for n = 2,
v is the area of the square spanned by the spins).
From the low temperature expansion one obtains

f

(1,80r)) =(1 — ™% 4oy gorn< g,

(3. 36)
(n,8(7) =1 —2e2% + .Y forn=d,

(3.37)

where f is the hyperarea of the hypercube (for

n =1, f is the number of the ends of the line,
that is, f = 2;for » = 2, f is the perimeter of the
square). Therefore, we deduce that the behavior
of these correlation functions in the limit of large
hypercubes is different in the low and the high
temperature phases, and we expect

for T>T_,n<d,

“exp{— v/vo(T)]
S (3.38)

(I, §(r)) o=

exp[— f/f(T)] for T< T, n<d.

(3. 39)

We attribute the qualitatively different assympto-
tic behavior in both temperature regions to
different states of the system above and below a
critical temperature T,.
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For n = d — 1 the different behavior in both tem-
perature regions becomes more evident if one
makes use of the duality relation for dislocations,
Eq.(2.43). One obtains

(I, S(r)) {k} = (11, R®)) {Kk} = (11, M*()) {K},
(3.40)

where the product runs over all b's in the {d — 1)-
dimensional hypercube. The expectation value on
the right-hand side of Eq. (3. 40) is to be taken in
the model M%,. The logarithm of this expectation
value is proportional to the change in free energy
due to the dislocations. This free energy is pro-
portional to the (d — 2)-dimensional hyperarea of
the boundary in the disordered state (T* > T,
that is,for T < T_),and it is proportional to the
(d — 1)-dimensional hypervolume in the ordered
state of the dual system (7* < T7,that is, for

T > T,.). This is in agreement with Egs. (3. 38)
and (3. 39).

We now compare the systems M,, and M,,; , on

a hypercubic lattice. From the theorem of
Griffiths generalized by Kelly and ShermanZ22 it
follows that any expectation value (I, S(7)) in
the system M, is less or equal to the expectation
value in the system M, ,

(M, 8(r)) g = (I,8(%)) gy 5 (3.41)
since the (d + 1)-dimensional system consists of
layers of the system M,, plus an additional inter-
action between the layers. Therefore, if this ex-
pectation value shows the long-range behavior,
Eq. (3. 39),for M4, ,then this long-range behavior
is also apparent in M,,, ,,and we obtain

Te an = T¢ gy ,-that is,

Keatn=HBcan- (3.42)

The systems M, with n > 1 exhibit an unusually
high ground-state entropy S, « N, Taking

© ife, € E

S (3.43)
in the hypercubic models (3.12), we may eliminate
all spins with half-valued » ;-component. These
systems (we denote them by M, ) consist of

N, = N(¢1) spins and have a much smaller degene-

racy,
_N d——2) (d—z)
NA"Nd(n—Z 1)

N, denoting the length of the periodicity in the 7,
direction.

For n = d the system disintegrates into linear
chains. For # = 1 the system is unchanged. For
d = 3,n = 2 one obtains the Hamiltonian

+ U(En-l)) =1,

nl

— BH'y,= K25, ,[SE,§ + 2,R)S( + 1, + 5,F)
X8+ 3,5,k)S(E + 3,5 +1,k)

FRANZ J. WEGNER

+S(E + 2,7,R)S(i + 5,7,k + 1)

+8(i, 7 +3,R)S(i,5 + 3,k + 1)]. (3.44)
These systems obey the closure condition (2.21)
if one chooses the model M}, , on the hypercubic
lattice as the dual model. One obtains

O Al O R G Ry R X

Therefore, in the thermodynamic limit N - o,
N, — o, the duality relation (3. 30) holds, and the
free energies of M;, and M), show the same non-
analyticities. In the systems M/, the spins sepa-
rated by a vector pointing in the e, direction are
correlated. At high temperatures one obtains

(8(r)S(r + r e,)) =[tanhK + 2(d — n)
x (tanhk)'" " 4+ .. 17a ] form>1, (3.46)

and for low temperatures it follows that

(S(r)S(r +7 4ez)) = (1 — ¢ 21K

R RN S P (3.47)
Therefore, we expect an exponential decay of the
correlation function for large 7, at all tempera-
tures if # > 1. Here again we find no long range

order.

Absence of a Local Order Parameter

A second-order phase transition with local order
parameter is characterized as follows: Let us add
local operators ¥/ ;(7) to the Hamiltonian H,

—BH = KHy + 25, by, (7).

Then there is a discontinuity of the first-order
derivatives with respect to 4 of the free energy
KK, {h}) along a v’'~dimensional hypervolume
known as a first-order transition line in the v-
dimensional (K, %,) space. This hypervolume is
bounded by a (v’ — 1)-dimensional A-hypersurface
commonly known as A-point or A-line, where the
second-order phase transition takes place. Any
local operator ¥(r) = 2 k¥, (7) with a disconti-
nuity of 25, (¥(r)) = — BZ;h;0F/0h, along the
first-order transition can be considered as an
order parameter. In the homogeneous phase the
limit

Jim [0 ¥ (7)) — W(0))(¥(7))] (3.48)
vanishes. If the expectation values in expression
(3.48) are averaged over all states along a first-
order transition, then the limit (3. 48) does not
vanish. In the Ising model (z = 1) with ferromag-
netic interactions Y(7) = S(r) is such a local
operator. For T = 0 we have (S(0)S(#)) = 1,
whereas (S()) = 0. In the models M,, with
7n > 1 there is no first-order transition for
T < T, 4n,h; =0 associated with a local order
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parameter {y(7)) if we confine ourselves to
operators which are polynomials of spin operators
located in a finite region about ». We can see this
as follows: Any product of spins S(») which do not
lie on a closed (r — 1)-dimensional hypersurface
of hypercells B{z-1) gives vanishing contributions
for a sufficiently large distance . Therefore, we
may confine ourselves to expressions for ¥,
which are polynomials of R(b),

¥(7) = P(v; k(b)) .
Applying Egs.(2.40) and (2.43), one obtains
K0y (r)) —{g(0)) (g (7)) (K)

= [{g*(0)p*(r)) — (Y*(0)) (Y * ()} (KY)
(3.50)

(3.49)

with
Y*(r) = P(r; cosh2K* — R*(b) sinh2K*).
(3.51)

Therefore, the correlation of the y's in the model
M,, below T, is related to the correlation of the
¥*'s in the dual model MJ,_, above T,*. According
to the cluster property of the Ising model, proved
rigorously by Ruelle?3 for Ising models with

n = 1, the right-hand side of Eq. (3.49) vanishes
for ¥ = «, Therefore,there is no first-order
transition characterized by a local order para-
meter in the models M,, with n > 1 along the K
axis.24

C. Thermodynamic Properties

In this section we consider the thermodynamic
properties of the systems M, ,

The Lineay Chain M,

The partition function of the linear chain (3. 6) of
N Ising spins with nearest neighbor interaction
and the periodic boundary condition S(N + 1) =
S(1) can be calculated® explicitly:

o Kh KN
Z(K, h) =tr LS )

With Eq. (2.24),

(3.52)

Y(K,h) = fY2(K,h), f = (2 cosh2K cosh2h)" /2,

(3.53)
one obtains
K+h -K
Y(K,h) =tr (};e-x j{;ex—h>
= Fy(fe* coshh, f2(e** — e"y). (3.54)

The first argument of Fy is half the trace of the
2 X 2 matrix;the second argument is its determi-
nant. It follows that

Fylt,d) =(t +vE2 —a)" + (t —Vi2 —a)¥,  (3.55)
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with

t=[201 + e ¥Y1 + tanh2 B2, (3.56)
d=3(1—e ™)1 —tanh? a)(1 + ¢ ¥

X (1 + tanh2 k) 1, (3.57)

Since the linear chain is a self-dual lattice,one

obtains from Eg. (3. 16) that
Y (K, ) = Y (K* %) (3.58)

with Eq. (3. 17), which is fulfilled since { and d,

Egs.(3.56) and (3. 57), are invariant under this
transformation.

The Models My,

The partition functions Z,(K, 0) of the models
M, without external magnetic field can be cal-
culated from the duality relation (3. 16),(3.17):

tanhhi* = e72%,
(3.59)

Since in the model Mj}l all spins are coupled by

a two-spin interaction with infinite XK*, only the

two configurations {S(r*) = 1} and {S(»*) = — 1}

contribute

Ydd(Ka 0) = Y(;l(m s h*),

Z% (K* h*)
~ exp(N,K* + NXh*) + exp(N,K* — Nth*).
(3.60)
1t follows that
_ N Nb . Nb
Z 44K, 0) = 2" s[(coshK)"? + (sinhK) ?]. (3.61)

The partition functions of the models M,, are
analytic in K for all finite K and 2 = 0. Since the
Ising model M%,,d > 1,shows a phase transition
for h* = 0 at K* = K% ,;,a nonanalyticity is appa-
rent in the partition function Y, ,(K, &) for K —

« at k= — 3 In [tanh(K% ,,)].

The Models M ,;, with n < d without External
Magnetic Field

The nonanalyticity which is apparent in the free
energy F;, at the critical K, ,, = B.I(B, is the
inverse critical temperature) also occurs in the
free energy F¥, ,[Eq.(3.30)]. Since the correla-
tion functions, Eqs. (3. 38) and (3. 39), show a quali-
tatively different assymptotic behavior at low and
high temperatures, we expect a phase transition
for all infinite systems M, with 1 =x < d at
some K = K ,, accompanied by a nonanalyticity
of the free energy. The critical K's of the model
and its dual model are related by Eq.(3.28), which
can be cast in the symmetric form

sinh2K, ,,sinh2K% ,, , = 1. (3.62)
In particular, for self-dual lattices like the hyper-
cubic lattice,one obtains

sinh 2K ,,sinh 2K% ,, , = 1. (3.63)
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TABLE 1. Critical parameters of some three- dxmensmnal Ismg models and their dual models.

original lattice diamond 31mp1e cublc body- centered cubic face- centered cubic R
K, 0.3698 0.2217 0.1575 0. 1021

K% 0.5195 0.7613 0.9284 1. 1426

E_/E, 0.432 0.3284 0.270 0. 245

E*/E} 0.937 0. 9495 0.964 0.971

S./S, 0. 737 0. 808 0. 845 0. 853

(Sr — S5/ (St — 55} 0.100 0.092 0.072 0.063

For a self-dual model (d = 2, self-dual lattice) it
follows that

Keaaje = % In(v2 + 1). (3.64)
We derived the inequality X, ,.,, = K ,, for
hypercubic lattices, Eq. (3.42). From Eq (3.863)
one obtains

Keana =Kiai1ns (3.65)

and from Eq. (3.42) and (3. 65) it follows that

Kc,d,n—l = Kc,d,n (3' 66)
The critical temperature of the hypercubic sys-
tems is a decreasing function of 7.

Since the duality relation (3. 30) relates the free
energy F,, at high temperatures to the free energy
F},., of its dual model at low temperatures, we
deduce that the critical exponent a4, of the
specific heat of the model M}, , above T is

1.0 /

kgT/I
~

0.6 |- /

0.4

0.2

0 L 1 |
[oA] 0.2 0.3
MgB/I
FIG. 4. Phase diagram of the system (3. 10).

given by the critical exponent o, of the model
M,, below T, and vice versa:

Xgg-n = a:in - (3- 67)
Therefore,any asymetry in the specific heat of
the model M ,, near T, is also apparent in the
specific heat of the dual model, but the high tem-
perature and the low temperature regions are
interchanged. Self-dual systems exhibit a sym-
metric singularity of the specific heat around the
critical temperature.

From the thermodynamic relation

_ O(BF) _o(KF)
E = = sk (3.68)
it follows that
E*(K*)/E} = cosh(2K) — sinh(2K) E(K)/E,, (3.69)

in which E, denotes the ground state energy
E, =—IN,. Therefore, using Eqgs. (3. 30), (3. 68),
and

F=E-TS, (3.70)
one is able to calculate the energy E* and the
entropy S* of the dual model from £ and S. From
the critical parameters!3 of the Ising model on
the diamond, the simple cubic, the body-centered
cubic, and the face-centered cubic lattice, we have
calculated the critical parameters of their dual
models. The results are listed in Table I. The
binding energies of the dual models at critical
temperature are unusually large [for example,
959, of the ground state energy for the model
(3.10)]. This is in agreement with the unusually
low critical entropy. For the model (3.10) we
obtain Sf/kzN = 0.82 which is to be compared
with the zero temperature entropy S /k N=In2=
0. 69 and the entropy at infinite temperature
Se/kgN=31n2=2,08.

The Systems M, with 1 < n < d in an Exlernal
Magnetic Field

Near the critical temperature the Ising models
M, are very sensitive to an external magnetic
field, since the spins exhibit a long range corre-
lation. This does not apply to systems M, with

n > 1. Therefore, a phase transition line K=K_(k)
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is expected. This function K_(%) can be calculated
for small %if one assumes that the nonanalytic
part of the free energy depends on K — K (k)
only25,26:

Foing (K,h) = Foing (K — K, (h)). (3.71)
From KF = —1I 1In Z, one obtains Eq.(3.68). The
mth derivative of KF with respect to % can be ex-
pressed as spin correlation functions involving up
to m spins. Only products of spins which can be
expressed as products of R(b) yield nonvanishing
expectation values. Since K(b) is a product of 2n
spins for the hypercubic systems, one obtains for
m < 27 only constant contributions of the type
(S2(»)S2(r’)+-+). For m = 2n expectation values
{R(D)) also occur yielding (2n)! E:

amgKFw _ {const for m < 2n
on™ h-0 |const + (2n)! E  for m = 2n.
(3.72)

From Eq.(3.71) and (3. 72) it follows for the hyper-
cubic systems that

K ) =K .0 —h*+ -, (3.73)

From the duality relation, Eqs.(3.16),(3.17),one
obtains for large K the phase transition line

: -4nK
he.an(K) = K, 44,(0) —sinh 2K, 44.,(0) """+ -
’ (3.74)

The reduced critical temperature K;! = kyT /I
is plotted as a function of the reduced magnetic

field /K, = ug/I in Fig.4 for the cubic model

M4,,Eq.(3.10).

In an external magnetic field the systems M,
with d = 2n — 1 on self-dual lattices are self-dual
(Eq.(3.16)].

4, PHASE TRANSITION IN AN ISING MODEL
WITH COMPETING INTERAC TIONS

In this section we describe an Ising model with
competing two-spin interactions. For special
values of temperature and interaction parameters
this model is related to the model (3.10) by the
star square transformation (2. 54). This system
shows a singularity in the specific heat, but it
shows no long range order below the critical
temperature.

As in model (3. 10) spins are located at the centers
(1) of the edges of the cubes (open squares in
Fig.3). Moreover, spins are located at the centers
r(2) of the faces of these cubes (black squares in
Fig. 3). We assume an interaction strength I, for
nearest neighbor pairs S(» (1)) and S(# (2)),an in-
teraction strength /, for next nearest neighbor
pairs of spins S(r(V) and S(#{1¥), and an interac-
tion strength /; for pairs of spins S(» ) lying
opposite a spin S(r (2))(Fig. 5). Denoting the
central spin S(7 (2)) of a face by S and its four
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nearest neighbor spins by S{,S,,S3,5,,then
the Hamiltonian H' of our model is the sum
over all faces

H =—73[1,558; + 8, +58; +5,)
+ 1,(818, +5,8; + 855, +5,5,)

+14(5;S5 + S,8,4)]. (4.1)
We discuss the ground state of this model. The
system is invariant under simultaneous reversal
of I, and S5. We assume I, to be positive. The
ground state depends on the ratios I,/I, and I;/1,.
In Fig.6 we plot the phase diagram at zero tem-
perature. In region 0 the system is ferromagnetic,
that is, all spins S(» (1) point in the same direction,
In region 1 one of the four spins S(7{1)) of a face
points in one direction, all three other spins of the
face point in the opposite direction. In region 2 a

43
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FIG.5. The interactions in a face of the Ising
model (4.1).
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FIG.6. Phase diagram for the model (4.1) at
zero temperature.
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pair of neighbored spins S(#¢1)) points in one
direction, the other pair of spins S(» (1)) of this
face points in the other direction. In region 2’
two opposite spins S(v (1)} at a face should point
in one direction, the other pair in the other direc-
tion, but such an ordering is not possible in three
dimensions. Therefore, in this region the ground
state cannot be determined by looking merely for
the ground state of one face.

Here we are interested in region 1. The ground
states of system (4.1) and (3. 10) for negative /
are the same. The spins S; are determined by
the surrounding spins S,,S,,S3,S5,. Since the
partition function of system (3.10) is invariant
under change of sign of I, we obtain the ground
state entropy of the system (4.1) in region 1,

Sy =NEkg In2. (4.2)
From the star square transformation (2.54) we
find that the partition function Z’ of system (4.1)
and the partition function Z of the Hamiltonian

-

H=~2[1;5,5,5;8, + I,(5,S, + SyS3 + 535,

+8,5,) +15(5;S; + S,8,)] (4.3)
are related by
, 2K-K \3N5 >
Z'(K,, K,, K;) = (2= "1)°"2(K|,K,,Ky), (4.4)
where
R,=K, +K, K,=K,+k&, (4.5)
)
I —1.5
|
1
I
]
i
PARAMAIGNETIC
i
]
f
! 51.0
1
] -
! ~
J -
| >
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i
)
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!
|
]
!
;
PHASE 2,2’ PHASE | PHASE O

| (FERROMAGNETIC)

1 i 1 L >

-1 -2 -1/3 o]
1,71,
FIG.7. Phase diagram for the model (4. 1) for
I, = I,. Along the broken line the free energy can

be calculated from that of the simple cubic Ising
model. The heavy line denotes the phase transi~
tion line from Eq. (4. 14).
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cosh 4K, = ¢"®¥ cosh2k, = ¢2*25, (4.6)
Along the line K, = K; = 0 (broken line in Fig.7)
the partition function can be expressed in terms

of that of the simple cubic Ising model. In particu-
lar from the critical singularity of the partition
function of the simple cubic Ising modell3 at

I/ky T, = 0.2217 we obtain a singularity of the
partltlon function Z’ at K, .= 2.039,K,, = K3, =
—0. 9344, that is, for [,/I; = [/, = =0 4582,

kgT /11 =0. 4904 (point P of Fzgs 6 and 7).

Now let us expand Z(K,, K,, K,) into powers of
K andK
In Z(K),K,,R3) =1n Z3,(K,) + 2 a”R‘R‘
(4.7)

The coefficients a;; can be expressed in terms of
the spin correlation functions of system (3.10):

a9 =08, =0, (4.8)
ay0 =302 1n Z/2R2
=3 224(S1S, + 5,85 + 5,8, + 5,5,)2)
=225(1 +(5,5,5;8,)) = 6N —2E/I,
ag, =3N—E/I, a,,;=0. (4.9)

In general a 2nth or (2n + 1)th derivative of In Z
can be expressed in terms of cumulants of at most
n operators R(b) or products of R(b)'s. We expect
that such a cumulant shows a singularity at the
critical temperature of the form €2-27 [with € =
(T —T,)/T,],since such cumulants occur in the
nth derivative of the free energy with respect to
the interaction constants in a system with Hamil-
tonian — I 27R(b) — T, 27 RR — ++ +. The nth deri-
vative with respect to ITis proportional to the nth
temperature derivative of the free energy and is
thus proportional to €272, We assume that the
cumulants of products of R's show no stronger
singular behavior. Since K, and K, are regular
functions of T for fixed 12/11, 15/1,,we obtain

for I,/I, = 1/1; = —0.4582

In Z’ = In Z4,(K,) + regular terms + O(e” %),

(4.10)

Therefore,we obtain for the singular part of the
specific heat CainglT);

Csing(Tc(l + €)
=q72C ging,31 (T, 31(1 — g¢))
+[1 + O(e)]
=2.088 ¢y, 51 (T g1(1 — 0.6924¢))

*[1 + O(€)], ¢ = (3InK,/3InK), . (4.11)

If we assume that the singular part of the free
energy depends only on T-T (I, [, I,) [compare
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Eq. (3.71)], then from Egs.(4.8) and (4.9)
and from

9ln Z E
=— 4,12
ok, 1 (4.12)
we obtain
Fsing(Kl,Kz,K3)
=Foing.az(Ey + 2K +K2+-++).  (4.13)

Therefore, we may expand the critical tempera-
ture in powers of I,/I, + 0.4582 and I;/I, +0.4582
(Fig.7):

EpT Iy, 15,15)/1; = 0.4904 — 4.00(I,/1,+0. 4582)2
—2.00(1,/1, +0.4582)2 — -+, (4. 14)

Since the ground state of this system is the same
as for the model (3. 10), the two-spin correlations
at T = 0 vanish and no long range order is ex-
pected below T .

5. CONCLUSION

In 1966 Mermin and Wagner27 proved that there
is no spontaneous magnetization in the two-
dimensional isotropic Heisenberg model. On the
other hand, there is evidence from high tempera-
ture expansions of the magnetic susceptibility28
that this system undergoes a phase transition.
This raises the question of whether or not it is
possible to have a phase transition without a local
order parameter. In this paper we have exhibited
systems which undergo phase transitions but which
do not have a local order parameter. The specific
systems were certain classes of Ising models. It
would be of some interest to generalize this con-
cept to other types of systems.
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APPENDIX

In this appendix we derive the Egs. (3.21)—(3. 23).
Any lattice can be created from another lattice
with the same boundary conditions by applying one
of the following steps (see Fig. 8) as many times
as needed.

Step 1: Divide an m-dimensional hypercell into
two parts by creating an (m + 1)-dimensional
hypercell.

Step 2: Collapse an (m + 1)-dimensional hyper-
cell by merging two m-dimensional hypercells
with the same boundary together into one.

By applying any of these steps, the left-hand side
of

d
> =nire, =t
m=0"

(3.23)
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remains unchanged. Therefore, ! depends only on
the boundary conditions. This is a generalization
of Euler's theorem.

Next we consider the change of N, resulting from
the application of Step 1. If m > n,then the Hamil-
tonian does not change. For m = n one interaction
is effectively duplicated, since one boundary B )
is duplicated. For m = n — 1 one spin is replaced
by two spins, but for the ground state both must be
equal. For m = n — 2 there is also one additional
spin. Taking this spin aligned upwards, one obtains
a one-to-one correspondence with the ground state
of the original system. But changing the signs of
all spins lying on bonds adjacent to one (n — 1)-
dimensional hypercell at the boundary of the new
bond, we obtain another ground state. Therefore,
the new system has twice the degeneracy of the
original system. For m < n — 2 the Hamiltonian
does not change. Therefore,we obtain (Step 2 is
just the inverse of Step 1)

n-2
N,=t,+2 (1" "C,.

m=0

(3.21)

Since this expression changes only by + 1 after
application of Step 1 and by — 1 after application
of Step 2 for m =n —2, ¢, depends only on the
boundary conditions and on n. Similarly, we obtain

d
Nr=tr+ 2 (—1""cC,. (3.22)

m=n+2

Therefore, N, , Eq.(3.16), depends only on the
topology of the system and on z.

We consider two topologies: first,a lattice which
is topologically equivalent to a d-dimensional
hypersurface wrapped on a (d + 1)-dimensional
hypersphere. As a representative we choose the
(d + 1)-dimensional simplex, which is the general-
ization of the triangle and the tetrahedron. It has

{d) (e) (f)

FIG.8. Example for changing a lattice by apply-
ing the Steps 1 and 2. From the lattice (a) the
lattice (f) is created by applying once the Step 1
with m = 1 (b), twice Step 1 with in = 0 (c), (d),
twice the Step 2 with in = 0 (e), (f). The number
C, — C,; + Cy remains unchanged.
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C,=4d + 2 corners. Any two corners are con-
nected by an edge. Any three edges span a face
and so on. It follows that C,, = (%:3). Using Eq.
(3.13), one obtains
t=1+(=1)" (A1)

We may number the spins of the model M,, on
this lattice by » indices 1 =i, <i, +++ < i, =

d + 2. For the ground state all spins with i, =

d +'2 can be chosen arbitrarily. Then all other
spins are given by S(i;*--i,) = S(iy - +i,,d + 2)°
S(iqig-+i,,d +2)---8(iy*-+iyq,d + 2). Therefore
it follows that N, = (2!}). From the Eqgs.(3.21),
(3.22), (3.26),and (A1) one obtains

d+n+l

=10 = (1" forn=d—1, (A2

N,=0 forn=d-—1, (A3)

FRANZ J, WEGNER

Since N,, = 0,the duality relation (3. 17) holds for
all lattices wrapped on a (d + 1)-dimensional
hypersphere.

Secondly, we consider a lattice with periodic boun-
dary conditions. As a representative we choose
the d-dimensional hypercube. Then it follows

that C, = (%), and one obtains from Eq. (3. 23)

m

t=0. (A4)
Because of the periodic boundary conditions, all
spins occur twice in the products R. Therefore, all
spins can be chosen arbitrarily, N, (n’fl). Then

one obtains from the Egs. (3. 21),(3. 22), (3. 26}, and
(A1)

t,=(), t=0Eh, N, =(). (A5)

m
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