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The (tree-graph) generalized Veneziano amplitudes are shown to be boundary values of a new class of 
generalized hypergeometric functions having the property that they are Radon transforms of products of 
linear forms. 

1. INTRODUCTION 

The Veneziano model has attracted considerable 
interest.1- 12 We address ourselves here to the 
question of the functional structure of the general­
ized Veneziano amplitudes. 

As is well known, the original Veneziano amplitude 
for a four-body process was written down as a 
beta function: 

( 
r( - O!s)r ( - O!t) 

V4 - O!s' - O!t) = -----=----~ 
r( - O!s -O!t) 

= io\lxx- a s-1 (1 _ xf at-1 • (1) 

l-4 can obviously be written as a special case of 
the Gauss hypergeometric function 2Fl (a, b ; c; w): 

V4 ( - Qs'- O!t) = r (- O!s) r (1 + O!s) 

x 2F 1 (-O!s,O!s +O!t+ 1;1;1}. (2) 

Furthermore, Bialas and Pokorski8 pointed out that 
the five-particle amplitude as generalized by Bar­
dakci and Ruegg2 is a special case of the general­
ized hyper geometric function 3F2 (a, b , c; d, e; w) at 
W = 1: 

( 
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- ~4 - 0!45'- 'tl'12 - 0!23; 1). (3) 

The question immediately arises as to what the 
corresponding statements for the higher amplitudes 
are. We wish to make the following observations: 

(a) The N-particle Veneziano amplitudes4- 6 ,9-11 

VN,N ~ 6, evidently do not belong to any familiar 
class of generalized hypergeometric functions. 
Thus a naive extrapolation that V6 might be related 
to some function like pFq(a1 .•. ap;b1 , ..• ,bq;w) 
at W = 1 is obviously false. (b) Radon structure: 
The class of generalized Veneziano amplitudes 
4- 6,9 -11 corresponding to the so-called tree graphs 
may be regarded as the boundary values of a new 
class of generalized hyper geometric functions in 
several variables. This class of functions satisfies 
the criterion that they are Radon transforms of pro­
ducts of linear forms.13 On the other hand, this 
simply property apparently breaks down when one 
considers the generalized amplitudes (for N> 4) 
corresponding to the nonplanar graphs, such as 
those discussed by Virasoro14 and Mandelstam.I 5 

2. GENERALIZED VENEZIANO AMPLITUDES 
AS BOUNDARY VALUES OF A CLASS OF 
GENERALIZED HYPERGEOMETRIC FUNC­
TIONS 

We define a class of generalized hypergeometric 
functions F(n)(f1.t,b l ,clj;W ij ) of ~n(n - 1} variables 
Wjj as follows: 

F(n)(aj,b
" 

c'i' WI) 
1 f n n ak b 

= r·· ndxkn[Xk (1-xk ) k] 
o k=1 k=1 

c" X n, (Xl - Wlrj ) J 
j<J 

(4) 

These functions justify the name of generalized 
hype.rgeometric functions in the sense of Gel'fand,13 
namely, they are Radon transforms of products 
of linear forms in an (n + I)-dimensional space. 
Obviously, one can write 

F(n) (a"b l , Cjj;wi ) 

nt1 N Sk 
= r· ·In dx k6(1- L:xj)n (~(k),X) , 

k=l k=1 

where N = ~n (n + 3) and 
,,+1 

(~(k),x) =:B ~(k)Xi 
1=1 

is a linear form in X with coefficients ~~. The 
w's enter through the ~'s. 

(5) 

Special cases of F(n) are easily recognizable, for 
example, 

F(1)(a,b) = r(a + 1)r( - a) 

x 2F1 (a + 1,- (a + b + 1); 1; 1) (6) 

F(2)(ai' b
" 

c12; W12} 

r(a2 + l)r(b2 + 1} r(a1 + c12 + l}r(b 1 + 1) 

r(a2 + b2 + 2} 

(7) 

As far as the author is aware, F(n) for n > 3 does 
not seem to correspond to any known function in 
the mathematical literature. 

It can be easily verified that by simple change of 
variables, the (n -t- 3)-point generalized Venezi­
ano function 4- 6 ,9-11 can be brought to the form 
of Eq. (4) with all wij = 1,namely, 
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where the parameters [analogs of the (Xi' in Eq. 
(3)] entering in Vn+ 3 are combinations 6f the a's, 
b's,and c's. 

To be precise, the suggested change of variables for 
V .. + 3 consists of letting 

k=1,2, ... ,n, (9) 

where the u's are the usual integration variables 
4-6,9-11 successively associated with the internal 
lines of a multiperipheral graph. This prescription 
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can be easily checked with the aid of Chan's 
explicit formulas 4-6 for n = 3 and n = 4, or with 
the form written down by Bardakci and Ruegg11 • 

In a following paper, we shall study the structure 
of the generalized Veneziano amplitudes from the 
pOint of view of group representations. 
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An attempt is made to generalize a result of Vilenkin that the beta function (being adopted as Veneziano 
formula for four-particle processes) appears as the kernel (in the integral) of the irreducible represen­
tation (in the Mellin-transformed space) of the group of 2 x 2 unimodular triangular matrices. It is shown 
that with a modified multiplier in the Gel'fand-Naimark prescription for the representation of the group of 
(n + 1) x (n + 1) unimodular triangular matrices, the (tree-graph) generalized Veneziano amplitude for 
(n + 3)-particle processes is recovered by a limiting procedure. 

1. INTRODUCTION 

In a previous paper, 1 we discussed the functional 
structure of the (n + 3)-point (tree-graph) Vene­
ziano amplitudes viewed as the boundary values 
of a new class of generalized hypergeometric 
functions having the property that they are the 
Radon transforms of products of linear forms in 
an (n + 1)-dimensional space. 

In this paper, we shall investigate possible group 
theoretic content of the generalized Veneziano 
amplitudes. 

Many special functions have acquired a new le"l!.el 
of respectability as well as a deeper raison d'etre 
when it can be shown that a given function 
occurs naturally in the representation theory of 
certain groups, even though this connection is in 
general not one to one. While it is by now more 
or less a standard textbook exercise2 - 5 in going 
from the representations of known groups to known 
functions,6 the converse route (namely, given the 
function, finding the group) is obviously much 
more hazardous. Nevertheless, we venture to 

point out that, in the mathematical literature, cer­
tain results exist for the connection between the 
representations of the group SL(2, R) and the 
Gauss hyper geometric function 2F 1 (a, b; c; x) and, 
in particular, the special case of triangular mat­
rices of SL(2, R) yields the beta function as the 
kernel. 7 

The apparent interest in the Veneziano modelS 
perhaps justifies an attempt to generalize the 
Vilenkin result for the beta function. 

A straightforward application of the Gel'fand­
Naimark scheme9 for the irreducible representa­
tions of (n + 1) x (n + 1) unimodular triangular 
matrices will yield in general a class p,f functions 
different from the class of functions F n) discussed 
in Paper I. The diff.erences generally are. twofold. 
(i) In one aspect, the multiplier in the Gel'fand­
Naimark scheme, which consists of the products 
of n prinCipal minors 10 1l1>. p+l" 'n+1 (p = 2, ... , 
n + 1), is found to be insufficient in generating all 
the desired tree-graph links in the Venezi::).Ilo 
formula. One can remedy this if one modifies the 
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multiplier by a product of t(n - 1)(n - 2) uniquely 
defined cofactors. As an example, the case n = 4 
will call for factors of A23, A34, and A234 in addi­
tion to those A2H5,A345,A4s,and As inherent in 
the Gel'fand-Naimark scheme. (ii) On the other 
hand, the group of (n + 1) x (n + 1) unimodular 
triangular matrices for n > 2 are actually richer 
than necessary for generating the Veneziano 
functions. To specialize, we only need the non­
vanishing entries in the elements gii+1(i=l, •••• n) 

besides the diagonal elements. In order to pre­
serve the group property, we cannot arbitrarily 
set those unwanted elements directly equal to zero 
since this special subset of triangular matrices 
is not closed under group multiplication. So, one 
can only approach the desired result by letting 
some parameters vanish in the limit sense. 

Under these two provisos, the tree-graph 
generalized Veneziano functions are recovered 
from representations of (n + 1) x (n + 1) uni­
modular triangular matrices. 

For the sake of readability, the essential steps 
in the establishment7 of the connection between 
the beta function and the representation of the 
2 x 2 unimodular triangular matrices are sum­
marized in Sec. 2. This will serve as a prototype 
upon which our generalization will be based. We 
hope that by going over this simplest case, our 
generalization to the higher-rank case will not 
be obscured by the mounting algebraic complexi­
ties. To keep the notation straight, we devoted 
Sec.3 to setting up the Gel'fand-Naimark machi­
nery for the representations of (n + 1) x (n + 1) 
unimodular matrices. A modified multiplier will 
be defined and the representation operator will 
be carried into the Mellin-transformed space. 
A limiting procedure will be stated to get to the 
generalized Veneziano function. 

2. BETA FUNCTION AND GROUP OF 2 x 2 
UNIMODULAR TRIANGULAR MATRICES 

The essential steps in the derivation are as 
follows: 7 

A. Irreducible Representation of SL(2, R) 

Step 1: The representation is to be realized 
in the space of (infinitely differentiable, square­
integrable) homogeneous functions of degree p. 
A signature factor €(x) is included. On account 
of homogeneity, we have, for 

(1) 

where €(x) is a short-hand notation for xl Ix I. 

Note that the representation is unitary for purf' 
imaginary p. 

Step 2: (a) Carry the representation inte 
the Mellin-transformed space. It will be con­
venient to separate out the support properties 
over the positive and negative half-spaces: 

Tgf±(s) = L: dzz:-
1

Ig 12z +g22 1P 

where 

f:(s) == L: dz z:-~(z), (3) 

z! == e(z)z s, [e (z) is the usual step function 1, 
(4a) 

z~ == e(- z)(- z)s. (4b) 

(b) Re-expressing f(x) in terms of h(t) by making 
an inverse Mellin transform and interchanging the 
order of integration which can be justified, we get, 
by writing in the matrix form, 

where the kernel is given by 

Step 3: Identification: For the case of 2 x 2 
Hermitian or unitary matrices, the kernel is 
readily recognized as the Gauss hypergeometric 
function 2F 1. 

B. 'The Special Case of Triangular Matrices 

In this case, the kernel is reduced to the beta 
function. Take 

K.. (s, t;p;g) = (2ni)-1 1000 

dzz s -t-l(1 + az)itt 

= (2ni)-1 at-s{3(s - t, - P - s). (8) 

3. REPRESENTATIONS OF (n + 1) x (n + 1) UNI­
MODULAR TRIANGULAR MATRICES 

We now generalize the discussion of Sec. 2 to the 
case of general n. 

Step 1: The representation will be realized 
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in the space of (infinitely differentiable, square­
integrable) functions f(z ij) such that 

(9) 

where Tg is the representation operator corres­
ponding to the group element g. The set of 
variables Zij' i > j, in general are tn{n + 1) in 
number and are cast in the form of a triangular 
matrix with Zii = 1 along the diagonal: 

1 o 1 

1 

Z= (10) 

The matrix g in (9) is defined as 

~ 

g == zg. (11) 

The variables Z ij on the right-hand side of (9) 
are given as follows: 

gi i+1 •• , 
~ ~ ~ 

gi+1; g i+1,i+1 ••• gi+1,n+1 

~ 

gn+1,n+1 

where 

gii g; 1+1 g;s 
:.. ~ 

gi+1i g ;+1,i+1 
... 

g;+1,s 

6 i i+1· ,·s -

g s,i+1 g 8,S 

i.e., 6; ;+1"'S is a short-h~nd notation for the 
principal minor of matrix g starting from the 

(13) 

(ii)th element and ending with the (ss)th element. 1o 

For the multiplier ali) in (9), we choose the 
following expression: 

with the understanding that 

(15) 

The block of terms with j = n corresponds to the 

multiplier of Gel'fand-Naimark,9 while the pre­
sence of the remainder factors from j = 2 to 
j = n - 1 may be interpreted as due to the process 
of cyclic completion. 

Step 2: With nearly the same procedure as 
carried out in Sec. 2, we cast now the representa­
tion in the Mellin-transformed space. For the 
eventual purpose we have in mind, we shall only 
consider the special case by setting 

Z;j = 0 if i > j + 1. 

Thus there are altogether n variables Z ;+1 i • 

We get the analog of Eq. (2): 

ExpreSSing f in terms of the f gives 

- JC+i ooJ n 
TgJ", ... ±(8 i+1 .;) = c~;,;" n dtk+1k 

k=1 
~ (n) 1. 

XLJK(U) ••• (H)(S,t;g) ± •• ",,{t j +1,j)' 

where 

1 f <Xl j. n == -- ••• n dz .. 
(27Ti)n -00 i=1 t+1,t 

- t·+1 · ~ 
x ~(Zj+1.j): .J a(g). 

(16) 

(17) 

(18) 

(19) 

Step 3: Identification: To specialize, we take g 
to be triangular: 

gij=O for i>j. gii=1. (20) 

Our main proposition will be the following: 

Lemma: In the limlt of vanishing g ij for 
j > i + 1, the kernel K +~) •• + given by (19) reduces 
to the (n + 3)-point Veneziano function of the 
form 1 

(21) 

Proof: We shall make the technical assumption 
that the limit g ij ~ 0 for j > i + 1 can be taken 
inside the integral (19). When that is the case, the 
matrix g of (11) takes the form of (22), where a 
superscript 0 denotes the limit when appropriate: 
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1 0 z2l 1 

0 z32 1 

gO= zgo = 

0 0 zn+ln 1 

All the minors 6, r .. s of gO can be evaluated in a 
straightforward manner. The essential step in­
volved is showing that, by appropriate change of 
variables, all the factors in (21) are recovered 
from (19). 

We find the following sequence of variable trans­
formations convenient: (i) First scale Zi+l i by 
gi i+1' Le., let 

1 

i = 1,"', n, (23) 

(ii) Let 

i == 1,"', n. 

The range for v i is obviously (O,~. (iii) Let 

Xl == I-v2 (1-v t ), 

x 2 == 1 - v2 ' 

X 3 =x2 V 3 ' 

x 4 == x3 [1 - v4 (1 - v 3)rt, 

X - X g~O 6,0 /t::.o m- 3 44 56 •.• m+1 456 ••• m+l' 

5.,,; m.,,; n. 

(24) 

(25) 
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gl2 o ... 0 

1 gl3 

1 

(22) 

0 
• g;. n+1 

1 

We note in passing that the inverse transformations 
from x to v can all be expressed in terms of the an­
harmonic ratio of four points: 

v 1 ==R(x l ,l,x2 ,00), 

v 2 == R(x2, 0, 1, 00), 

v3 == R(X3,x2, 0, 00), 

v 4 == R(x4 ,x2,x3, 0), 

vm==R(xm,x2,xm-l,xm-2) for 5.,,;m.,,;n, 

where 

R = (~l - ~3) (~2 - ~4) 
(~l' ~2' ~3' ~4) - (~l - ~4) (~2 - ~3) 

(26) 

(27) 

is the so-called anharmonic ratio of four points.l1 

It is then a simple matter to verify that the set 
of factors in (19) is mapped into the set of factors 
in (21). The coefficients a's, b's, c's in (21) are 
expressible as linear combination of the s's, t's 
and p's in (19). 

6 Such as (i) from the group of rotations in three dimensions 
0(3) to the Jacobi polynomials which include the Legendre 
polynomials as special cases, (ii) from the group of Euclidean 
motions in two dimensiOns E(2) to the Bessel functions, (iii) 
from the Poincare group in two dimensions to the Hankel 
functions, etc. 

7 Ref. 3, Chap. 7, especially p. 367. 
8 See, e.g., Paper I, Ref. 12. 
9 1. M. Gel 'fand and M. A. Naimark, Unitiire Darstellungen der 

Klassischen Gruppen (Akademie-Verlag, Berlin, 1957). 
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The quantal problem of a particle interacting in one dimension with an external time-dependent quad­
ratic potential and a constant inverse square potential is exactly solved. The solutions are found both 
in the SchrBdinger representation, by using a generating function or a time-dependent raising operator, 
and in the Heisenberg picture. They depend only on the solution of the classical harmonic oscillator. 
The generalizations to the n-dimensional problem and to the problem of N particles in one dimension, 
interacting pairwise via a quadratic time-dependent potential and a constant inverse square potential, 
are finally sketched. 

1. INTRODUCTION 

It is well known that the time-dependent SchrB­
dinger equation only in few cases can be exactly 
solved, so that usually approximation methods are 
needed. An exact solution can then prOVide, as 
well as a possible model for physical phenomena, 

where w(t) is a regular function of the time and g 
is a constant g > - 1I2/8m to prevent collapse. 4 

a significiant test for these ap,proximation methods. 

The harmonic oscillator with variable frequency is 
one of these exactly solvable problems largely 
studied for its great physical interest and its rela­
tive simplicity.1-3. 

In this paper we consider a perturbed harmonic 
oscillator with a time-dependent frequency that 
is the one-dimensional problem of a particle inter­
acting with an external quadratic time-dependent 
potential and a constant inversely quadratic poten­
tial. We give the explicit solutions of the time-de­
pendent SchrBdinger equation that at t = 0 repro­
duce the eigenfunctions of the stationary problem 
(i.e., the case of a constant strength of the force). 
So the general solution is found. It is shown that 
it depends only on the solution of the classical im­
perturbed oscillator. 

In Sec.2 the problem is solved by introducing a time 
dependent generating function. In Sec.3 a raising 
operator is found for the stationary problem, and 
its generalization to the time-dependent case is 
given. In Sec. 4 the Heisenberg representation is 
studied. Finally in Sec. 5 the previous results are 
used to sketch the solutions of the n-dimensional 
problem and of the more complicated problem of 
N particles in one dimension interacting pairwise 
via the sum of a time-dependent quadratic poten­
tial and a constant inversely quadratic potential. 

2. SOLUTION VIA THE GENERATING 
FUNCTION METHOD 

Let the Hamiltonian of the system be 

The time-dependent SchrMinger equation is 

(- ~~ ::2 + !mw2(t)x2 + b)1/I(x, t) =:: ilIft 1/I(x, t). 
(2.2) 

We shall confine ourselves in the sector x ;, 0; in 
fact, the Singular nature of the g/x2 term forbids 
any transition between the sectors x > 0 and x < 0, 
so that the solution can be extended to the x < 0 
region without any further condition of continuity. 

We want to find the solutions 1/In (x, t) of Eq. (2. 2) 
which reproduce at t = 0 solutions of the station­
ary SchrOdinger equation [w(O) = wo]: 

( - 2~ ilz + !mw5x2 + ~) <I> (x) = E<I>(x). (2.3) 

The solutions of Eq. (2. 3) are5 

En = IIw o(2n + a + 1), 

where 

a = i (1 + 8mg/1I2)1/2. 

We introduce the generating function 

~ (r(a + n + i»)1/2 n 
G(z,x, t) = ~o r(n + 1) +n(x, t)z , 

where z is a subsidiary variable. 

(2.5) 

(2.6) 

(2.7) 

G(z,x, t) satisfies Eq. (2. 2) with initial conditions 
[from Eq. (2. 4)] 

H(t) =p2/2m + imw2(t)x2 +g/x2, (
4mWO)1/4 (mwo ,\(2a+ll/4 

(2.1) G(z,x,O) = -1I- If x~ 
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(
mwo 2 (z + 1») -(a+l) 

x exp -- x -_ (1 - z) • 
21f (z - 1) 

We make the ansatz 

(2.8) 3. RAISING OPERATOR 

The linearity of the energy spectrum of the sta­
tionary case suggests the existence of a raising 
operator A+, obeying the equation 

G(z, x, t) == Aa(z, t)x a +1 / 2 exp[j3(z, t)x2 ], (2.9) [H(O) , A+] == (~E)A+, [H(O),A] == - (~E)A. (3.1) 

where 

(2.10) 

Inserting Eq. (2. 9) in (2.2) and in (2.8), we obtain 

mwo z + 1 
a@(:l t) == i ~ 132 - i;;; w2 (t), fl(z,O) == 21f z _ l' 

aa~l z) == i ~ (a + 1)a(z, t)f3(z, t), 

a(z, 0) == (1 - zr(a+l). 

(2.11) 

(2. 12) 

If we define T/(t) == 11)( t) I exp[ iy(t)] as the solution 
of the classical equation of motion 

1)(0) == 1, ~(O) == - iwo,(2.13) 

from Eqs (2. 11) and (2.12) we obtain 

Q(z, t) == [1)(t)r(a+l) exp[2iy(t) (a + 1)] 

{1- z exp[2iy(t)]}-(a+l) , 

(3(t) == ; (~m - 2iy(t){1 - z exp[2iY(t)]}-1). (2.15) 

Thus 

G(z,x, t) = Ax(2a+ll2)[71(t)r(a+l) (1- sr(a+l) 

(
im ~(t)'r . x exp 211 1)(t + 2zy(t)(a + 1) 

+ ?!!: Y(t)X2) exp(- m y(t)x2 _S_) 
If If s-1' 

(2.16) 

where s == z exp[2iy(t)]. 

We have thereby obtained an expression of 
G(z, x, t) formally similar to Eq. (2. 8); hence from 
Eq. (2.7) we have 

[ (
mwo) a+ 1 r(n + 1) ] 1/2 

l/Jn(x,t)::= 2 ~ rea + n + 1) 
[T/(t) r(a+ 1) 

+(2 a+ 1)/2 [ 
X x exp 2iy(tHa + n + 1) 

x ~ 2 (i~(t) + '(t)~ JL a (- mx
2 '(t)~ (2.17) If X 2ry(t) Y 'l n 1i y '). 

Using the relation 11)(t) 12.y(t) == - wo, one can 
verify that the solutions l/J n (x, t) of Eq. (2. 17) re­
duce, for g ::= 0, to the solutions of the time-depen­
dent harmonic oscillator -V 2n + 1 (x ,t) given in Ref. 2. 

A solution of this equation is given by 

(3.2) 

where a+ is the raising operator of the harmonic 
oscillator: 

a+::=i(2mJlwo)-1/2(-ti a: +mwoX)' (3.3) 

The corresponding variation in energy is given by 

~E ::= 2fiwo' (3.4) 

The energy spectrum is lower bounded, and so we 
must find the eigenfunctions l/Jk (x) of the stationary 
problem for which the equation 

(3.5) 

holds. 

The corresponding eigenvalues are easily found by 
the relation 

(3.6) 

from which the ground-state energy results: 

(3.7) 

where only the upper sign is allowed, as we can 
see at glance from Eq. (3. 7). 

Once l/Jo(x) is determined, the whole set of eigen­
functions can be built up by means of the operator 
A+. 

To solve now the time-dependent problem, we seek, 
in analogy with the method of Ref. 3 concerning the 
pure harmonic oscillator, a time-dependent opera­
tor .{+ (x , a lax, t) characterized by the following 
properties: 

(a) Operating on a solution I{I (x, t) of the time­
dependent Schrodinger equation, it gives another 
solution ,r;: (x , t) of the same equation. 

(b) At t ::= 0 it reduces to the operator A + defined 
by Eq. (3.2). 

It is easily proved that .A: + (x ,0 lox, t) must satisfy 
the equation3 
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[H(t) A+] = 'n aA+ , tat' (3.8) 

with the initial conditions 

(3.9) 

The operator obtained by the following ansatz, 

A+ (t) = (E1 (t) a: + E2(t)X)2 + ;;t), (3.10) 

satisfies Eqs.(3.8) and (3.9),if E1 (t), E 2 (t),and 
E3 (t) are solutions of the simple equations 

E1(t) +w2(t)E 1(t) =0, E 1 (O) =-i(ff/2mwo)1/2, 

E 2(t) = - i(m/n)'E1 (t), E2 (0) = i(mwo/21'i)1/2, 

E 3(t) =- (2m/n2)gE1(t)2. (3.11) 

The time dependence of any given initial state can 
be obtained once we know the solution l/Io(x,t), 
which for t = 0 reduces to the ground-state eigen­
function. It can be observed that 

(3.12) 

holds, which is an ordinary differential equation in 
the variable x with time-dependent coefficients. 
The solution l/Io(X, t) is then found by solving Eq. 
(3.12), and a complete set of solutions of Eq. (2.2) 
can be obtained by multiple applications of the 
time-dependent raising operator A +(x, a/ax, t). 

4. HEISENBERG REPRESENTATION 

In the Heisenberg representation we are interested 
at the time evolution of the operators x (t) and pet); 
it is convenient to study first the evolution of three 
operators B(t), e(t), and D(t) characterized by the 
initial conditions 

B(O) = :~ g + ,..-;;-, 
x 2 

(4.1) 

e(o) = x2, (4.2) 

15(0) = xp + px . (4.3) 

Starting from the Heisenberg equations 

- in d!Y) = [H(t) , B(t)], 

- in d~ft) = [H(t),C(t)], (4.4) 

- in d£(t) = [H(t),D(t)], 

we obtain the system of differential linear equa­
tions: 

dBd~t(l) = - w2

2
(t) D(t), dC(I) _ QjjJ 

dt - In ' 

d ~() ~ ~ dt D t = 4B(t) - 2mw2(t)C(t). 

(4.5) 

We make the ansatz that B(t), C(t), and 15(1) can be 
expressed as a linear combination (with time-de­
~endent coefficients) of the operators B(O), C(O), 
D(O); comparing then separately in Eq. (4. 5) the 
S,.0efficients of the three operators B(O), C(O), and 
D(O), we obtain a set of nine ordinary linear differ­
ential equations, which give a link between the nine 
coefficients. In conclusion we can write the solu­
tions of Eq. (4. 5) in the form 

B(t) = (1/w5)ii (t)B(O) + tmi~(I)e(O) 

+ (l/w o) 1m [.i~(t)]D(O), 

e(t) = (2/W5m) tI(I)B(O) + f~(I)C(O) 

+ (2/mw o) 1m [J1 (t)]D (0) , 

D(t) = (4/w5) i1 (t)/1 (t)B(O) 

(4.6) 

+ 2mi2 (t)f2 (t)C(O) + (4/w o) ImLt3(t)j3(t)]D(0), 

where the f J(l)s satisfy the classical oscillator 
equation 

with the initial conditions 

i1 (0) = 0, 12 (0) = 1, 13 (0) = 1, 

i 2 (0) = 0, h(O) = t iw o' 

(4.7) 

i 1 (o)=wO' 

(4.8) 

Now it is a trivial matter to express x(t) andp(t) 
in terms of B (t) and 15(1): 

x2 (t) = C(t), p(t) = [D(l) - ili][2X(t)]-l, (4.9) 

and this achieves our task. 

5. GENERALIZATIONS 

(a) Let us consider a particle moving in a potential 

VCr) = imw2 (t) Ir 12 + g/ Ir 12 (5. 1) 

in an n-dimensional space. By expanding the wave­
function in terms of hyperspherical harmonics, the 
problem is immediately reduced to the angular 
equation of a free particle and to a radial equation 
of the form of (2. 2), where the effective coupling 
constant is now the sum of g plus 1/2m times the 
eigenvalue of the squared total hyperangular 
momentum. 

(b) Let us consider Nidentical particles in one dimen­
sion interacting pairwise via an inverse square 
potential and a quadratic time-dependent potential: 

V ij = !mw2 (t) (Xi - x)2 + g(x i - xJ )-2. (5.2) 
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The stationary problem has been studied by Calo­
gero,6 who gave the whole set of eigenvalues and 
the characterization of the eigenfunctions. Intro­
ducing the mean square radius r, 

(5.3) 

we separate the problem into an angular part inde­
pendent on w(t) and a radial part of the form of 
Eq. (2.2), where the effective coupling constant, as 
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in the previous case, depends on the eigenvalues of 
an operator acting only on the" angular" variables. 

The problems (a) and (b) can then be solved by 
using the generating function method. 

The raising operator method can be, in principle, 
applied to both problems, but the stationary prob­
lems are not yet solved by this method, owing to 
their intrinsiC complications. The research for the 
complete algebra of the raising operators in case 
(b), in particular, for the three-body problem 
is in progress. 
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We give precise conditions suffiCient to guarantee that an infinite system will act as a thermal reservoir 
for any of its finite parts. 1n particular we show that these conditions are satisfied for the X - Y model. 
Further results on the ergodic behavior and general relaxation properties of the systems considered are 
also obtained directly from the CO-algebraic methods used in the main body of the paper. 

1. HEURISTIC STATEMENT OF THE PROBLEM 

A physical system is ordinarily defined by the 
attribution of a Hamiltonian H(O) to every finite 
piece ~(O) of it; here 0 denotes the spatial exten­
sion of ~(O). 

Given ~(O), we cut out of it a piece ~(Oo) and de­
note by ~(0\00) the remaining part of ~(O). One 
would presume, according to the phenomenological 
laws of thermodynamics, that if 0 is very large 
compared to 0 0 , then ~(0\00) serves as a thermal 
reservoir for ~(Oo). The traditional approach of 
statistical mechanics suggests that the mechanical 
description of this situation will be mathematically 
simpler (and thus more efficient) if the limit of 
large systems is taken. To this effect, we shall 
first suppose that ~(Oo) is of finite extent and that 
~(O) is of infinite extent in all directions around 
0 0 , We shall then discuss briefly the thermodyna­
mical consequences of letting 0 0 become very 
large. 

To formulate more specifically the problem to 
which we want to address ourselves, we consider 
an initial situation where (i) the system ~(O 0)' cut 
off from the rest of ~(O), is in the canonical equili­
brium state 1>0 B corresponding to H(Oo) and the 
natural temper?ttJ're f3 0 and (ii) the system ~(O) 
extends over the entire physical space and ~(0\00), 
cut off from ~(Oo), is in the state 1> R.B obtained as 
the thermodynamicailimit (as 0' becomes infinite) 
of the states 1> 0'\0 .8' which are defined as the 
canonical equilibrfum states computed from 
H(n '\0, 0) for the natural temperature f3 ... f3 o' One 
would then expect that this state of the composite 
system "relaxes" to the state 1> S+R,B obtained as 
the thermodynamical limit of the canonical equili­
brium states 1> fl'.B computed from H(O'), these 
Hamiltonians taking into account the interactions 
between ~(Oo) and ~(O\Oo). 

On a more modest level, one would at least expect 
that the time average (as well as the space average) 
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of the initial state described above is equal to 
¢ S+R,8. 

If, furthermore, no is taken to be large enough, one 
would expect that, well inside no, the system b(no) 
would, in the same sense as above, approach its 
own thermal equilibrium for the natural tempera­
ture {3. 

These expected properties are clearly of an ergo­
dic character. Pathological cases where they 
would not be satisfied are likely to occur as well. 
The question to which we want to address our­
selves is rather whether one can prove explicitly 
(Le., without uncontrollable approximations or un­
warranted statistical assumptions) that there are 
mechanical models that do exhibit these proper­
ties. 

We shall present such a proof. Some related ergo­
dic properties will be proven as well, along the 
principal line of argument. We shall then touch 
upon the question of an actual (i.e., pointwi se in 
time) relaxation to equilibrium. The latter prob­
lem is that of ultimate physical interest. Some re­
sults are already known in this connection. 1 ,2 How­
ever, information on the latter type of problem is 
usually obtained through detailed computations 
which are restricted to the models analyzed (e.g., 
one makes use of the precise behavior of the exci­
tation spectrum as the thermodynamical limit is 
taken). In contrast, the results presented in this 
paper are obtained by methods of a more general 
character, and as such, stand a better chance to ex­
tend further than the details speCific to the models 
treated. 

2. THE X-Y MODEL 

We consider a one-dimensional lattice-spin sys­
tem. To every site i in Z is attached a spin- ~ 
particle ai' and hence a copy <1i of the C*-algebra 
of the 2 x 2 matrices. The observables attached 
to each finite region n in Z are therefore the Her­
mitian elements of the C*-algebra cto= i6fo. ct i • and 
the C*-algebra of quasilocal observables on the 
infinite lattice is the C*-inductive limit: 

To every interval [a,b] = {i( Zla "" i "" b} of Z we 
attribute the Hamiltonian 

b-1 x x Y Y 
H = - L; (1 + ~) a i (J i+ 1 + (1 - ~) a i a i+ 1 , 

[a.b] a=l 

the time evolution a [a, bJ (I) defined by 

a[a.bJ (I) [A] = exp(- iH[a.b/)A exp(iH[a,b] t) 

for all A ( ala. b) , 

and the canonical equilibrium state ¢[a.b] defined 
by 

(¢[a,b] ;A) = Tr[exp(- j3H[a.b])A]/Tr[exp(- j3H[a,b])] 

for all A ( a[a,b]' 

From the fact that the interaction from which the 
Hamiltonian H[a, b) is built is of finite range, we 
know3 ,4 that a time evolution and a Gibbs state can 
be naturally defined for the infinite system des­
cribed by <1. Specifically there exists a one-para­
meter, strongly continuous group of automorphisms 
a (l) of <1 and a state ¢ on <1 such that, for every 
finite no in Z and A ( (io. , 

o 

a-+-2~~+00 lIa(i) [A] - a[a,b] (i) [A]II = 0, 

a .... -}~re+oo I (¢;A) - (¢[a,b) ;A)I = o. 

Furthermore, ¢ is uniformly clustering, Le., for 
every A ( a and E > 0 there exists a finite N such 
that 

for all B in <1(Z\[-N .N)' Moreover, ¢ satisfies the 
KMS boundary condition with respect to a (l) (for 
definitions see Ref. 5). As a consequence 6 of the 
uniform clustering of ¢, ¢ is 4 extremal with res­
pect to the KMS condition; so I/-t KMS and I/-t "" >..¢ 
together imply I/-t =; ¢. 

We now define the automorphism y of a by means 
of 

y[a;J = a;;y[a;] = - a;;y[aiJ = - ai 

for all i in Z. Let us denote bya e theC*-subalge­
bra of <1 conSisting of its "even" elements, i.e.~ 

Clearly H[a.bJ belongs to ae • As a consequence,y 
commutes with each a o.(t) and hence with {a (t) It ( 1R}; 
also, ¢ is even (i.e., (¢; y[A]) = (¢; A) for all A ( 
a). Hence ¢ is determined by its restriction ¢e 
to ae , and a (l) maps <1e onto itself. Let a e (l) de­
note the restriction of a (l) to <1e' From the corres­
ponding properties of ¢, one concludes immediately 
that ¢e is KMS with respect to ae(t) and is uni­
formly clustering on ae • One then checks that the 
arguments of Ref. 6, Properties 2.2 and 2. 3, go 
through for <le' and hence one concludes that ¢e is 
extremal KMS on a e • 

The arguments developed so far apply to any one­
dimensional lattice-spin system with even, finite­
range, lattice-invariant interaction. We now use a 
specific ergodic property of the X - Y model. As is 
well known, the Jordan-Wigner transformation7 

brings H[a,b] into a form which is quadratic in 
Fermi operators. It can be seen that in this form 
the interaction satisfies the assumptions of theo­
rem II in Ref. 8, so that {a e (i) I l (1R} acts as a 
strongly asymptotically Abelian group of automor­
phisms of <le' Le., 

lim II [A, a e (l) [BJ] II = 0 for all A, B in ae • 

I t ' .... 00 

Therefore, if 11 is any invariant mean on 1R, we have 



                                                                                                                                    

R E L A X A T ION 0 FLO CAL THE R MAL D E V I A T ION S 2045 

for all A,B and C in 6.e • Consequently,9 the state 
cJ> e on ae is not only extremal KMS, but also extre­
mal time invariant. Hence I/; e ~ XcJ> e and I/;e time 
invariant together imply I/; e = cJ>e' In particular, 
if I/; is even on a, time invariant, and satisfies I/; ~ 
XcJ>, we can conclude that I/; = cJ>, a fact that we shall 
use repeatedly in the next section. 

3. ERGODIC BEHAVIOR 

Let [c, a] be a finite interval in Z. For each finite 
interval [a,b] in Z such that a < c -1 and b > a + 
1, we define 

with V independent of a and b. We then define the 
state cJ>[a,b) on a[a, b) by 

(cJ>~a ,b) ;A> = Tr[exp{- {3H~a,b)A]/Tr{- (3H~a,b]) 

Using Araki's proofs,4 it has been shown10 that a 
state cJ> C exists on a such that 

lim I (cJ>c;A) - (cJ>c ;A>I = 0 
a->-oo, b->+OO [a,h] 

for all A in a n and all finite 0 0 , Hence cJ> C can be 
interpreted as <the Gibbs state corresponding to the 
modified infinite chain obtained by cutting off the 
interaction between c - 1 and c and between a and 
a + 1. Moreover, there exists10 a real constant A 
such that cJ> C !S AcJ>. Let us now write 

as = a[C,dJ' aR = <1Z\ [c, dJ' 

Since a is isomorphicll to as Q9 a R and since 
cJ>~(resp. cJ>~), defined as the restriction of ¢;c to 
(1 (resp. (1 ), is the Gibbs state of the system 
d'z\[c, d]){resp. ~{[c, aD> for the temperature {3, 
we h~ve ¢;c;= ¢;; Q9 <p~'. Sin~e <P~ is faithful.on 
as {l.e., (<Ps;A A) = 0 lmplIes A = 0) and SInce 
(1s is finite dimensional, there exists a real con­
stant A s depending only on <P ~ such that I/; s ~ AS ¢ ~ 
for all states I/;s on as' It then follows easily that 

I/; == I/;s Q9 <p~ ~ AS¢c ~ XsA¢; 

for all I/; s on as' Since ¢ is invariant with respect 
to {O' (t) I t ( R}, we have further that, for any in­
variant mean 1) on R, the state 1)1/; defined by 

also satisfies 1)1/1 ~ AsA¢>. In particular, (1)1/I)e ~ 
ASA¢> e' Since ¢; e is extremal time invariant, 
(1)W)e == ¢;e' Now suppose that Ws is even on as and 
therefore that 1}1 is even on a. Since y commutes 
with {O'(t) I t E: JR.}, 1)W is also even. We have thus 
proven that, for any even state Ws on as and any 
invariant mean 11 on JR, 

as states on the whole algebra a. Incidentally, 

(1)(tJ; s ® ¢;~); A) can be computed to be 

. 1 J.T C hm-
T 

(I/;s® ¢R;O'(t)[A])at. 
T ... OO 0 

We emphasize in particular that for any natural 
temperature {30' the corresponding canonical equi-
librium state ¢> ~ ,13

0 
on as is even. Consequently, 

for any natural temperatures {30 and p, the time 
average of the initial state ¢; ~ ,8 == ¢ S ,8

0 
® ¢~,8 on 

the cut system S + R is equal 'to the canonical equi­
librium state ¢> /3 of the jOint system for the tem­
perature {3, independently of {30' (Since ¢/3 iS4 
extremal lattice invariant, the same result using 
space averages is easy to prove.) 

Hence the first ergodic property mentioned in Sec. 
1 is given a precise meaning, and is proven to hold 
for the model considered: The time average (and 
space average) of ¢; ~ ./3 coincides with ¢ /3 for all 
finite temperatures {:3~ and {:3. 

It has been shown 10 that the Gibbs state 1/1, corres­
ponding to a situation where H[a.b} is modified by 
a certain type of perturbation, eXlsts and satisfies 
1/1 ~ X¢;. This is in particular the case for the X - Y 
model and any local, fixed perturbation. If these 
perturbations are, moreover, even (such as 

V=- 2: B/< 
i€[c, d] 

or 

and switched off at t = 0, then we notice that an 
argument analogous to that developed above shows 
that the time average over positive times (as well 
as the space average) of the corresponding Gibbs 
states I/; coincides with ¢>. 

We now turn to the case where 0 0 can be taken to 
be very large (but still finite). Let 0 1 be any finite 
interval in Z. We know that on a, and hence a 
fortiori on an, ¢; n converges to ¢; in the weak*­
topology as n tends to infinity. Since 0 1 is finite, 
a~, is a finite-dimensional linear space, and so 
its weak"- and norm-topologies coincide. Conse­
quently, given E > 0 and 0 1 , there exists a finite 
0 0 :2 0 1 such that for all 02 0 0 

for all A in an andall states 1/1 considered above. 
Hence we can donclude that well inside 0 0 (namely 
in 0 1) 1)W is as close as one wants to the canonical 
equilibrium of ~(Oo) for the temperature /3. 

4. RELAXATION PROPERTIES 

To prove 1)W = ¢>, we used a very much weakened 
form of the strong asymptotic Abelian character of 
the action of {a e (t) I t ( R} on a e' namely 

for all A, B and C in a e , and for the restriction 
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CPe of the Gibbs state cP to (te' The strong asymp­
totic Abelian character of the evolution is evi­
dently much more stringent a condition (and, as 
such, is less likely to hold in general). It never­
theless does hold for the X - Y model, so that we 
can considerably strengthen the results of the 
previous section. These further results will be 
obtained by means of a generalization of an argu­
ment published by Kastler, 12 which we now 
describe. 

For any representation 7T of ae in some Hilbert 
space X, we denote by ~n the von Neumann algebra 
7T(<le) " n 7T«ty. Its commutant 3; is the von Neu­
mann algebra generated by 1T(ae )" and 1T(ae )', and 
hence by 1T«(le) and 1T«(le)/, Consequently, given 
any element B in a;, any E> 0, and any lJIi (i = 1, 2) 
in:re, there exists Bo = E;l 1T(A k)Bk, with Ak in 
6 e,Bk in 1T(<l~'and n finite, such that 

II(B-Bo)lJIill<SE, i=1,2. 

Using now the strong asymptotic Abelian character 
of {ae(t)lt ( lR} onae,we see that for each A in 
(le there exists a positive number T such that 

for all t with I t I ~ T. From these inequalities, we 
conclude that 

which is to say that, for any B in D'1l and A in ae , 

[B, 1T(a e (t}[AJ) 1 tends to zero in the weak operato~ 
topology as r t 1 tends to infinity. Let now 1T be pn­
mary and II lJI l II = IIlJI2 11 = 1. We form the states 
<1ti , i = 1,2, defined on <te by 

and notice that there exists a unitary operator U in 
(8 (X) = ~ ~ such that lJI 2 = UlJI1 and hence 

(lhiae (t)[A) - (1/I2iae(t)[A) 

= (lJI2, [u, 7T(ae (t)[A])]>1f 1). 

We conclude from this that for any twovector 
states 1/1 1 and 1/12 on 1T(ae ), which is assumed to be 
primary, we have 

lim 1(1/I1;ae (t)[A])-(1/I2;a e (t)[A]>1 =0 
! t! .... ao 

for all A in <te' 

* On leave of absence from the Department of Physics and 
Astronomy of the University of Rochester, Rochester, New 
York. 
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In particular, if CPe is extremal KMS, if 1T is the 
representation pf cte associated to CPe (and is thus 
primary), and if 1/1 e <S ACPe, then 

for all A in a e • 

Thus for the states l/J considered in the preceding 
section, which are even, we have not only 7)l/J = cP, 
but actually 

lim (l/J;a(t)[AJ) = (cp;A) 
!t1 .... ao 

for all A in a, Le., these states actually relax to 
the canonical equilibrium state ¢. 

5. CONCLUSION 

We have provided a positive answer to the ques­
tion to which we addressed ourselves: Thermal 
baths can indeed work in the sense set forth in 
Sec. 1. We also mention that the methods used to 
prove this result apply to some other situations. 
Indeed, the essential ingredients are (a) the time­
evolution acts in an asymptotically Abelian man­
ner on the even subalgebra6e and (b) the initial 
state ¢s s satisfies the following two properties: 
(i) ¢8o.a % even, (ii) ¢~.a <s. ~¢a for some posi­
tive number c. These condltlons also hold1o when 
(a') a uniform magnetic field B in the z direction 
is added to the X - Y Hamiltonian and (b') the initial 
state CP:' is the cano~ical e<:Iuilibrium state. c.orres­
ponding to (3 and B'(l) = B(l) for ~ll but a fImte 
number of sites i ( Z. Hence CP: (t) relaxes to the 
equilibrium state cp~, in agreement with results 
obtained by Abraham et at. 1 and Tjon. 2 The exact 
solubility of the X - Y model also enabled these 
authors to analyze in detail the excitation spectrum 
as the thermodynamic limit is taken; they then use 
this analysiS to compute the rate at which equili­
brium is reached. The purpose of the present paper 
was, rather, to emphasize some immediate conse­
quences of general ergodic properties, which we 
illustrate with the X - Y model. 
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A prescription is formulated by means of which one can write conditions for the existence of solutions of 
a nonlinear system expressing the unitarity of n x n symmetric matrices. These conditions are less 
restrictive than those analog to the Martin-Newton condition for the nonlinear integral equation repre­
senting the unitarity condition in the elastic region. At least for n " 4 these conditions are also neces­
sary. 

This paper is concerned with the following prob­
lem: Given a n x n unitary and symmetric matrix 

u = 1 + iT, (1) 

the elements of the T matrix having the form 

(2) 

under what conditions are the phases 1>ij deter­
mined when the moduli a . . are known? Equivalently, 
the problem is to find oui) under what conditions the 
nonlinear system of equations for the phases 1> 

j?: i=1,2, ... ,n, (3) 

which is an expression of the unitarity condition, 
has a solution. 

This problem may be considered interesting as it 
stands, and one might think of a number of physical 
applications in which it is relevant. Our own 
interest stemmed from a study of the nonlinear 
integral equation which represents the unitarity con­
dition in the elastic region. l Indeed, the system (3) 
can be viewed as emerging from a discretization 
of this integral equation. 

We shall begin by approaching the problem in a 
pedestrian manner and consider first the simplest 
nontrivial case of a 2 x 2 matrix. Many interest­
ing features of the problem are obscured by the 
simplicity of this case, but we shall still examine 
it for the sake of completeness. 

The system (3) is then 

sin1>ll = (1/ 2a ll)(ah + aI2)' (4a) 

(4b) 

sin1>t2 

= ~ [all COS(1)tl - 1>t2) + a2 2 COS(1)12 - <P22))' 
(4c) 

0= all sin(<Pl1 - ¢12) + a22 sin(1)12 - <P22) (4d) 

The first two equations obviously yield the phases 
of the diagonal elements, provided the conditions 

2all ?: all + af2 or 

1 - (1 - al2)1/2 :5 all :5 1 + (1 - al 2)1/2, 

2a22 ?: af2 + a~2 or (5) 

1- (1- ah)1/2 :5 a22 :5 1 + (1 - aI2 )1/2, 

which are meaningful only if 

(6) 

are satisfied. The third unknown 1>12 follows from 
either Eq. (4c), 

a l1 sin1>11 - a 22 sin<P22 
tan~- - -:-----=-:;::-::-:~-_=__----=-::_::_:, 

'1'12 - all COS1>tl - a2 2 cos<P22 

or (4d), 

all cos1>ll + a22 COS<P22 
tan 1> 12 =-----------

2 - all sin1>t 1 - a 22 sin<P22 

(7) 

(8) 

The expressions (7) and (8) are in fact identical. 

The inequalities (5) and (6) are therefore the 
necessary and sufficient conditions for the exis­
tence of at least one solution of the system (4) 
(note the trivial ambiguity: if 1> is a solution set, so 
is IT - <p). 

Although we will not be concerned specifically with 
the question of uniqueness, let us remark in pass­
ing that if condition (6) were "saturated", 

so that 

as well, there would be an infinity of solutions: 

1>11 == ¢>22 == ~IT, 1>12 == arbitrary, 

yielding matrices 

_ (0 ie i ¢12) U - .¢ 
ie I 12 0 ' 

which are unitary for any real 1>12. 

Let us consider now the more interesting case of 
3 x 3 matrices. The unitary system (3) reads 

sin<Pll == (1/2all)(a~l + a~2 + a13)' 

2a12 sin¢l2 == all a 12 cost <P11 - ¢12) 

+ a12a22 cos(1)12 - ¢22) 

+ a 13 a23 COS(¢l3 - ¢>23)' 

(9) 

(10) 

0== alla12 sin(<Pl1 - 1>12) + a12 a22 sin(1)12 - <P 22 ) 

+ a13a23 sin(1)13 - ¢23)' (11) 

2047 
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and to each of these three equations we should add 
two more, obtained through circular permutations 
of the indices. 

Again, we find equations [(9) and its circular per­
mutations J which provide directly the phases of the 
diagonal elements, if the inequality 

2a12 :::: a~l + ah + ah or 

1 - (1 - ar2 - ar3)1,12 (12) 

s all s 1 + (1 - ar2 - ar3)l,12 

and its circular permutations are fulfilled. The 
inequality (12) also implies that the inequality 

(13) 

and its circular permutations should also be ful­
filled, but now these conditions are no longer 
necessary and sufficient as well for the existence 
of real phases of nondiagonal elements as solu­
tions of either the system of three equations (10) 
or the system of three equations (11). 

In order to find these conditions, the most direct 
approach is of course to actually solve either the 
system (10) or the system (11) (indeed, either of 
them should yield the same solution) with respect 
to ¢12' ¢23' ¢l3-assuming that ¢11' ¢22' ¢33 have 
already been calculated from (9), subject to condi­
tions (12) and (13}--and read the conditions directly 
on the explicit expressions of the solution. 

This solving cah still be done relatively easy for 
3 x 3 matrices if, rather than considering the sys­
tems (10) or (11) separately, one chooses to com­
bine them. For instance, if one eliminates the dif­
ference ¢13 - ¢23 between Eqs. (10) and (11), one 
gets the equation 

A cos2¢12 + B sin2¢12 = C, 

where 

A = a 11a22 COS(¢l1 + ¢22) + a 11 sin¢l1 

+ a22 sin¢22 - 1, 

B = a 11a 22 sin(¢l1 + ¢22) - a11 COS¢ll 

- a22 COS¢22' 

C == (ar3a~3al~ - ah - a~2)/2 
+ all sin¢ll + a22 sin<1>22 - 1. 

Equation (14) has the solution 

(14) 

(15) 

tan<1>12 == [B ± (A2 + B2 - e 2)1/2]/(A + e), (16) 

which is real if, and only if, 

(17) 

This explicitly means that 

Similar expressions can be obtained for the re­
maining two phases <1>23 and <1>13 through circular 
permutations, but it is readily apparent that con­
dition (18) is invariant under such permutations. 
One should also note that the conditions of the type 
(13) are all fulfilled if (18) is fulfilled. Indeed, if 
one writes (18) as 

where x == a13a23/a12' it is clear that the right­
hand side cannot exceed unity for any x. 

We conclude, therefore, that the inequalities (12) 
and (18) are the necessary and sufficient conditions 
for the existence of a solution of the unitary sys­
tem for 3 x 3 matrices. 

Finding the existence conditions by actually solving 
the unitary system is not, however, a procedure 
that could be followed in general. Already for 
4 x 4 matrices, the algebraic effort is quite 
serious and, as n increases further, it becomes 
practically impossible. It is important, therefore, 
to devise a method by which the existence condi­
tions can be stated without actually solving the 
system (3). Such a method will be described in the 
following, and its correctness will be checked 
against the results obtained for 2 x 2 and 3 x 3 
matrices. 

There are, in fact, quite a number of possible in­
direct approaches to the problem, but none seems 
to lead faster and to a better result than the fixed­
point theorem approach which was also used by 
Martin and Newton. For the 3 x 3 matrices and 
the system of equations (10), we consider a three­
dimensional linear space of vectors x == (Xl' X2' x3). 
endowed with the norm 

II X II :: m~lxil. , (19) 

The system (10) can then be written as 

X == g(x) (20) 

(Xl == Sin<1>12' x2 = sin<1>23' X3 == sin¢13) and one 
can see without difficulty that the nonlinear opera­
tor g maps the ball 

II x II ::::: 1 (21) 

continuously into itself, provided the inequality 

(22) 

together with two other inequalities obtained 
through circular permutations, is fulfilled. It fol­
lows then from Brower fixed point theorem that 
the operator S has a fixed point in the ball (21), 
Le., that the system (10) has a solution. 

The inequalities (12) and (22) are the analog of the 
existence condition derived by Martin and Newton 
for the nonlinear integral equation. They are 
clearly not the necessary and sufficient conditions 
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for the existence of a solution of the unitary sys­
tem in this case, for we already know that these 
are (12) and (18) and the latter is by no means 
equivalent to the conditions (22). Just to illustrate 
the extent to which they may be different, let us 
consider the following numerical example: 

all = a22 = a33 = 9/5, 

a12 = a23 = a13 = 3/5v'2. 

The conditions (12) reduce then each to the in­
equality 1 ~ 1, but the conditions (22) each read, 

2 ~ 18/5 + 3/5J2 = 4.02. (?) 

Condition (18) is fulfilled: 

2 ~ 9/5.;2 = 1. 27 

so that a solution must exist. In fact, it is not very 
hard to find it: 

¢ll = ¢22 = ¢33 = 11/2, 

¢12 = ¢23 = ¢13 + 11, sin¢12 = 3/8.;2 

In spite of this inequivalence, there is a very sim­
pIe way leading from condition (22) to condition 
(18), and this is based on the observation that con­
dition (18), which is part of the system of neces­
sary and sufficient conditions, is independent of the 
moduli all' a 22 , a 33 • As a matter of fact, it can be 
proved quite easily that, if one assumes that con­
ditions (12) are fulfilled and concentrates just on 
the system (10), the necessary and sufficient con­
ditions for the existence of a solution of this sys­
tem cannot possibly involve the quantities all, 

a22' 0:33· This is simply because if follows from 
Eqs. (10) that 

a¢12 
aa

33 
= 0, 

(23) 

Hence, if the system (10) had a solution for fixed 
a 1 2' a 23 , a 13 and some all' a22' a33 with values 
within the ranges indicated in (12), it should also 
have a solution for the same values of a 1 2' a23' a 13, 

but other values of all' a22' a33 from some open 
neighborhood of the former values whiCh is still 
within the intervals (12). By continuity, one can 
thus cover the whole range of values allowed by 
(12) for all' a22' a 33 for fixed a12' a23' a13· 

Consequently, even if we did not know what the 
necessary and sufficient conditions really are, the 
mere fact that (22) involves the quantities all' a22, 
a33 would be a sure indication that they can only 
be a sufficient condition for the existence of a solu­
tion of (10). However, if for fixed a12' a 23, a12 one 

lets all' a22' a33 in (22) vary within the limits 
given in (12), one obtains a class of sufficient con­
ditions for a corresponding class of unitary sys­
tems, the least restrictive of which being those 
obtained by giving all' a22' a33 their minimum 
values allowed by (12). When one makes these sub­
stitutions, each of the conditions (22) becomes 
identical to condition (18). According to our obser­
vation then, by guaranteeing the existence of a 
solution of the unitary system in which, for given 
a12' a23' a1 3' the moduli all' a22' a33 have the 
minimum values compatible with (12), condition 
(18)-together with (12)-guarantees at the same 
time the existence of a solution of any other uni­
tary system involving the same a 1 2' a23' a13 but 
any other choice of values of all' a 2 2' a33 allowed 
by (12). 

It appears, therefore, that we can formulate a pre­
scription by means of which one could write the 
necessary and sufficient conditions for the exis­
tence of a solution of the unitary system (3) and 
which does not require the knowledge of the solu­
tion. As such, it can be stated for any n. 

One starts by establishing the Martin-Newton con­
ditions for the system (3), by using essentially the 
same argument based on Brower's fixed-point 
theorem: 

n 
2aij ~ L) aiktljk , i, j = 1,2, ... , n, (24) 

kol 

and one splits it into two parts 

n 
2aii ~ L; ar", i = 1,2, ... , n, 

k=l 

n 
2aij ~ ~ aikajk' i < j. 

k=l 

(25) 

(26) 

The n conditions (25) are already a component of 
the system of necessary and sufficient conditions 
for the system (3), and they can be used to estab­
lish the minimum values of aii for given a ik , i "" k: 

a .. :> 1- (1- :B'a? )1/2 
" - k lk , 

(27) 

where the prime indicates that the term with k = i 
should be omitted. 

It can now again be checked that, for fixed a ik 
(i '" k), a solution exists in any neighborhood of 
those values of a;i for which a solution is known 
to exist, provided conditions (25) are fulfilled. One 
substitutes then the minimum values of a;i as 
given by (27) into the ~ n(n - 1) conditions (26), and 
one gets (ex '" (3) 

4a;~(y"a"'ka8k) 2 + 4(f'a~) (2?'a91) 

~ [a;;:~(Pa"ka8k) 2 + 1a~j + ~agl J2) (28) 
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where the double prime indicates that the terms in 
the sum over k with k := a or k := {3 should be 
omitted. 

It is straightforward and easy to check that for 
2 x 2 and 3 x 3 matrices conditions (28) coincide 
with (6) and (18), respectively. It is also straight­
forward but less than easy to check that (28), and 
also (25), are also necessary and sufficient condi­
tions for the existence of a solution of the system 
(3) for 4 X 4 matrices. (Because it involves ex­
tremely tedious calculations, the case of 4 x 4 
matrices is not discussed here.) We are aware 

1 R. G. Newton, J. Math. Phys. 9, 2050 (1968) ; A. Martin, Nuovo 
Cimento 59A, 131 (1969). 

JOURNAL OF MATHEMATICAL PHYSICS 

though that there is no substitute for rigorous 
proof and that we failed to produce such a proof 
for n > 4. But even if (25) and (28) were not neces­
sary conditions for the existence of a solution of 
(3), they clearly are sufficient and significantly 
less restrictive than the Martin-Newton condition. 
Because of this, and particularly in view of the 
fact that it has been pointed out2 that the Martin­
Newton condition is not fulfilled in a number of 
physical cases, it would be interesting to extend 
the results given in this paper to infinite matrices 
in general and specifically to the non-linear 
integral equation of Ref. 1. 

2 1. A. Sakmar, Lett. Nuovo Cimento 2,256 (1969) ; H. Goldberg, 
Phys.Rev.D 1,1242 (1970). 
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For the model theory, N + AJ: (/14: dx in a box, a convergent expansion of the resolvent is exhibited. This 
also provides another proof of boundedness below for the model. 

We consider the field theory model with Hamiltonian 
N + J: cp4: dx in a box of length 1. We obtain a con­
vergent expansion for the resolvent of this model 
and at the same time another proof of boundedness 
below of the Hamiltonian. The main idea is to con­
sider the 'subblocks' of the Hamiltonian obtained 
by restricting to states with particle number spec­
trum lying between Nand 2N. The resolvent of a 
subblock is shown to have very small matrix ele­
ments connecting states with a large difference in 
particle number. The extension of the present re­
sults to the more general model NT + A J : cp 2 S : dx 
has not yet been achieved. 

We begin with the basic theorem to be used. 

Theorem: Let A be a positive self-adjoint oper­
ator of norm ~ lvI, and 10') and 1f3) be two vectors 
of unit length. Suppose (QI IA k 1(3) == 0, ° ~ k ~ N. 
Then, for any A> 0, a real number, 

/ 1 ) 4/M ( 1 ) N I\QlI,\ +A 1{3 1 ~ A-v2A· 1 +.../2iJM 

'" exp(- .../2A/M N), 

where in (2) it is assumed M and N are large. 

(1) 

(2) 

Proof: (X + A)-l and (A + A)-l - PN(A) have 
the same matrix elements between 1 a) and 1/3), 
where PN(x) is any polynomial of degree N. This 
implies the matrix element is smaller than the 
supremum of I (It + x)-l - p,ix) I for values of x 
in the spectrum of A. We make a linear change of 

variables moving the spectrum from [0, M] to 
[-1,1]. Now one has the function [A + (x + lHMr1 
on the interval l- 1, 1 J. There is a basic theorem 1 

in the theory of polynomial approximation stating 
that if f is analytic in an ellipse with foci at - 1 
and 1 and major and minor radii a and b, then it 
may be approximated on [- 1, 1] by a polynomial 
of degree N within 

( )

N 
2/ max 1 

(a + b - 1) a + b 
(3) 

in the uniform norm. Here / max is the supremurr 
of the absolute value of f in the ellipse. The theo­
rem is obtained applying this result to the ellipse 
with a = 1 + AIM andf == [A + (x + 1HMr1. 
We now come to the Hamiltonian 

H = N + f01 : cp4 : dx = N + V. (4) 

We define Pi as the projection operator onto states 
with numbers of particles lying in the range 

2;~N<2;+2, i::=-l,O,"', 

and P and P
d 

as the projection operator onto 
state; with numbers of particles in the ranges 

and 

U (2 i - 4 ~ N ~ 2 i + 4) 
; eva> 

u (2i_4~N~2;+4), 
i odd 

respectively. We define 

(5) 

(6) 

(7) 
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(8) in the expansion of Vall of whose momenta are 
less than or equal k in absolute value 

H = 6 H,., e . 
, eva> 

Hd = 6 Hi' 
i oill 

H = He + Le = Hd + Ld• 

We note 

PdLdPd = LdPd = PdLd = Ld· 

The expansion of the resolvent we are after is 
the following: 

1 1 1 1 
E + H = E + He E + Hd LeE + He 

1 1 1 
+ E + H Ld E + H Le E + H 

e d e 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

This expansion converges for E large enough, as 
we will show; for E large enough (E + He)-l and 
(E + Hdtl exist and are bounded, I LdP deE + Hd)-l 
Pel < "2 and I LePe(E + He)-lPd 1< i, and (E + Hd)-l 
Le(E + He)-l and Ld(E + Hd)-lL e(E + He)-l are 
bounded. 

The following two estimates easily yield the re­
quired relations above. 

Estimate 1: 

large 

Estimate 2: 

[Pe E :i H Pd [:;; c 1 exp (- c22i/2) , for some 

(15) 

(16) 

Proof of estimate 1: We write Vas the sum 
V k + R k' where as usual V k contains those terms 

• This work was supported in part by NSF Grant GP-17523. 
1 A. F. Timan, Theory of Approximation of Functions of a Real 

Variable (MacMillan, New York, 1963), p. 281. 
2 E. Nelson, "A Quartic Interaction in Two Dimensions," in 

(17) 

We first note 

(18) 

As in Ref. 2, one has 

(19) 

Picking 

k; = exp [(l/vc) 2( j-1)/2], (20) 

we get 

P,VII p. ~ - 2;-lp .• 
t i 2. , 

(21) 

From 

(22) 

a standard NT estimate, see Ref. 3, we quickly get 

large. (23) 

And thus, using (23), (21), and (18), we obtain esti­
mate 1 from (17). 

Proof (}f Estimate 2: Clearly 

IE + Hi I:;; e22i 

for some e (by an NT estimate again), and 

(24) 

(25) 

for E large enough. We apply the theorem with 
10') = PjPdla), 1/3) =PjPe Ib) (Ia).and 1M norma­
lized vectors, A = 2,-1, M = e22" A = E + Hi -

2 i - 1 , and N < [(2 i+1 - 4) - (2i + 4)]/4. This ap­
proach is easily generalized to NT + .r: cp 4 : dx. 

The subject of obtaining convergent expansions for 
the resolvents of other field theory models seems 
interesting, as is the question of whether this is 
a way of obtaining lower bound estimates for other 
models. 

Mathematical Theory of Elementary Particles. edited by 
R. Goodman and 1. Segal (MIT Press, Cambridge, Mass., 
1966). 

3 J. Glimm, Commun. Math. Phys. 5, 343 (1967). 
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A class of exact solutions 01 the heat conduction equation and the magnetic induction equation are con­
structed for the special case where there is no diffusivity or'time dependence. It is shown how these 
elementary solutions may facilitate the solution of a more general class of problems in which diffusi­
vity and time dependence may also be present. Moreover, the existence of effective variables, first in­
troduced by Braginskii for the kinematic dynamo problem in the lowest-order approximation, is a direct 
consequence of these elementary solutions. 

I. INTRODUCTION 

During recent years considerable interest has been 
shown in nearly symmetric dynamos.1- 6 Bragin­
skii1 was able to show that, in an asymptotic analysis, 
a remarkably elegant pair of coupled equations 
[essentially (63) and (64)] could be obtained to de­
scribe the axisymmetric part of the magnetic field 
by the introduction of effective variables. The 
resulting equations may be solved relatively ea~ily 
for certain boundary conditions, and Braginskii 
was thus able to demonstrate the existence of nearly 
symmetric kinematic dynamos. Tough4 extended 
Braginskii's analysis and showed that, by modifying 
the definition of effective variables, Braginskii's 
equations for the symmetric part of the magnetic 
field are still valid in the second approximation. 
In a stugy of the hydro magnetic dynamo, Tough and 
Roberts6 showed that in the first approximation 
these quantities make similar simplifications to 
the equation of motion. In the previous paper, 7 

henceforth referred to as Paper I, it was established 
that the equations for the axisymmetric motion ob­
tained by Tough and Roberts 6 are still valid in the 
second approximation, provided that the effective 
variables obtained by Tough4 are used. Since effec- ' 
tive variables play such an important role in near­
ly symmetric dynamo theory, it is of considerable 
interest to know precisely how they come about. 
Tough 4 suggested that effective variables may be 
relevant to all orders of approximation, i.e., an 
effective velocity, magnetic field, and r [see (64)] 
can be defined such that Eqs. (63) and (64) are cor­
rect to arbitrary order. By conSidering the heat 
conduction equation where effective variables are 
also relevant in the lowest two approximations, it 
was shown in Paper I that effective variables do 
not exist which make Simplifications of the above 
type. Consequently, since the problem had several 
pOints in common with the magnetic inducti9n 
equation, it was concluded that effective variables 
would not be relevant in the third approximation 
and that the suggestion made by Tough is unlikely. 
In this paper a considerably weaker result than the 
one proposed by Tough is obtained. However, the 
result does indicate why considerable simplifica­
tions can be made in the low-order approxima­
tions by the introduction of effective variables. 

The primary concern of this paper is in obtaining a 
particular class of solutions of the heat conduction 
equation 

and the magnetic induction equation 

o = RV x (u x b), V·b = 0, V·u = 0, (2) 

where the velocity u is given by 

-1/2 -1 ( ) () u= U(p,z)iq, + R u'(p,cp,z) + R up R,p,z 3 

and the constant R is large, 

R» 1. (4) 

Here p, cp, z ar€ cylindrical polar coordinates: p is 
the distance from the axis, cp is the azimuthal angle 
(iq, is the unit vector in the cp direction), and z is 
the distance along the axis. It is assumed through­
out that primed quantities have zero ¢ average: 

(f') = 0, 

where 

and i and i are the unit vectors in the p and z· 
diredhons. Solutions of (1) and (2) are sought in 
the form 

-1/2 ( ) e = e(p,z) + R ()' R,p, cp,z , 

b = B(p, z)i<p + R-
1

/
2
b'(R, p, cp, z) 

+ W Ibp(R,p,z). 

Unlike most previous work in this field, there is 
no restriction on the vectors up and b p lying in 
meridional planes. 

(5) 

(7) 

(8) 

Much of the notation and procedure is similar to 
Paper I. However, in order that this paper should 
be self-contained, the relevant definitions are re­
stated. The operator 01/0CP is defined not to dif­
ferentiate unit vectors: 

The operator - is defined by 

a 
~ f' = f' where (f') = 0, 
o!/! 

(9) 

(10) 

Ru· V 8 = 0, V·u = 0, (1) and results in the identity 

2052 
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N 

'6<k'" I;-1~'I;+1 ... IN> = o. (11) 
)~1 

For quantities which do not have a vanishing <p 
average, the bar operator is introduced where 

- -----------

ljI (1) = u' .ve, 
-- n-2 

I/I(n) = u"v~l/I(n-1) - '6 y(r).v~I/I(n-r-l) 
V r~1 V 

_ y(n-l)'va, n 2: 2. (18) 

f = (f - (f». f
(n) 

(12) The set of vectors ,n = 0,1,2, .• " is defined 

Some new notation is introduced. The operators 
and variables ai' x(i), uj are defined by 

Since V'u' = 0, it follows that 

a (0, 0 
iX u i ::: , 

(13) 

(14) 

where the summation is over repeated suffices. Of 
course, the bracketed superscript takes part in the 
summation, but a product of the type x(i~; is just 
one term and not the sum of three. With this sum­
mation convention, the operatoru" V is alternatively 

(15) 

The operator a i is such that products commute: 

aia j = a ii' (16) 

In order to construct a certain class of solutions 
of (1) and (2), two sets of vectors v(n), f(n) and a 
set of scalars ljI(n) must be introduced. Their sig­
nificance will become apparent later in the section. 
The set of vectors v(n), n = 1,2, .. " is defined 
by their components in cylindrical polar coordin­
ates, namely 

(i) U) _ "V(~ (n-\ 
X vi - U \V X u i)' 

n 2: 2, 

where 

y<lI) = (v(n», 

and for the case n = 2 the meaningless summation 

Er~1 is omitted. The omission is also made in the 
next two definitions. The set of scalars ljI (II), n = 
1,2, .. " is defined by 

by 

n 2: 1, 

(19) 

and 

A simple result of the definitions (18) and (19) is 
now established. From (19) it follows that 

and 

y(r) x f(n-r) __ u' X y(r)~'/(n-r) 
- V 'I' 

n-r-1 (n ) _ L.: VCr) x y(s)~I/I(n-r-s) _ y(r) x y -r a. 
5=1 U 

Combining these results leads to the identity 

U' x f(n) = t y(r) X f(n-r). 

r=1 

Finally, the vectors y, f, F and the scalar ljI are 
defined by 

OQ 

(20) 

Y = I. (_On-1 R 1I2-n!2 y (n) (21a) 
n=1 

OQ 

f = L.: (- l)nR 1!2-n!2f (n) , F = (f), (21b) 
n=O 

(21c) 

Of course, these quantities may not exist as the 
series may diverge. In the subsequent analysis, the 
existence of the quantities is assumed, and no 
attempt is made to determine the precise con­
ditions for existence. However, it is to be expected 
that, provided that V is bounded away from zero 
(I V I 2: () > 0) and a, V, U' have continuous deriva­
tives to all orders, y, f, 1/1 are well defined for R 
sufficiently large. Even if the series (21) diverge, 
the summation of a finite number of terms is 
likely to have a useful meaning as an asymptotic 
expansion. 



                                                                                                                                    

2054 A. M. SOWARD 

The principal results of this paper are now sum­
marized as three theorems as follows: 

(n) 
Theorem 1: The vector V has zero 

divergence, 

V-V(n) = 0 

and the cp average of l/-t(n) is zero, 

(l/-t(n» == O. 

(22) 

(23) 

This theorem has immediate consequences. Evi­
dently, from the definitions of f (,z) and F (n), it fol­
lows that 

V _fen) == l/-t(n+l) (24) 

(25) 

Despite the innocent appearance of Theorem 1, its 
proof is somewhat lengthy and so has been rele­
gated to the Appendix. However, Theorem 1 is 
important since it is required in the proofs of 
Theorems 2 and 3 and also shows that both V and 
F have zero divergence. The two main theorems 
are the following. 

Theorem 2: For the particular case where 

up == V, 

the general solution of (1), taking the form (7), is 

8 == e + R-1
/
2 tj;, (26) 

where 8 is an arbitrary function of p and z. 

Theorem 3: For the particular case where 

up == V, 

a class of solutions of (2), taking the form (8), is 

(27) 

where 

B == eu 

and e is an arbitrary function of p and z. 

Noting that V-b = 0, we see that Theorem 3 is a 
trivial consequence of Theorem 2. Moreover, when 
up == V, (27) gives the general solution of (2) for 
magnetic fields aligned to the flow. Of course, 
there may be other solutions for which u and bare 
not parallel. Finally, with the help of the definitions 
(18), (19) and (21), it can be shown that (27) is 
equivalent to 

(28) 

The solutions of the heat conduction and magnetic 

induction equations given by Theorems 2 and 3, 
namely (26) and (27), are called elementary 
solutions. 

Evidently (1) and (2) may be solved by elementary 
methods, e.g., (1) has the solution e is constant on 
streamlines. However, the Significant feature of 
Theorem 2 is that, with the choice u == V the 
function 8(p, z) which generates the ~oluu'on (26) 
is arbitrary. By a simple argument it is now shown 
that this oroperty implies that the velocity U o == 

-1/2 -1 
Ui¢ + R u' + R V describes closed streamlines 
which tend to the circles p = const, z == const as 
R --> 00. ConSider a plane <P = <Po (= const). Suppose 
a streamline intersects the plane at Xo and inter­
sects the plane again at Xl (<p = <Po + 21T). Since 
the meridional velocities are at most order R-1/2 ~ 
the distance between the pOints is also order R-l! . 
Thus the position vector Xl is defined by Xl = 
Xo + R-1I2T/. It is now assumed that e(x l ) may be 
expanded as a Taylor series at the point xo' This 
assumption is in accord with the rather general 
assumptions necessary for the validity of Theor­
ems 1-3. Now since e is constant on streamlines, 
it follows by Theorem 2 that 

8(xl ) - e(xo) == - R-1/2 [1/I(x l ) -1/I(xo)] 

and hence that 

Clearly, since 8 is an arbitrary function of p and z, 
aqdJ: » 1, the only value of 'I) (small compared to 
R / ) satisfying the above equation is 

71=0 

and consequently the pOints Xo and Xl are coin­
cident. ill other words, according to Theorem 2, 
given an order 1 axisymmetric azimuthal velocity 
Uicp and an order R-1/2 asymmetric velocity 
R-1/2U ', the order R -1 axisymmetric velocity 
R-IV constructed has the property that the stream­
lines of U o are closed: All velocities have zero 
divergence. Moreover, the magnetic field bo = 
(B + R-1/2Ul/-t)i + R-1f, given by (28),describes 
closed field lines since it is aligned to the flow uo' 

Theorem 2 is proved in Sec. II. Then, with the 
help of the theorem, a procedure for solving the full 
heat conduction equation (37) by successive appro­
ximation to all orders is outlined. Since it is natu­
ral to introduce the "effective" velocity vector 

(29) 

into the approximation scheme, the procedure 
provides a framework for discussing the Signifi­
cance of an effective velocity. In a similar way, 
Theorem 3 may be used to help solve the magnetic 
induction equation (55) by successive approxima­
tion-the method is outlined in Sec. III. As well as 
introdUCing the velocity ueP into the approximation 



                                                                                                                                    

NEARLY SYMMETRIC ADVECTION 2055 

scheme, it is natural to introduce the effective 
magnetic field vector 

To lowest order the meridional components of 

(30) 

the vectors u ep and bep are the effective velocity 
and magnetic field vectors first introduced by 
Braginskii 1. Again, as in the case of heat conduc­
tion equation, the analysis provides a framework 
for discussing the significance of an effective mag­
netic field. Briefly, the velocity vector U o and the 
magnetic vector b o are introduced so that a syste­
matic procedure for solving the heat conduction and 
magnetic induction equations can be formulated. 
To this end, the closed streamline property of U o 
is only incidental. However, it is this physical 
property that clearly gives rise to its mathemati­
cal usefulness. 

The approach adopted in this paper is suggested 
by the work in Sec. III of Paper Ion the heat con­
duction equation. For this reason it is an advan­
tage if the reader is acquainted with the work 
described In Paper I. First Theorem 1 and its 
proof are suggested by the material between 
(I. 54) and (I. 63).8 Second, the possibility of 
Theorems 2 and 3 is suggested by (I. 63). 

TI. THE HEAT CONDUCTION EQUATION 

In this section Theorem 2 is established, and it is 
shown how the elementary solutions may help to 
solve the heat conduction equation. 

The subsequent analysis is made clearer by intro­
ducing the linear operators A, Q,D(n), and D de­
fined by 

00 

= Q ~(- l)nRl/2-n/21/1(n) 
n=1 

00 

+ Q 6 (- l)n-1R1/2-n/2AQ1/I(n-1) 
n=2 

00 n-2 
+ Q 6 6(- l)nRl/2-n/2D(r)Q1/I(n-r-l). 

n=3 r=1 

After regrouping terms, it follows that 

00 

= - QAe + Q 6(- l)nRl/2-n/2 (1/I(n) - AQ1/I(n-1) 
n=2 

,,-2 
+ 6 D(r)Q1/I(n-r-1». 

r=1 

Since QD(n>e = 0, the terms in the summation 
vanish by (18), and hence (32) is verified. 

(34) 

It is now necessary to show that the ¢ average of 
(1) vanishes. Evidently 

(u'oV8') = ( ~(- l)"R1/2-n/2u' 0'1,7 (e....1/I(n»)), 
n=l U 

so that using the definition (18) and Theorem 1 
leads to 

00 

(u'·ve') = :0(- l)nRl/2-n/2V(n)ove = - v·va. 
n=l (35) 

Hence the ¢ average of (1) is 

R(u·ve) = v·ve + (u"V8') = O. (36) 

Az = u'oVz, Qz = (P/U)z, 
Thus Theorem 2 is established. 

(31) The full heat conduction equation 

In terms of these operators the fluctuating part 
of (1) leads to the equation 

(1 + R-1/2QA + R-1QD)e' = - QAe (32) 

[see (I. 51)], where it is supposed that up = V. For­
mally the equation has the solution 

e' = - (1 + R-1/2QA + R-1QD)-lQAe, (33) 

where the inverse is defined to be the formal bino­
mial expansion of the expression in brackets. It 
is then possible to show that e' is given uniquely 
by 1/1 and the eXistence of 1/1 justifies the inversion. 
Instead of carrying out the inversion, which is a 
tedious procedure, it is verified that e' is 1/1. 

By setting e' = 1/1 in the left-hand side of (32), it 
follows that 

(1 + R-1/2QA + Q Ji (- l)n-1R -1/2-x/2D (n») 

00 

x(~(- I)nR1/2-n/2Q1/I(n») 

ae at + Ru·ve = v2 e, (37) 

where t is the time, is considered. The mean 
part of (37) may be solved formally by considering 
the equation 

Le = - (u'·ve') 

= (A(l + R-1I2QA + R-1QL)-1 QAe), 

where 

L = 3.. + up' V - \72 • at 

(38) 

(Note that up is not necessarily equal to V.) How­
ever, in the proof of Theorem 2 it is established 
that 

An effective operator Le is now defined by 

(40) 
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Hence combining (38) and (39) leads to 

Lee = (.4(1 + R-1/2QA + R-1QL)-1 

- (1 + R-1/2QA + R-1QD)-1 ]QAe) , 
or 

Lee = - R-1(AQ(1 + R-1/2AQ + R-1DQ)-1 

X Le(1 + R-1/2QA + R-1QL)-1QAe). (41) 

The inverses are defined by their formal binomial 
expansions. Of course, the expansions may not be 
valid for reasons similar to the criticism following 
(21). If we assume the expansions are correct the 
advantage of (41) over (38) is clear. Since the' . 
expression on the right- hand side is now order 
R-1, rather than order 1, the equation is in a con­
venient form for solution by successive approxi­
m~tion. 

Finally, correct to order R-1, Eq. (41) is 

(42) 

which is in agreement with (I. 63). 

Ill. THE MAGNETIC INDUCTION EQUATION 

It was shown in Sec. I that Theorem 3 is a trivial 
consequence-of Theorem 2. Since the full magnetic 
induction equation is to be considered later in this 
section, an alternative proof of Theorem 3 is given 
which leads directly (without the help of Theorem 
2) to the expression (28) for the magnetic field. 
Moreover, the approximate method of solving the 
magnetic induction equation (55) follows naturally 
from this alternative proof. 

With b' given by (46), Sb' and R-1/2Cb' are 

~ ~ 

The fluctuating part of (2) leads to 

b' + pi¢!!6'ovE.. - R-1/2E.. v x (u' x b') 
p U U 

- R-1~ V X (up X 6/) = ~UI - pi", ~ii'oV! 

+R-1%VX(U'Xbp )' (43) 

The second term in (43) may be re-expressed by 
substituting the value of b' defined by (43) itself. 
This leads to a cumbersome expression which is 
most conveniently expressed by the operators 5, 
C, E,H and T defined by 

Sz = u' x z, Cz = V x z, Ez = F x z, 

Hz' = ez' - pi", va oZ', 

Tz = - %v x z + piq,V ~OV x i, 

where it is sUPPQsed that up = V and bp = F.g 
Equation (43) relating u' and b' becomes 

(44) 

As in Sec. II, b' may be determined by inverting 
the operator on the left-hand side. Instead it is 
verified that 

b' = Ul/Ii¢ + R-1/2(f - F) 

solves (45). 

(46) 

Sb' = ~ (- 1)nRl/2- nl2u'l/ICn) x pi¢ + ~ (- 1)nR-nI2u ' x (f(n) - FCn» 
n=1 n=O 

(47) 

and 
~ (n-1 _) ~ n 

R-1/2Cb' = - ~(- 1)"Rl/2-n12 ~V(r)l/ICn-r) x pi¢ - ~(- 1)nw,.f2 (~v(r) x (f Cn-r ) - F(n-r». 
n=2 r=1 n=1 r=1 (48) 

Combining these results and making use of the identity (20) leads to 
~ ~ ~1 

(5 + R-1/2C)b' = ,R(- 1)nRl/2-n12(f(n) + v(n) a) x Ui¢ - R-1/2u' X F + ,R(- 1)nR-nl2(Ev(r) x FCn-r»). 

(49) 
After some straightforward manipulation, operating on (49) by T leads to 

(TS + R-1/2TC)b' = R-l/2TEu' + E (- l)nR 1I2-n/2 (- f<n) + F<n) + Pi¢l/I(n+l») . (50) 

It follows that 

(51) 

However, 

Hu ' = f(O) - pi¢l/I(l), 

and hence Eq. (45) is satisfied by (46). 
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It is now necessary to show that the </> average of (2) vanishes. Evidently 

(u ' X b/) = (Sb'), 

and with the aid of (19), (20) and (47) this leads to 

00 00 n-l 
(u' X b') = L;(- 1)nRl/2-n/2(F(n) + v(n)e) X Uicp + L;{- 1)n R -n/2(L;V(r) x F(n-r») , 

n=l n=O r=l 

= - Uicp x F - V x Bicp - R-IV x F. 

Hence the ¢ average of (2) is 

R(V x (u x b» = RV x [(Ui", + R-IV) x (Bi", + R-IF)] + V x (u' X b/) = O. 

It is a simple matter to verify that V-b' = 0, and thus Theorem 3 is established. 

The full magnetic induction equation 

ob at = RV x (u x b) + V 2b 

is considered. The mean part of the equation is 

where formally 

and 

G P - . p::::: Z--Z-PIV--Z 
- U '" U ' ° Mz - -z - V x (u x z) - V2z - 01 p , Nz = bp x z. 

As in the case of the heat conduction equation, some Simplifications to (56) can be made by using the 
identity 

and this leads to 

(52) 

(53) 

(54) 

(55) 

(57) 

(58) 

(59) 

;t (Bi</> + R-1bp) - RV x [(Ui</> + R-1up ) x (Bi¢ + R-1bp) - (Ui", + R-IV) x (Bi", + R-IF) - V2(Bi", + R-1bp)] 

= - V x (S[(l + R-l/2 TS + R-IGM)-l(H + R-ITN) - (1 + R-l/2TS + R-ITC}-l(H + R-ITE)]u /). 

(60) 

Further manipulation leads to the form 

(aOt (Bi",) - V x (u ep X Bi",) - V x (Uiq> x be p) - V2(Bi",») + R-l (OOt b ep - V x (u ep x b ep) - v2be p) 

=-R-l(oOt F-VX (uepXF)-VX(VXbep)-V2F) 

+ R-l V X (SK-l [GMe(K + R-l GMe)-l (H + R-l TN) - TN e]u /), (61) 

where 

uep=up-V, bep=bp-F, 

K= 1 +R-1I2 TS+R-ITC. (62) 

For the purpose of iteration it is probably convenient to restrict u ep and b ep to being meridional vectors, 
but this does not appear to be necessary. The azimuthal and meridional components of (61) are consi­
dered separately. The azimuthal component yields the equation 

(63) 
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This equation is well known and corresponds to 
(I. 22a). However, in order to solve this equation, 
further information about be p is needed. Hence 
the order R-l meridional terms of (61) must be 
considered. Since the terms on the right-hand 
side of (61) are also order R-l, the procedure 
becomes more involved, and there appears to be 
no simple way of making further reductions. Now 
correct to order R-1/Z an equation for b ep can be 
obtained from the meridional component of (61) 
with the aid of (63), namely 

a at b ep - V x (u ep x b ep ) - VZbep = V x (rBi¢), 

(64) 
where r is a function of U and u' and is given 
correct to order R-1/Z by Tough.4 It should be 
emphasised that (64) is obtained from (61) after 
very lengthy calculations. To this order, the 
advection terms on the right-hand side cancel, 
and the V x (r Bi ¢) term results from the differ­
ence of the diffusion terms. To lowest-order, 
Eq.(63) and (64) were first obtained by BraginskiL1 
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APPENDIX: 

Theorem 1 is established by induction. It is 
assumed that 

(lJ;(n») = 0, V .y(n-I) = 0, (A1) 

for n s N - 1, and it will be shown that the result 
is true for n = N. 

Subsequently, when a subscripted suffix is also 
repeated, an abbreviated suffix notation is adopted, 
e.g., 

will be denoted by 

Note that since the i l and i z in the example are 
repeated, the expression represents a sum of nine 
terms. USing the abbreviated notation, we intro­
duce the following functions: 

_(n-r-1) '" (a ... a (e ~ (l)V(ql) ••• ~ (s-l)V(qs-l) (S)V(q5) ~ (5+l)U' '" 
gn,r,5 - S -1 L.J 1 n-r, U X 1 U X s-1 X s U X 5+1 

(qi: 1') 

e (n-r)~, )i\ 
fiX U n - r ,/, 

where 
(A2) 

(~) 
n! 

s! (n - s)! 
s 

and where the summation (q i ; r) is over all distinct vectors (%, q l' ••• , q 5) such that .~ q i = r, where the 
qi are nonzero,positive integers. For I n ,r,5 and gn,r.s,the qo is absent. ,-0 

A second induction proof is now used to show that10 

1 /; ((1) , e (Z)~, e (N)~, \\ 
(N - 1)! ~ 1 ••• aN e x U 1 U X Uz ' •• u x uNJ/ 

~
-(N-2)! (FN,1,0 +IN ,1,1- g N,1,1)' r== 1, 

l' (-1'-1 N-r N-r-1 N-r 
== (-1) ~ F - ~ G + ~ I - L) ) (N-r-1): N,r.s N,r,s N,r,s gN,r.s' 

s~o 5=1 5= 1 5 = 1 
N-1 

(-1) (F N ,N-1,0 -G N ,N-1.1- g N,N-l,1)' r =N-l, 

1 

2 s r s N -2, 

(A3) 

for N =:: 2. 
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By noting that V·V(q) = O,q = 1,2,'" ,N- 2,one of the differentiations in the definition (A2) is carried 
out and gives 

F - F(1) + F(2) + F(3) 
N,r,s - N,r,s N,r,s N,r,s' 

c - C(l) + C(2) C(3) 
N,r,s - N,r,s N,r,s + N,r,s' 

/ = /(1) + / (2) + j, (3) , 
N,r,s N,r,s N,r,s N,r,s 

(1) + (2) (3) 
gN,r,s = gN,r,s gN,r,s + gN,r,s' (A4) 

where 

F,);'» 

and 

C (2) 
N,r,s 

and 

1 ::s s ::s N - r- 1, 

s = 0, 

(N-r-s-1) (N-r-1)", (0 '''0 [~",(qo)~ l1)v(ql) ... ~ (s)<';;;)f.'.V~ (~+1) 
s L.J 1 N-r-1 U 'I' U X 1 U X Vs ~ U X 

(qi :r) 

( 0, 

x~' ) ~ (s+2)~, ••• e (N-r-1)~, l) 
U s +1 UX U s +2 UX UN-r-lj' 0::ss::sN-r-2, 

s = N - r -1, 

(N-r-l) ~ J) x X u~-r-1' 1 ::s s ::s N - r, 

~ 
(N - r - s.) (N - r - 1) '" (0 ... 0 [~ .1, (q 0) ~ (1) (qJ ... ~ (s-l) (qs-1) 

s - 1 ~) 1 N-r-1 U 'I' U X V 1 U X Vs - 1 
(qi· r 

- X (V{q) V e (s) ~,) e (s +1)~, ~ (N-r-l) U~' J) - • U X Us U X U s +1 ' •• U X N-r-1' 1 ::s s ::s N - r - 1, 

0, s = N - r, 

'(N-r-1)", (0 ... " [i.,. e)~ (l)(ql) ••• ~ (s)~)~ (s+l)~, ••• ~ CN-r-1)~, J) _, s L.J 1 uN - r - 1 ,u V U X V 1 U X Vs U X U s +1 U X UN - r -1, 
-) (q.: .. ) 

( 1::ss::s~-r-1, 

(
N - r - 1) '" (0 0 r.e e (1)~) e (s-1) (qs-1) i. , V e (s) (qs») e (s+l) 

S S L.J 1'" N-r-1L U X V 1 ••• U X V s - 1 ,u· U X Vs U X 
(qj .r) 

Xu's +1 ••• e XCN
-
r

-
1

) U' J) U N-r-1 ' 1::ss::SN-r-1, 
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l3) ~ 
N,r,s =( x e (s+2) ~, 

U X u s +2 

0, s=N-r-1, 

e (N-r-1) ~ J) 
U X u;'-r-1' 1 :5 S :5 N - r - 2, 

and 

~/N-r-1) I; (a ... a r'(v(q).ve)~ (1)v(q1) ••• ~ (5-1) (qs-1)~ (S)~/ ••• ~ 
(1) \ S - 1 ( .. ) 1 N-r-1 LuX 1 U X VS - 1 U X Us U g _ q,.r 
N,r,S -) 

(N-r-l) ~ 
. x X U;'-r-1J) , 1:s s:s N -:- r, 

(s-1) (N-r-1)", (a ... a [e~ 11)V(q1) ••• ~ (s-2) (q5-2)(V(q)v~ (s-1) (Qs-1») 
s - 1 ~) 1 N-r-1 U X 1 U X V s-2 • U X V 5-1 

(q; .r 

x e (S) ~, e (N-r-1)~1 J) 
UX Us···UX U N - r - 1 ' 2 :s s :s N - r, 

S = 1, 

(N - r - s) (N - r - 1) I; la ... a [e ~ (l)v(q1) 
s - 1 (. )~ 1 N-r-1 U X 1 

Qj.r 

x U~ X(S +1) UIS +1 ••• e x(N-r-1) U' J) 
U N-r-1 , 1:5s:5N-r-1, 

s = N - r. 

The above terms are collected together and with the help of the definitions (17) and (18) lead to 

F (1) _ G (1) ( 1) 
N,r,s N,r,s+1 -gN,r,s+1 

j O) = (N-r-1) '" (a ... a __ (,/,(1)~ (l)V(q1) ••• e (s) (qs) e (s+1)~, e (N-r-1) 
N,r,s S (~) 1 Nr 1 't' UX 1 UX V5 UX U s +1 ···UX 

qi·r 

1 :s s :s N - r - 1, 

and 

F(2) _ G(2) _ G(3) 
N,r,s N,r,s+1 N,r,s 

l 
(N - r - 1) '" (0 0 (,/,(q 0) ~ (1) (q) •••• ~ (s-1) (q 5-1) ~ (5) (qs +1) e (s +1) 

S L.J 1··· N-r-1 't' U X V 1 U X Vs - 1 U X Vs U- X 
S (qj :r) 

= ~ e (N-r-l)~ ) 
XU~+l···UX U;'-r-l' 1:ss:sN-r-1, 

0, s = O,N - r, 

{

s 

F(3) = 
N,r,s-l 

0, 

X ~, ••• e (N-r-l) ~, ) 
U s + l U X U N - r - l ' 1:ss:sN-r-1, 

s = N -r, 
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and 

f(2) (2) (3) 
IN,y,s - gN,y,s+l - gN,y,s 

(3) 
f N,y,s-l - e (N-r-1) -, )~ X, ••• - U 

U s +1 U X N-r-1' 2 :s s :s N - r - 1, 

s=l,N-r. 

Collecting together the above terms leads to 

F(l) _ G(1) + f (1) _ g (1) 
N,Y,s N,r,s+l N,r,s N,r,s+l 

_ (N - r-1) "" <a ... a (",(qo)~ (1) v (ql) ••• ~ (s)v(qS>~ (s+l)~' •• , ~ xw- r -l)ii' 1) 
- S L..J 1 N-r-1 'f' U X 1 UX s U X s+ 1 U N-r-' 

(qi: T+1) 

o :s s :s: N - r - 1, 

and 

F(2) + F(3) _ G (2) _ G (3) 
N,r,s N,r,s-l N,r,s+l N,r,s 

and 

~ 
(
N - r - 1) "" <~ ... '" (",(qo) e (1)~),., e (s-1) (qs) e (s) (qs) e <s +1)-, •.. ~ W -1'-1) 

s s L..J 01 uN-r-1 'f' [fX V1 UX V s -1 [fX Vs [fX U s +1 U X 
(qi : ... 1) 

- xu' ) 1:s:s:sN-r-1 
N-r-1 , ' 

0, S = O,N - r, 

( (N-r-1\ "" <a ... a fef!... (l)v(ql), •• f!... (s-l) (qS-l)~ (s) (qs)~ (s+l)-, ••• f!... W-r-1)~, )' 
} S S {q;;'+1) 1 N-r-1\ U X 1 U X V s-l U X v s U X U s+1 UX UN-r-l , 

=~ 1:s:s:sN-r-1, 

. 0, S = 0, N - r. 

Further manipulation using the identity (11) and noting that (l/J (n» = 0, n = 1, .. " N - 1, leads to 

o :s s :s N - r - 1, r:s N - 2, 

(A5) 
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Similarly it can be shown that 

/(2) + /3) _ (2) _ (3) 
N,r,s N,r,s-1 gN,r,s+1 gN,r,s 

= {- (N - ~ - 1) (fN,r~1,s - gN,r+1,s), 1 :5 S :5 N - r - 1, r:5 N - 2, 
(A6) 0, S - O,N - r. 

It is a simple matter to show that (A3) is correct for r = 1, and induction using (A4), (A5), and (A6) 
establishes (A3) for 1 :5 r :5 N - 1. 

Now, by the identity (11) and the commutation property of the operator ai [Eq.(16)], the left-hand side of 
(A3) is zero. Hence for the case r = N - 1 we have the identity 

< ilt (U 1/IW-1) X (1)U'1 ) > - (qi!i-1J <a1 (U If;(qo\ (1) V~ql») > - < a1 (e /1\W-1») > = O. (A 7) 

Setting e = 1, we conclude that 
(A9) 

v. V W-1) = 0 , 

and consequently by (A7) 

(A8) The results (A8) and (A9) are easily established 
for N = 1 and N = 2. This completes the induction 
proof. 
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The expansion coefficients in powers of time of the two-time spin-pair correlation function are obtained 
up to terms of order f8 for the Heisenberg magnet of spin! at infinite temperature for the square and 
cubic lattices and up to terms of order (10 for the linear chain, The result is applicable to the isotropic 
as well as anisotropic Heisenberg magnet where the exchange integrals in the z direction and in the or­
thogonal plane are assumed to be different. Analysis of the result is left to future work, 

1. INI'RODUCTION 

The two-time spin-pair correlation function is the 
quantity of primary importance in the theory of 
neutron scattering from magnetic materials. 1 ,2 
A number of attempts to obtain it have been pre­
sented for the Heisenberg model. The apprOximate 
methods 3 always involve an unclear error. The 
exact calculation for a finite linear chain at infinite 
temperature has been given,4 but its generaliza­
tion to the more interesting three-dimensional 
case seems impossible at the present time. The 

expansion formula for the two-time correlation 
function in powers of time has been written by 
Kubo. 5 The two leading terms of the expansion of 
(S i z (t)S/ (0) were given for the Heisenberg 
magnet at infinite temperature by de Gennes6 and 
Collins and Marshall.7 The corresponding terms 
are given by McFadden and Tahir-Kheli,8 by 
assuming different values for the exchange inte­
grals J 11 and J .Lin the z-z direction and in the ortho­
gonal plane. The third term of order t 6 has been 
reported by Mc Fadden and Tahir- Kheli 9 for 
general spin and Morita et al. lO for spin i. 
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Similarly it can be shown that 

/(2) + /3) _ (2) _ (3) 
N,r,s N,r,s-1 gN,r,s+1 gN,r,s 

= {- (N - ~ - 1) (fN,r~1,s - gN,r+1,s), 1 :5 S :5 N - r - 1, r:5 N - 2, 
(A6) 0, S - O,N - r. 

It is a simple matter to show that (A3) is correct for r = 1, and induction using (A4), (A5), and (A6) 
establishes (A3) for 1 :5 r :5 N - 1. 

Now, by the identity (11) and the commutation property of the operator ai [Eq.(16)], the left-hand side of 
(A3) is zero. Hence for the case r = N - 1 we have the identity 

< ilt (U 1/IW-1) X (1)U'1 ) > - (qi!i-1J <a1 (U If;(qo\ (1) V~ql») > - < a1 (e /1\W-1») > = O. (A 7) 

Setting e = 1, we conclude that 
(A9) 

v. V W-1) = 0 , 

and consequently by (A7) 

(A8) The results (A8) and (A9) are easily established 
for N = 1 and N = 2. This completes the induction 
proof. 
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The expansion coefficients in powers of time of the two-time spin-pair correlation function are obtained 
up to terms of order f8 for the Heisenberg magnet of spin! at infinite temperature for the square and 
cubic lattices and up to terms of order (10 for the linear chain, The result is applicable to the isotropic 
as well as anisotropic Heisenberg magnet where the exchange integrals in the z direction and in the or­
thogonal plane are assumed to be different. Analysis of the result is left to future work, 

1. INI'RODUCTION 

The two-time spin-pair correlation function is the 
quantity of primary importance in the theory of 
neutron scattering from magnetic materials. 1 ,2 
A number of attempts to obtain it have been pre­
sented for the Heisenberg model. The apprOximate 
methods 3 always involve an unclear error. The 
exact calculation for a finite linear chain at infinite 
temperature has been given,4 but its generaliza­
tion to the more interesting three-dimensional 
case seems impossible at the present time. The 

expansion formula for the two-time correlation 
function in powers of time has been written by 
Kubo. 5 The two leading terms of the expansion of 
(S i z (t)S/ (0) were given for the Heisenberg 
magnet at infinite temperature by de Gennes6 and 
Collins and Marshall.7 The corresponding terms 
are given by McFadden and Tahir-Kheli,8 by 
assuming different values for the exchange inte­
grals J 11 and J .Lin the z-z direction and in the ortho­
gonal plane. The third term of order t 6 has been 
reported by Mc Fadden and Tahir- Kheli 9 for 
general spin and Morita et al. lO for spin i. 
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Nakamura11 gave the fourth term of order [8 

in the expansion of the autocorrelation function 
(S i 2(t)S i 2 (0» for the one-dimensional Heisenberg 
magnet at infinite temperature. The fifth term of 
that expansion is given in Ref. 10. In the present 
paper, we report the calculation of the coefficients 
of the expansion of (S i 2(t)S /(0» as far as the 
fourth term of order [8 for the square and cubic 
Heisenberg magnets and the fifth term of order 
t10 for the linear Heisenberg magnet. The present 
calculation is restricted to spin t and infinite 
temperature. 

2. BASIC FORMULAS 

We consider the Heisenberg magnet. The Hamil­
tonian of the system is given by 

where J.1V,g) and J 11 (f,g) are equal to J.1 and J II , 
respectively, when f and g are nearest-neighbor 
lattice sites and zero otherwise. This Hamiltonian 
reduces to the one for the Heisenberg model when 
J 11 =' J.1' If J 11 = 0 and the system is one dimension­
al, one obtains the X- Y model for which we know 
the analytic expression for the two-time spin-
pair correlation function. 

We calculate the two-time spin-pair correlation 
function a (R, t), which is defined by 

a(Rij,t) = (S i z(t)S /( 0» - (S i 2)(S /). (2.2) 

Here St"{t) is the Heisenberg time-shifted operator: 

(2.3) 

In the present paper, we assume that the system is 
at infinite temperature. Hence the average (A) of 
an arbitrary operator A is calculated by 

(A) = trA/tr1. (2.4) 

We evaluate the trace in the representation in 
which the z components of N spins are given. Then 
(2.4) is written as 

(A) = ~ L; (1t{Sjz} IAItt;{Sjz}), 
2N lSi z} 

(2.5) 

where 1,!; {Sj"} is unity when all the z components 
of spins are equal to the given respective value in 
the set {Sjz} and zero otherwise. 

Because of the well-known property of the trace, 
a(Rij,t) = a(Rji, - t) at infinite temperature. For 
a regular lattice, there is an inversion symmetry 
about the center of the ith and jth lattice site. By 
this property, a(Rij , t) = a(Rji , t). Combining these 
two properties, one sees that a{Rji , t) = a(Rji , - t); 
namely, the function a(Rjf , t) is an even function 
of time t. 

Expanding S{(t) defined by (2.3) in powers of time 
t and substituting the result into (2.2), one obtains 

(R t) - (O){R ) + ~ (- l)n (2n){R )t2n (2.6) 
a if' - a if ~ (2n)! a if ' 

where 

a(O){Rij ) = (SjZSfz) = toif, 

a(2){Rif ) = ([H, [H,S/]]Sf z ), (2.7) 

a(4)(Rif ) = ([H, [H, [H, [H, 5i
z]]]]S/) , 

and so on. 

When (2.1) is substituted in (2. 7), a(2n)(Rij) is 
expressed as a sum of terms with factors 
J1?1 J.1 2n- 21 , where 2l = 0,2,4, .. " 2n. We shall 
denote the coefficients as a2/2n){Rif ): 

(2.8) 

For the isotropic case Jil = J.L '= J, one has 

(2.9) 

where 

(2.10) 

As the Hamiltonian H commutes with the sum of 
5z over all the spins, L;j Sj 2 = ~ jSf z, one obtains 
the sum rule: 

~a(2n){Rif) = 0, n ~ 1, (2.11) , 
and 

~ a(2n)(R) = 0, 
f ' 

n ~ 1. (2. 12) 

Substituting (2.8) into (2.11) or (2.12) and notiCing 
that the equation obtained must be valid for arbitr­
ary values of J II and J ... , one gets the sum rules for 
J

Z1
(2n)(R jj ) as follows: 

(2. 13) 

(2.14) 

Summing over l, the corresponding relations for 
at (2n){Rij) are obtained. The relation (2.14) and 
the corresponding relation for at (2n)(R j j) will 
be used to check the final results. 

3. COMPUTATION 

The computation consists of commutations of spin 
operators for pairs of neighboring sites. The 
commutation at each stage is taken between the 
spin operators for the pair of sites (say ith and 
jth sites) and one of the three terms (S/5 j-, 

Sj-S / and 2S;'5. z) referred to that pair in the 
Hamiltonian. the commutation relations for all 
the possible cases are given in the form shown in 
Table I as a memory in the computer. 

The calculations are performed for ten finite 
diagrams shown in Fig. 1. The lattice sites and 
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TABLE I. Commutation relations for a pair of lattice sites, 1 and 2. The first column in each result is the number of nonzero 
terms to be summed to give the result. The second and third columns denote the operators for the sites 1 and 2, respectively. 
-,+,and 2 represent S-,S+,and Sz,respectively,and 1 for operator 1. The last column is the numerical factor for the product of 
the operators. 

Spin operators Result of commutation Result of commutation Result of commutation 
at sites 1 & 2 with SI-S2+ with S/S 2- with 2S 1

z S 2
z 

0 0 
1 2 2.0 0 

2 1 + -1.0 1 + 
+ 0 1 + 

0 1 2 

0 0 
2 0 1 1 

+ 0 2 g 
2 1 + 1.0 1 
2 1 1 0.5 0 
2 2 0 0 
2 + 0 1 

+ 2 + -2.0 0 

2 J2 1 -1.0} 0 + \ 1 2 1.0. 
+ 2 1 1 + -0.5 0 
+ + 0 0 

bonds are labeled, and which lattice sites are con­
nected by a bond is put in the memory. 

The following are the cases to be covered in the 
calculation of the term of order tn; where the 
number given in parenthesis is the possible num­
ber of the cases at that stage: 

diagram (number of diagrams with less than 
! n + 1 bonds, given in Fig. 1); 

initial site I (number of sites in the dia-
gram); 

~ 
first bond (number of bonds in the diagram), 

term in H (three terms), 

result of commutation (0, 1,0r 2); 

. second bond (number of bonds in the dia-

l gram), 

term in H (three terms), 

result of commutation (0,1, or 2); 

l 
nth bond (number of bonds in the diagram), 

term in H (three terms), 

result of commutation (0,1 or 2); 

final site F (number of sites in the diagram). 

After the nth commutation, it is checked whether 
all the bonds of the diagram are used and, if such 
is the case, the trace is taken and the contribution 
is accumulated separately according to the number 
of times in which the term involvingJII in the Hamil­
tonian is used for the commutation among n com­
mutations. The result of each commutation is 
zero or is expressed by a product of spins or a 
sum of two terms as shown in Table I. If it is 

+ 

+ 

0 
0 2 -2.0 

1.0 0 
2 -2.0 1 2 + 2.0 

2.0 1 2 -2.0 
0 

0.5 1 -0.5 

2 
1. O} 

-1.0. 0 

-1.0 0 
1 -0.5 
0 

-0.5 1 + 0.5 

1 + 2 2.0 

0 

1 + 0.5 
0 

zero, we go to another term of H or another bond 
or another site. 

Except for the initial site I, when the commutation 
is taken for the first time with respect to one of 
the bonds connected to a site the resulting state 
involves one of the operators S+ ,S-,or S2 for that 
site and also one of S+, S-, or S2 for the other site 
of the bond. If that site is not chosen to be F, 
another commutation must be involved to that site 
to give a nonzero result; by means of this com­
mutation the other site involved in the commutation 
enters one of the states S+,S-,or S2. Hence com­
mutations must be taken at least 2(m - 1) times 

I: e---!-. 
I 2 

6: • 2 3 4 5 

2 : • 2 • • 2 3 

• 3 • 7: • 3 4 2 

3 : 
2 • • • 3 • 2 3 4 

5 

4: 

4 

~ 
2 3 + I 3 

I 2 2 4 

3 

8: 

5 : 9: 
J-~-t 

....il..£j 
123 

10: • 2 3 4 5 6 

Fig. 1 
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TABLE n. The coefficients y/2·)(diagram,IF) and i'z(2n)(diagram,lF) for the terms of order t2n for the nine diagrams given in 
Fig. 1, where IF denote the initial and final sites. 

2n ~ 2 211 = 6 

diagram IF y, (2) 10(2) diagram IF y,(6) YO(6) Y2(6) Y4(6) 

1 11 0.5 0.5 1 11 8.0 8.0 0.0 0.0 
1 12 -0.5 -0.5 1 12 -8.0 -8.0 0.0 0.0 

2 11 15.0 9.0 5.5 0.5 
2 12 -32.5 -24.0 -8.0 -0.5 
2 13 17.5 15.0 2.5 0.0 
~ 22 65.0 48.0 16.0 1.0 
3 11 2.0 0.5 1.5 0.0 
3 12 -7.0 -3.0 -4.0 0.0 
3 13 10.0 7.5 2.5 0.0 

2n = 4 3 14 -5.0 -5.0 0.0 0.0 
3 22 24.0 8.5 12.5 3.0 

diagram IF 1', (4) 1'0(4) 1'2(4) 3 23 -27.0 -13.0 -11.0 -3.0 
4 11 10.0 4.0 3.0 3.0 

1 11 2.0 2.0 0.0 4 12 -35.0 -24.0 -8.0 -3.0 
1 12 -2.0 -2.0 0.0 4 13 12.5 10.0 2.5 0.0 
2 11 1.0 0.5 0.5 4 22 105.0 72.0 24.0 9.0 
2 12 -2.5 -2.0 -0.5 5 11 -7.0 0.0 -7.0 0.0 
2 13 1.5 1.5 0.0 5 12 11. 0 0.0 11. 0 0.0 
2 22 5.0 4.0 1.0 5 13 -15.0 0.0 -15.0 0.0 

211 = 8 

diagram IF y/S) Yo(S) n(S) y/S) Y6(S) 
-----
1 11 32.0 32.0 0.0 0.0 0.0 
1 12 -32.0 -32.0 0.0 0.0 0.0 
2 11 161.0 98.0 54.0 8.5 0.5 
2 12 -332.5 -224.0 -96.0 -12.0 -0.5 
2 13 171. 5 126.0 42.0 3.5 0.0 
2 22 665.0 448.0 192.0 24.0 1.0 
3 11 54.0 16.5 33.5 4.0 0.0 
3 12 -190.5 -76.0 -96.5 -18.0 0.0 
3 13 241. 5 143.5 84.0 14.0 0.0 
3 14 -105.0 -84.0 -21.0 0.0 0.0 
3 22 677.0 208.5 325.5 128.0 15.0 
3 23 -728.0 -276.0 -313.0 -124.0 -15.0 
4 11 315.0 157.0 72.0 71. 0 15.0 
4 12 -1015.0 -640.0 -240.0 -120.0 -15.0 
4 13 350.0 241. 5 84.0 24.5 0.0 
4 22 3045.0 1920.0 720.0 360.0 45.0 
5 11 -97.0 138.0 -250.0 15.0 0.0 
5 12 199.0 -160.0 335.0 24.0 0.0 
5 13 -301. 0 182.0 -420.0 -63.0 0.0 
6 11 4.0 0.5 2.5 1.0 0.0 
6 12 -18.0 -4.0 -13.0 -1.0 0.0 
6 13 35.0 14.0 21. 0 0.0 0.0 
6 14 -38.5 -28.0 -10.5 0.0 0.0 
6 15 17.5 17.5 0.0 0.0 0.0 
6 22 92.0 15.0 53.5 23.5 0.0 
6 23 -137.0 -32.0 -72.0 -33.0 0.0 
6 24 101. 5 49.0 42.0 10.5 0.0 
6 33 204.0 36.0 102.0 66.0 0.0 
7 11 48.0 11. 0 20.5 16.5 0.0 
7 12 -195.0 -74.0 -94.0 -27.0 0.0 
7 13 157.5 84.0 63.0 10.5 0.0 
7 14 -52.5 -42.0 -10.5 0.0 0.0 
7 15 42.0 21. 0 21. 0 0.0 0.0 
7 22 900.0 292.0 398.0 165.0 45.0 
7 23 -685.0 -256.0 -252.0 -132.0 -45.0 
7 24 175.0 112.0 42.0 21. 0 0.0 
7 33 460.0 120.0 158.0 137.0 45.0 
7 34 -90.0 -32.0 -32.0 -26.0 0.0 
7 44 20.0 4.0 11.0 5.0 0.0 
8 11 210.0 72.0 48.0 45.0 45.0 
8 12 -945.0 -576.0 -216.0 -108.0 -45.'0 
8 13 245.0 168.0 56.0 21. 0 0.0 
8 22 3780.0 2304.0 864.0 432.0 180.0 
9 11 -14.0 0.0 -14.0 0.0 0.0 
9 12 126.0 0.0 126.0 0.0 0.0 
9 13 -77.0 0.0 -91.0 14.0 0.0 
9 14 42.0 0.0 70.0 -28.0 0.0 
9 22 -324.0 0.0 -336.0 12.0 0.0 
9 23 218.0 0.0 196.0 22.0 0.0 
9 24 -238.0 0.0 -182.0 -56.0 0.0 
9 33 -98.0 0.0 -56.0 -42.0 0.0 
9 34 125.0 0.0 77.0 48.0 0.0 
9 35 -168.0 0.0 -126.0 -42.0 0.0 
9 44 -54.0 0.0 -42.0 -12.0 0.0 
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TABLE III-(continued) 

R jJ = (2,1), (2,1,0) R1j = (1,1,1) 

diagram IF (2,1) (2,1,0) diagram IF (1,1,1) 

3 14 3 3 3 14 6 

6 14 9 15 6 14 30 
6 41 9 15 6 41 30 

7 14 6 12 7 14 24 
7 41 6 12 7 41 24 

9 14 9 14 3 
9 41 9 41 3 

Rij = (3,1), (3,1,0) 

diagram IF (3,1) (3,1,0) 

6 15 4 4 

Rif = (2,2), (2, 2, 0) R jJ = (2,1,1) 

diagram IF (2,2) (2,2,0) diagram IF (2,1,1) 

6 15 6 6 6 15 12 

TABLE IV: Expansion coefficients, at (2.>(Rij ) and aZ1 <a'>(Rjj) for the linear chain. 

Rif 2n a (2.> 
t 

ao <2.> a
2

(2) (14 <2.) <16(2,.) (18 <2.) 

(0) 0 0.25 0.25 0.0 0.0 0.0 0.0 
2 1.0 1.0 0.0 0.0 0.0 0.0 
4 11. 0 9.0 2.0 0.0 0.0 0.0 
6 163.0 100.0 55.0 8.0 0.0 0.0 
8 2909.0 1 225.0 1 232.0 420.0 32.0 0.0 

10 60704.0 15 876.0 25 704.0 16 260.0 2736.0 128.0 

(1) 2 -0.5 -0.5 0.0 0.0 0.0 0.0 
4 -7.0 -6.0 -1.0 0.0 0.0 0.0 
6 -114.0 -75.0 -35.0 -4.0 0;0 0.0 
8 -2116.0 -980.0 -868.0 -252.0 -16.0 0.0 

10 -44356.0 -13 230.0 -19026.0 -10452.0 -1584.0 -64.0 

(2) 4 1.5 1.5 
6 37.5 30.0 
8 826.0 490.0 

10 18300.0 7 560.0 

(3) 6 -5.0 -5.0 
8 -182.0 -140.0 

10 -5073.0 -2835.0 

(4) 8 17.5 17.5 
10 840.0 630.0 

(5) 10 -63.0 -63.0 

in order to get a contribution from a diagram of m 
lattice sites. If the term of order tn is of interest, 
the number of sites m which are involved in the 
commutation must be given by m ~ ~n + 1. For 
n = 2,4,6,8, m ~ 2,3,4,5. For this reason, we 
need the diagrams with m ~ 5 lattice sites for the 
calculation of the terms up to t8 • They are listed 
as diagrams 1-9 in Fig. 1. In calculating the 
term of t 10 for the linear chain, we need the linear 
diagram with six lattice sites; that is listed as 
diagram 10 in Fig. I. 

Table n shows the average of commutations for 
those diagrams. For these diagrams, we used the 
notations Yt (2n)(diagram,IF), where I and F mean 
Initial and final sites, respectively, and Y2t{2n) 
(diagram, IF) in place of O"t{2n)(R ij) and 0"2/2n)(R ij ), 

0.0 0.0 0.0 0.0 
7.5 0.0 0.0 0.0 

294.0 42.0 0.0 0.0 
7 896.0 2 6~8.0 216.0 0.0 

0.0 0.0 0.0 0.0 
-42.0 0.0 0.0 0.0 

-1 932.0 -306.0 0.0 0.0 

0.0 0.0 0.0 0.0 
210.0 

0.0 0.0 0.0 0.0 

resRectively. As the Yt(2nJ(diagram,IF) and 
Y21 2n)(diagram,IF) are symmetric with respect to 
I and F, the values are not listed for F < I. The 
results are given for 2n ~ 8. As the Hamiltonian 
commutes with the sum of SZ for all the sites, e.g., 
L,j S/ = L,FS F z, we have identities: 

L,jY2Z(2n)(diagram,IF) = 0, n? 1 

L,FY21(2n)(diagram,LF) = 0, n? 1, 
(3.1) 

and the corresponding relations for Yt (2n>. These 
relations provide a method of checking our results. 

In order to calculate the space-time correlation 
functions, one needs the number of how many ways 
those diagrams with the initial and final sites (IF) 
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TABLE V. Expansion coefficients, u/2n)(Rij ) and U21(2n)(Rij ) for the square lattice. 

R jj 2n u (2.) 
t 

U
O

(2.) U2(2.) U4(2.) U6(2 0) 

(0,0) 0 0.25 0.25 0.0 0.0 0.0 
2 2.0 2.0 0.0 0.0 0.0 
4 50.0 38.0 12.0 0.0 0.0 
6 2 050.0 1 088.0 770.0 192.0 0.0 
8 120 790.0 43 918.0 47080.0 25 280.0 4512.0 

(1,0) 2 -0.5 -0.5 0.0 0.0 0.0 
4 -17.0 -14.0 -3.0 0.0 0.0 
6 -770.0 -477.0 -245.0 -48.0 0.0 
8 -46 000.0 -20916.0 -16 600.0 -7356.0 -1128.0 

(2,0) 4 1.5 1.5 0.0 0.0 0.0 
6 102.5 80.0 22.5 0.0 0.0 
8 7098.0 4 242.0 2 296.0 560.0 0.0 

(3,0) 6 -5.0 -5.0 0.0 0.0 0.0 
8 -546.0 -420.0 -126.0 0.0 0.0 

(4,0) 8 17.5 17.5 0.0 0.0 0.0 

(1, 1) 4 3.0 3.0 0.0 0.0 0.0 
6 190.0 160.0 30.0 0.0 0.0 
8 12 096.0 8 372.0 3 136.0 588.0 0.0 

(2,1) 6 -15.0 -15.0 0.0 0.0 0.0 
8 -1 554.0 -1260.0 -238.0 -56.0 0.0 

(3,1) 8 70.0 70.0 0.0 0.0 0.0 

(2,2) 8 105.0 105.0 0.0 0.0 0.0 

TABLE VI. Expansion coefficients u/(20)(Rij ) and U21(h)(Rij ) for the simple cubic lattice. 

Rij 2n u/2 .) uo(20) U2(2n) u4(2 0 ) u6(20) 

(0,0,0) 0 0.25 0.25 0.0 0.0 0.0 
2 3.0 3.0 0.0 0.0 0.0 
4 117.0 87.0 30.0 0.0 0.0 
6 7 989.0 4 068.0 3 081.0 840.0 0.0 
8 830907.0 287679.0 325800.0 180 948.0 36480.0 

(1,0,0) 2 -0.5 -0.5 0.0 0.0 0.0 
4 -27.0 -22.0 -5.0 0.0 0.0 
6 -2034.0 -1223.0 -671.0 -140.0 0.0 
8 -213836.0 -92 820. ° -79164.0 -35772.0 -6080.0 

(2,0,0) 4 1.5 1.5 0.0 0.0 0.0 
6 167.5 130.0 37.5 0.0 0.0 
8 19978.0 11 690.0 6 706.0 1 582.0 0.0 

(3,0,0) 6 -5.0 -5.0 0.0 0.0 0.0 
8 -910.0 -700.0 -210.0 0.0 0.0 

(4,0,0) 8 17.5 17.5 17.5 0.0 0.0 

(1,1,0) 4 3.0 3.0 0.0 0.0 0.0 
6 320.0 260.0 60.0 0.0 0.0 
8 36 232.0 23 268.0 10 724. ° 2 240. ° 0.0 

(2,1,0) 6 -15.0 -15.0 0.0 0.0 0.0 
8 -2 646.0 -2 100.0 -490.0 -56.0 0.0 

(3,1,0) 8 70.0 70.0 0.0 0.0 0.0 

(2,2,0) 8 105.0 105.0 0.0 0.0 0.0 

(1,1,1) 6 -30.0 -30.0 0.0 0.0 0.0 
II -5208.0 -4200.0 -840.0 -168.0 0.0 

(2,1,1) 8 210.0 210.0 0.0 0.0 0.0 

appear when the initial and final lattice sites of and 
which the difference is Rif , are given in the lattice. 

fJ t (2n)(R if) = . ~ L; n(Ri/; Those numbers n(Rif;diagram,IF) are listed in d lag ram IF 
Table ill for the linear, square, and cubic lattices. 

diagram,IF)y t (2 n)(diagram, IF). (3.3) The results for those lattices are obtained as a 
sum of products of the average for each figure 
and the number of ways that figure appears: By using Tables II and III, we obtain our final re-

(T2Z(2n)(Rif) = ~ L;n(Rif ; 
suUs: Tables IV-VI for fJ2/2n)(R~ and o}2n)(R;j)' 
Table IV includes the values for = 10, but the 

diagram IF data used in their calculation are not given in 
diagram, IF )Y21 (2n)(diagram, IF) (3.2) Tables II and III. The results have been confirmed 
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to satisfy the sum rules (2.14) and the correspond­
ing relation for o}2n>(R if ). 

(Jo (2n)(R if) in Table Ware the expansion coefficients 
for the X - Y model, for which Katsura et al. 12 gave 
the following closed expression: 

(3.4) 

Our coefficients (J t (2n){Ri /) in Table IV are con­
firmed to be correct willi the aid of the formula 

J(2t)2=t2nf (-1)"[(2n+2k)!)2 t2k (3.5) 
n 11=0 [(n + 2k) !]2(2n + k)! k! 

4. CONCLUDING REMARKS 

This paper is devoted to describe the computation 
of obtaining the coefficients of the series expansion 
in powers of time of the two-time spin-pair cor­
relation function of the Heisenberg model of spin 
~ at infinite temperature. and to report the results 
of the computation. The main results are given in 
Tables IV-VI. Because of the limitation in the 
computer used, the coefficients of higher orders 
are obtained after a number of runs of the com­
puter. In order to save the computer time. it is 
devised that the trial of choosing sites and bonds 
is terminated when choice of the bonds after that 
stage will result in zero contribution. Such a 
device is used by Kobayashi 13 in his calculation 

* Present address. 
1 L. Van Hove, Phys. Rev. 95,1374 (1954). 
2 P. G.de Gennes, in Magnetism, edited by G. T. Rado and H. 

Suhl (Academic ,New York, 1963), Vol. m,p. 115. 
3 E.g., P. Resibois and M.De Leener, Phys. Rev. 152, 305, 318 

(1966); 178, 806, 819 (1969);K. Kawasaki, J. Chern. Phys. Solids 
28,1277 (1967); Progr. Theoret. Phys. (Kyoto) 39,285 
(1968); T. Kawasaki, ibid. 39,331 (1968); H. Mori and H.Okamoto, 
ibid. 40,1287 (1968), M. Blume and J. Hubbard, Phys. Rev. B 1, 
3815 (1970). 

4 F.Carboni and P. M.Richards, Phys.Rev. 177,889 (1969). 
5 R. Kubo, in FluctlUltion, Relaxation and Resonance in Magnetic 

Systems, edited by D. ter Haar (Oliver and Boyd, Edinburgh, 
1962), p. 23. 

6 P.G.de Gennes,J. Phys. Chern. Solids 4,223 (1967). 

for the one-dimensional case. Details of these 
procedures are not described in the text. 

The results obtained for the term of order t4 

agree with those give in Ref. 6-8. The results 
for the order t6 is not in agreement with Ref. 9. 
The results obtained by the analytic expression 
for the X-V modeI12 is used to check a part of 
the present computation. 

Analysis of our coefficients are in consideration. 
The computation of the higher-order terms and 
the computation for finite temperatures and for 
higher spins are now the problems under conSider­
ation. 

Cook and Richards 14 announced a future paper on 
the term of order t8 of the autocorrelation func­
tion. It is hoped that they will give a check for that 
part of the present result. 
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On the Decomposition SO(p, 1) ::J SO(p - 1, 1) for Most Degenerate Representations 
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We discuss the problem of decomposing the matrix elements for degenerate representations of SO(p, 1) 
according to the noncompact subgroup SO(p - 1,1). The overlap functions which obtain this decomposi­
tion are calculated explicitly and their properties are used to discuss the SO(p, 1) generalized Regge 
expansion. 

1. INTRODUCTION 

During the past few years, there has been a rapid 
development in the representation theory for non­
compact Lie groups. 1 A considerable. amount of 
interest has been focused on the so- called pseudo­
orthogonal groups of the type2 SO(P, q). In addition, 
if either p or q is equal to unity, the analysis of 
such representation theory becomes much simpler. 
Indeed in this case, SO(P, 1), all the unitary irredu­
cible representations have been classified. 3 In 
most of this literature, the representations have 
been constructed in a basis made up of the finite­
dimensional unitary irreducible representations 
of the maximal compact subgroups. More recently, 
however, for various reasons, attentions have been 
focused on the decomposition according to non­
compact subgroups. 4- 6 In these cases the results 
indicate that a unitary irreducible representation 
of the continuous class decomposes according to 
its noncompact subgroup into a direct integral of 
unitary irreducible representations of the continu­
ous class taken twice and a direct sum of unitary 
irreducible representations of the discrete class 
taken once (if they occur at all). 

In the present paper, we discuss this result for the 
decomposition SO(P, 1)::J SO(p - 1, 1) in the case 
of the most-degenerate,6 continuous, principal 
series. Although. Limic and Niederle previously 
gave this result,7 they confined themselves to the 
decomposition in their representation space. On 
the other hand, we give, as well, the decomposition 
of the matrix elements and calculate explicitly the 
so-called overlap functions between the canonical 
basis and pseudobasis. Moreover, our representa­
tion of these functions is in a form which reveals 
their singularity structure explicitly and leads to 
a generalized Regge expansion as well as factori­
zation of the residues. 

2. CONSTRUCTION OF THE UNITARY IRREDUC­
CIBLE REPRESENTATIONS OF SO(P,I) ON 
THE HYPERBOLOID H<P-l) 

A single sheet H.?-l) = {11 : 111-'111-' = 11~ - 11~ _ ... 
- 11~-1 = 1,110> o} of the two-sheeted hyperboloid 
is a transitive manifold for the proper group 
SOo(P - 1, 1). In fact, H t-1

) is a rank -1 homogene-
0us space2 •8 of SOo(P - 1, 1) which is homeomor­
phic to the coset space SOo(P - 1, I)jSO(p - 1). We 
can construct the so-called quasiregular repre­
sentation of SOo(P - 1,1) on H+(P-l) as follows: ~~e 
the continuously differentiable functions on H.!,P 1 

and make a Hilbert space out of them with the 
inner product 

ifvf2) = {(P-1) dUpJ~ (Up)f2 (Up) (2.1) 
+ 

and norm 

Ilfll = J dUp IJ{Up)! 2 < 00, 
H(P-l) 

+ 

where dUp is the usual invariant measure on 

H~I); denote this space by £2 ~~11; then let 
L(g) be an operator on £2 (HT » such that fo\, 
eachg E: SOo(P - 1, 1) and every,IE: £2 (H~I') 
we have 

(2.2) 

It is easily verified that L(g) is a representation 
of SO 0(P - 1, 1) and it follows from the invariance 
of the measure under SOo(P - 1, 1) transformations 
that L(g) is unitary. However, L(g) is not irreduc­
ible, but decomposes into a direct integral of 
irreducible representations by the Gel'fand-
Graev th~orem. 9 The irreducible content of 
£2(H:-l') is obtained by considering the eigen­
vectors of the only nonvanishing Casimir operator 
of SOo(P - I, 1) on HT1

), the Laplace-Beltrami2 •8 

operator ~(H.~11. 

Now we try to extend the representation (2.2) with 
the aid of multiplier representations to a repre­
sentation of SO 0(P, 1) in analogy with the represen­
tations of SO(P) on the (P - I)-dimensional s{>here,lO 
S (P-l). To this end we consider the quasiregular 
representation of SOo(P, 1) on the upper sheet of 
the p-dimensional cone, ~o - ~i - ... - ~; = 
0, ~ 0> 0, with continuously differentiable nomo­
geneous functions of degree a of the homogeneous 
variables 171-' = ~ 11/ e, p. = 0, 1, ... ,p - 1. First 
notice that since e varies between -00 and +00, 
1111 is not well defined when e takes on the value 
zero. Secondly, since ~O > 0, when ~p< 0 we have 
17 0 < 0 and we cannot identify this with the single 
sheet H:-1

). In fact, we can handle both of these 
problems by considering both the sheets H:-1

) 

and H 5!'i) and taking those functions in .c2 (H:-1» 
and .c2 (H ~-i» that are related in a continuous 
fashion at infinity. The relevant Hilbert space 
then becomes the direct sum .c2 (H 1p-1» = .c2 (H.!"'i» 
ffi .c2 (H ~-1», and the continuity problem can be 
made manifest by mapping .c2 (H (p -1» unitarilyll 
onto L2 (S (P-1». As a result, we have two manifolds, 
H+(P-1) and H!!-l), on which the group SOo(P - 1,1) 
acts transitively and hence two quasiregular repre­
sentations of SO o(P - 1, 1). And it is for just this 
reason that the decomposition SO o(P' 1) :J SO 0 
(P - 1, 1) occurs with multiplicity 2. We will show 
this explicitly in the next section. 

We are now in a position to extend the representa­
tion (2. 2):{)f SOo(P - 1, 1) to a representation of 

2070 
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sOo(P, 1): Let TOP(g) be an operator on £2 (H(Ji-l» 
such that for each g E: SOo(P, 1) and every 
f E: £2(H<P-1» we have 

TOP(g)f(1) = 1 (g-1 );1]" + (g-1 }$I <T 

x j I' " I' ~
(g_1 )"1) + (g-1 )P

J (g_1 )~7)" + (g_1)$ • 
(2.3) 

Again it is easily verified that T<1p(g) is a repre­
sentation. By the transformation properties of the 
measure we see that TOJl(g) is unitary with respect 
to t~r inner W_oduct (2.1) extended to both sheets 
H!/, ) and H_ 1) if and only if 

a = - ~(P - 1) + ip, p real. 

We can, however, restrict p to be nonnegative since 
T-P and TP are unitarily equivalent. It can also be 
verified that T<1P(g) is an irreducible representa­
tion of SOo(P, 1). Thus Eq. (2. 3) describes a unitary 
irreducible representation of the most degenerate 
continuous class of the group12 SOo(P, 1). 

Before proceeding with the actual decomposition, 
a few words are in order concerning the infinitesi­
mal generators of the group representation (2.3). 
As is known,8 given a continuous unitary repre­
sentation of a group, one can always obtain self­
adjoint operators (infinitesimal generators) via 
the one-parameter subgroups. Performing this 
formally for the representation (2.3), we find 

5 = i (1] _0 __ 7) _0_) 
I'" , I' 01/" v (1)1' 

(2.4) 

for the SO (p - 1, 1) subgroup and 

(2.5) 

for the remaining generators. Easily we arrive 
at the Lie algebra of SO(P, 1): 

(5j.lv, 5a ,-.] = i(g v as I' ;.. - g j.laSlI;" - g vAS 1'<1 + gj.l ;..s.,o)' 

(sJlII,r;,.]=i(gv;..rj.l-gj.l;..r,,), (2.6) 

(rll , r"l = iS Jl ". 

However, it is not enough simply to write down the 
infinitesimal generators as differential operators 
on a Hilbert space in order to have a representa­
tion of a Lie algebra. One must know precisely 
the domain of definition of these operators. As an 
example of this, we see that the generators r 
given above along with the SJll) appear to leavlthe 
subspaces £2(R'I'-1» invariant.13 Thus it appears 
that one can represent the generators of SO(p, 1) 
on the subspace L2 (R~-l)} alone. That this is 
only apparent can be seen readily from the global 
viewpoint as discussed above; but from the local 
viewpoint this information is buried within the 
domain of definition of the generators (2.4) and 
(2.5). The constraints mentioned previously for 

the functions j± E: £2 (H<j'-1\ i.e., continuity at 
infinity, can be understood by breaking them up 
into even and odd functions. As long as the genera­
tors do not mix up the even and odd functions, the 
continuity problem remains the same and the 
subspaces £2 (H ?,-1» remain separately invariant; 
this is the case for the generators S II' However, 
if the even and odd functions are mti'ed by the 
generators, as is the case for r Jl ' the functions in 
the other subspace must also change in order to 
keep the proper continuity. Hence the infinitesimal 
generators r Jl do not leave £2 (H !P-1» separately 
invariant, as we have seen must be the case from 
the global considerations. 

3. THE DECOMPOSITION SO(p, 1):::J SO(p -1,1) 

We begin by introducing a system of coordinates 
on H<P-1) for which the Casimir operators of both 
the subgroups SO(P) and SOCp - 1,1) separate. 
They are just the spherical coordinates on H(P-1) 
given by ± 

1/ 0 = ± cosha, 

sinev 0.,;e1 <27T, 7)1 = sinha sine p-2 ••• 

7)2 = sinha sine p-2 ••• sin82 cosel' 0.,; e j .,; 11, 

i=2,· .. ,p-2 

P-1 
7) = sinha sinep _2 COSBp_3' 

p • h 0 7) = sm a cosep_2,' .,; a < 00. (3. 1) 

The SO(p - 1, 1) Casimir operator is just the La­
place-Beltrami operator on H ~-l): 

_ A(H!P-l» = 1 ~ sinhP- 2 a ~ 
sinhP- 2 a aa aa 

+ 1 0 p-3 a 
2 -- sin (J p 2--

sinh a sinP-
3 

(J p-2 0(Jp_2 - oe p-2 

+ ... __ ~_~ __ 1 ________ _ 
sinh2 a sin2 e . .. sin2 e2 a e2

1 
' P-2 

(S.2) 

or perhaps in the more convenient form 

(P-l) 02 0 
- A(H± ) =- + (p - 2) cotha-oa2 aa 

__ 1_ A (S (P-2» 
sinh2a ' 

(3.3) 

where A (S (P-2» is the Laplace-Beltrami operator 
on the Cp - 2)-dimensional sphere. Now, to find 
the Casimir operator of the compact subgroup 
SOCp), we use explicit expressions for SO(p - 1, 1) 
Casimir operator, 

~SJlIISI'II = r 2 + a(a + p - 1) = - A(H(P-1», 

and the SOCp) Casimir operator, 
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1 ij 
CSO(P) = 2S ijS + rjrp with i == 1,···,p - 2, 

to obtain 

C - A(S(P-2»+A(H(P-l»+r2 
SO(P)-- . 0 

- a(a + p - 1). (3.4) 

But we can find r 0 in the spherical system easily: 

r 0 = :I: i (-Sinha:a + a cosha); 

thus 

2 0
2 ~ - CSO(P) = cosh a - + (p - 2) cotha oa2 

+ (1 - 2a) sinha cosha)..£.- + a(a - 1) sinh2 a oa 
- (p - l)a + coth2 a A(S (P-21. (3.5) 

Of course, the eigenvectors of A (S (P -2)} are just 
the (p - 2)- dimensional spherical harmonics 1 4 with 
eigenvalue n p-2(n p-2 + P - 3). Hence, the eigen­
value problem for Eq. (3. 5) can be solved yielding, 
aside from the multiplier factor, the polynomial 
solutions in 1/ cosha, 

(j' "~2 np-2+ 1.1>-2)j2 
cosh a tanh a C n -n (:I: l/cosha). 

P-l p..2 

The factor cosh 0- a is a reflection of the fact that 
the measure on H(P-l) is not invariant under SO(P) 
transformations, and the multiplier factor is just 
what is necessary to make the representation 
unitary. 

The eigenvalue problem for A(H ~ 1) has a purely 
continuous spectrum; for it to be handled rigor­
ously, one must venture outside the standard 
Hilbert space techniques. This can be done using 
Gel'fand's "rigged Hilbert space" approach15; 
however, nothing more will be said about this 
approach in the present paper exc1f.t that we will 
consider the eigenfunctions of A(H. -1» to be c­
function normalizable. They are, aside from the 
normalization constant, given by 

-(P-3)!2 -[n1>-2+ (Jr3)/2 j 
(sinha) P -1/2+iV (cosha), 

where - [(P - 2)/2] - v2 is the eigenvalue of 
A(H(P-l». Also, fo:r convenience in what follows 
we put np- 1 == nand np- 2 == l. We can now write 
two complete orthonormal bases for £2 (H(P-l}): 

:ne canonical basis 

In N(a, 0p-2"", 81 ) == (a, 0p-2"", 0llnD-l' N) == NncoSho-1 a sinhIa C;;fP-2)/2 (± l/cosha) 
p-l' -

xYN (Op_2,''',01) (3.6) 

and the pseudobasis, 

(±) ( > - ( I N) ( . h >-(P-3)/2 -[l+(p-3)/2) ( h) cf>v.N a,0p-2,"',01 = a,Op_2,"',01 vP- l ' =Nv sm a P-l!2+iu cos a 

x YN (Op-2' ••• , ( 1 ), (3.7) 

where N denotes (np_2 ~ ••• , n l ) and Y N(O p-2 • ••• , (1) are the (p - 2)-dimensional spherical harmonics. 
The normalization C(\l1stants are given by 

1/2 _ _ 1 p-2 ( j ,nj +(j-lJl2[(t'lj+1 + j/2) r (n}+l - nj + l)J 
N -NN -- n r n· +- 2 

nN II "P-2 -J2rr j=l J 2 rrr (n j+l + nj + j) 

and 

rN =]1, N = Ir(iV + l +P - 2)12 v Sinhrrv]1/2 N • [VN ... IIp..Z 2 11 "~2 
(3.8) 

The orthonormality and completeness properties of these basis functions are well known 11: 

l) III,N(np) f:.N (0.;> = 6(np - 0.;) 
"p-l.'·· "l 

(3.9) 
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where the range of summation over the n i is 
n 1 = - n 2, .. , n2; np _ 1 = 0,1, . "; and n i = 0,1, "', 
n i +1' p = 2, ... ,p - 2 if n i +1 is an integer; other­
wise, the sequence extends to infinity. Using these 
relations, we can expand any function in .c2 (H(P-1» 
in terms of either the canonical basis or pseudo­
basis 

+ 00 T (T) 
= E E J. dv bV •N cfJU.N (a, ep - 2 , "', e1 ), (3.10) 

N T=- 0 

and the overlap functions 

Ki(v, ±, n) = Joo sinhP- 2 a da (sinhar(P-3)/2 
o 

x p-[I+(P~3)/21 cosh Cl"a tanh1a 
-1/2+,u 

x C 1+ (P -2)/2 (± 1/ cosha) 
n-I (3.11) 

allow us to go from one expansion to the other via 

(T) 00 Cl" 
bUN = :E anNKz(v,T,n). 

, n=O ' 
(3. 12) 

Moreover, by using the "overlap" functions (3.11), 
the transition between the canonical basis and 
pseudobasis for the matrix elements of group 
transformations can be accomplished. Denoting 
the matrix elements16 of SO(p, 1) in the canonical 
and pseudobasis, respectively, 17 by T~; N'. nN (g) 
and T~,PN1.UN(g), we find, using the relations (3.9) 
and (3.11), 

T~'NI.UN(g) = :E Ki, (Vi, T, n') T~fNI.nN(g) 
n.n f 

-P 
X KI (v, T,n) (3. 13) 

and 

T~;N" nN (g) = E f dv'f dv Ki,(v', T', n') 

(3. 14) 

By restricting g in Eq. (3.14) to the subgroup 
SO(p - 1, 1), we arrive at the basic formula for 
the decomposition SO(p, 1) :::J SO(p - 1, 1): 

T~; N'.n N (h) 

= E f dv Ki, (v, T, n') T';f:";/ (h) K~ (v, T, n) 
T (3. 15) 

for hE: SO(p - 1, 1). In addition, taking g to be the 
identity in Eqs. (3 13) and (3.14), the orthonormality 
and completeness conditions for the "overlap" 
functions can be obtained: 

'" f -P P LJ dvK1(v,T,n')K z (v,T,n) = 0nl,n' 
T 

:EKi (Vi, T', n) Ki (v, T,n) = 0T"TO(V' - v). 
(3.16) 

n 

Note that in order to be able to write down equa­
tions like Eqs. (3. 13)-(3. 16), we must convince 
ourselves that the K functions have the proper 
convergence properties. 

4. CALCULATION OF THE OVERLAP 
FUNCTIONS 

First, it is easily seen from Eq. (3. 11) that 

Knv, - ,n) = (- l)n-zK f(v, + ,n) (4.1) 

and 
K~(v, T, n) = K- P(- V,"T, n) = K-P(v,"T, n). (4.2) 

I I 

To perform the integral (3.11), we make the fimplE! 
change of variables x = cosha; then 

K P (v + n) = N N roo dx(1 _ x2 )[1+ (P-3)/21/2 X 0--1 p-[I+(P-3)/21 (x)C 1+(P-2)/2(1! ) 
1 " II N 1. -1/2+;v n-l X (4.3) 

and expand the Gegenbauer polynomials as 

c1+(P-2)/2(!.) = 1 {(nt
2

} (_ 1); r(n + 1 - j) (!.) n-I-2j 

n-l X r[l + ·Hp - 2)] j=O r(n + 1 - l - 2j)j! x ' 
(4.4) 

which yields 

N N {(n-I)!2} ( l)j r( + 1') 00 
II n :E ~ n -} 2n- I- 2j I dx xo--n+2j (1 _ x 2)[I+(P-3)!21/2 »-[1+ (~-3)/21 (x) (4.5) 

r(l + ·Hp - 2» ] ;=0 j! r(n - 1 - 2j) 1 -1/2 +tV , 

where {a} = largest integer ~ 0. 

of Ref. 18, yielding19 
The integral (4.5) can be performed with the aid of formula 18.2.3 

N N 2-1- (P-2)/2 {(n-I)/2) (- 1); 
K P (v + n) = -f1i ~v--"n,--:-___ E 

I " r(l + ~(p - 2» ;=0 -}-. !-

x r(n + 1 - j)r(~(n - 1 + ~ - ip - iv) - j)r(i(n - 1 + ~ - ip + iv) - j) 

r(~(n - 1 + 1) - j)r(~(n - 1 + 2) - j)r(~(n + ~(p - 1) - ip) - j)r(~(n + ~(p + 1) - ip) - j) 
(4.6) 
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Equation (4.6) can be expressed in terms of the generalized hypergeometric functions2o 

F a l' •• , ,a p. zl = 6 _1-.:,,=-__ ...:: 
[ 

00 (a) '" (ap)" z" 

p q /31"'" /3 q' J .. :o(1) .. ••· (/3q)" n!' 

by using the relation 

to obtain 

p IiiNvN" 
K, (II, +, n) = 2

'
+(P-3)!2 r(f + t(p _ 2» 

rea + n) 
(a)" = rea) 

r(n + l)r(t(n - 1 + t - ip - ill» r Hen - 1 + t - ip - ill» 
x--~-----~~~~~~--~~---~~~----~--~--------

r(t(n - I + l»r(1(n - I + 2»rH[ n + i(p - 1) - ip ])r(t[ n + t(p + 1) - ip]) 

1
-~(n-l-1),-t(n-l)'-Hn+t(p-5)-iP]'-Hn +Hp-3)-ip] } 

x F '1 
43 I( 1+ 3 , ') I( 1+ 3 ,+,) ,. - n, - 2" n - 2 - zp - Z II ,- 2" n - 2 - zp Z II (4.7) 

Although the integral (4. 5) does not converge for 
all complex II, either Eq. (4.6) or (4.7) gives an 
analytic continuation of the overlap functions into 
the complex II plane. And indeed Eq. (4.6) provides 
a very convenient form in which to read off the 
analytic structure. We see that, aside from the 
square root branch points contained in the Nil fac­
tor, there are the followin/f sequences of poles in 
the variable a(p - 1) = - 2" (p - 2) + ill: 

for {a(p - 1) = - ip + 2k - t (p - 3), 
n - 1 even: I 

a(p - 1) = ip - 2k - 2" (p - 1); 

for {a(p - 1) = - ip + (2k + 1) - t (p - 3), 
n -1 odd: I 

a(p - 1) = ip - (2k + 1) - 2" (P - 1); 

k=O,I,·... (4.8) 

Thus, in the case p = 3, we have essentially one­
half the poles of SCiarrino and Toller. This cor­
responds to the fact that, for Toller M = 0 poles, 
the Sciarrino-Toller residues vanish for those 
poles omitted in Eq. (4.8). In fact, for the degener­
ate continuous representations (M = 0) this is the 

,---------------------------

total content of Eq. (5. 24) of Ref. 4. Hence, we ex­
pect the factorization of generalized Regge resi­
dues. More specifically, an SO(p, 1) Regge pole 
with factorizable residue decomposes into a series 
of SO(p - 1, 1) Regge poles, each with factorizable 
residue. 

It is easy to cast the overlap functions into a form 
closely analogous to that of SciarrinO and Toller 
by using a different expansion for the Gegenbauer 
polynomials in Eq. (4.3). By using the expansion 

/+ (P-2/2) 1 
Cn- l (z) = 1:(1 + Hp - 2» 

11-/ r( I ) 
X ~ 1 + 2" (p - 2) +.i 

i= 0 r(2l + p - 2 + 2J) 

r(n + I + tp + j) 2- j (1 - z)i 
x 

r(n - l + 1 - j)j ! 

performing the integration with the aid of formula 
18.2.10 of Ref. 18, and expressing the result in 
terms of Meijer's G functions,20 we can write 

0" cosrrillNIINII 11=1 _ i r(l + ~(P - 2) + j]r(n + 1 + ~p + j)2-i 

K, (II, +,n) = rrr[l + !(P - 2)] Ro ( 1) r(21 + p - 2 - 2j)r(n -1 + 1- j)j!r(l + j - a) 

{ 1

- I - !. (P - 3) - J' 
X C23!. 2 , 

33 2 _ a _ ~ (P - 1) , 
t + ill, 

o 
1, } 2" - til 

I • 
-1- 2"(p - 3) 

(4.9) 

The poles are obtained easily by using the Mellin­
Barnes integral representation yielding poles at 

Comparing this with Eq.( 4. 8), we see that the resi­
dues at the poles in Eq. (4, 9) must vanish when 

a(p - 1) = - ip + k - t (P - 3), 

a(p - 1) = ip - k - t (p - 1). 

n - l + k is odd. 
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I. ASYMPTO'11C BEHAVIOR 

As mentioned previously, in order that the decom­
position (3.15) be meaningful, we must assure our­
selves that the integral in this decomposition con­
verges. 

The asymptotic behavior of the K functions in the 
variable v can be obtained from Eqs. (4.6) and (3.8). 
The r functions in Eq. (4.6) have the following 
asymptotic behavior19: 

r(x + iy) < I r(x + iy) I \y I ~ a; (21T)1/2 

X b' \X-l/2e-ln(2)1,Y1, 

while N
v 
~ \ V 1

1
'(P-3)/2. Thus, for fixed n, I, and p 

NvrH(n -[ + 1-ip-i~)r(t(n-[ + t-ip +iv)} 
< (21T) I £I I n+p-3e -1f Ivl. 

Hence, K!, (£I, T, n) dies off as v goes to infinity 
faster than any negative power. But, from Eq. 
(2.13) of ReL16, the only dependence of T JfN1(a) 
on II aside from the oscillating factor e- iav is 
through the hypergeometric function: 

2F 1(n~_2 + t(p - 2) - ill;np _3 + t(p - 2) +k +k'; 

np_2 +np _
2 

+p-2;1-e-2a
), 

which at worst dies off like a negative power as 
£I ~ 00. Thus, the integral in Eq. (2.13) converges, 
and the decomposition is well defined. 
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Tehran, Iran. 

1 Books on the subject include I. M. Gel'fand, R. A. Minlos, and 
Z. Ya. Shapiro, Representations on the Rotation and Lorentz 
Groups and Their Applications (Pergamon, New York, 1963); 
1. M. Gel'Fand and M. A. Naimark, Unitiiire Darstellungen der 
Klassischen Gruppetl (Akademie-Verlag, Berlin 1957); M. A. 
Naimark, Linear Representations of the Lorentz Group 
(Pergamon, New York, 1964); W. Riihl, The Lorentz Group and 
Harmonic Analysis (Benjamin, New York, 1970); G. W. Mackey, 
Induced Representations of Groups and Quantum Mechanics 
(Benjamin, New York, 1967); N. Ya. Vilenkin, Special Functions 
and Ihe Theory of Group Representations (Am. Math. Soc., 
Providence, R.I., 1968); well-known articles are V. Bargmann, 
Ann. Math 48, 568 (1947); Harish-Chandra, Proc. Roy, Soc. 
(London) A189, 272 (1947); L. H. Thomas, Ann. Math. 42, 113 
(1941); T. D. Newton, ibid. 51,73 (1950); J. Dixmier, Bull. Soc. 
Math. (France) 89,9 (1961). 

2 R. Raczka, N. Limic, and J. Niederle,J. Math. Pbys. 7,1861 
(1966);'1,2026 (1966);&,1079 (1967). For the case SO(4, 2) 
A. O. Barut and A. Bohm, University of Texas Report (un­
published) . 

3 U. Ottoson, Commoo. Math. Phys. 8, 228 (1968);J. Dixmier, 
Compt. Rend. 250, 3263 (1960). 

4 A. Sciarrino and M. Toller,J. Math. Phys. 8,1252 (1967). 
5 W. Riihl, Ref.l;N. Mukunda,J. Math. Phys.8, 2210 (1967);9, 

50 (1968);S. Strom, Arkiv Fysik 34,215 (1967); Ann. Inst. 
Henri POincare 13A,77 (1970); N. W. MacFadyen, Carnegie­
Mellon UniverSity Report (oopublished). 

6 Representations of the most degenerate type have been dis­
cussed in N. Ya Vilenkin, Ref. 1, Ref. 2, and M. Bander and 
C. Itzykson, Rev. Mod. Phys. 38,330,346 (1966). 

7 N. Limic and J. Niederle, Ann. Inst. Henri POincare SA,327 
(1968). 

Finally, we can analytically continue T PJ, N ,lIN (g) in 
the complex plane of the variable p to obtain a 
generalization for SO(p, 1) of the usual Regge pole 
procedure. 4 ,21 When this is done, any of the poles 
of the integrand in Eq. (3.15) that cross the inte­
gration path become the Regge poles and a Regge 
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Rubl's book.1 
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A closed-form expression for the s wave part of the HulthEm potential's T matrix is derived. This ex­
pression is used to obtain a Simpler result for the terms in the Weinberg series for the T matrix than 
the results given previously by other authors. 

1. INTRODUCTION 

Recently lone of us (M. G. F) was able to derive the 
completely off-shell, two-particle T matrix for the 
exponential potential. The derivation was based on 
the differential equation approach used by Van 
Leeuwen and Reiner2 to obtain the T·matrix for a 
potential conSisting of a chain of rectangular wells. 
The inhomogeneous differential equation that arises 
in this approach is similar to the well-known 
Bethe-Goldstone 3 equation. 

In this paper we show that with some modification 
the differential equation approach can be used to 
find the fully off-shell, two-particle T matrix for 
the Hulthen potential. 4 The modification amounts 
to obtaining an expression for the T matrix which 
does not involve the potential expliCitly, thereby 
avoiding certain integrals that are difficult to do 
because of the llr singularity in the Hulthem poten­
tial. USing our closed-form expression for the 
Hulthen T matrix we are also able to find a simpler 
expression for the Weinberg series 5 for the T 
matrix than the expressions given previously by 
other authors6• The Weinberg series 5 is a separ­
able expansion of the two-particle T matrix which 
has been shown to be of practical value in calcula­
tions on three-particle systems 6 ,7. 

2. THE T MATRIX FOR THE HULTHEN 
POTENTIAL 

The two-particle T matrix is the solution of either 
of the equations 

T(s) == V + VGo(s)T(S), 

T(s) = V + T(s)Go(s)V, 

(2. 1) 

(2.2) 

where V is the two-particle potential, s is a com­
plex parameter, and Go(s), the free particle resol­
vent, is defined formally in terms of the kinetic 
energy operator H 0 by 

(2.3) 

Unless stated otherwise, we will assume that s has 
a small positive imaginary part, thereby guaran­
teeing the correct outgoing wave boundary condi­
tion, i.e., 

s == E + if:, 0<f:«1. 

Following Van Leeuwen and Reiner2 , we define 

n(s) == 1 + Go(s)T(S). (2. 5) 

Using (2. 1) and (2. 5) we obtain 

T(s) = vn(s) 
and 

(2. 6) 

(2.7) 

which we write out in a mixed representation. i. e., 

[s + v2 - V(r)](rln(s)!qlm) = (s _q2) 

x <rlqlm), 

where 

j I(qrl is the usual spherical Bessel function and 
YZm (':') is a spherical harmonic. We are working in 
units in which Ii 212m is 1. Since the potential is 
central, we can write 

(rl n(s) Iqlm) = (27T2)-1/2nz{r, q~ s)Yz ... (r), (2.10) 

which upon substitution into (2. 8) gives us 

s + - - r - - VCr) n (r q' s) ( 
1 d2 1(1 + 1) ~ 
r dr2 r2 I , , 

(2.11) 

The solution of (2. 8) or (2. 11) will be referred to 
in this paper as the off-shell wavefunction: If one 
has an expression for the off-shell wavefunction, it 
can be inserted in (2. 6) in order to obtain the T 
matrix. When we attempted to do this for the 
Hulthem potential,4 we found that the integrals en­
countered were difficult to do because of the llr 
singularity in the potential. An expression for the 
T matrix which does not involve the potential ex­
plicitly can be obtained from (2. 5). 

If we write out (2. 5) in the representation given by 
(2.9) and use (2.9) and (2. 10), we obtain 

(s - p2)-1(plm / T(s) /qlm) = (2712)-1100 r2drjz(pr) 
o 

x [nl(r, q; s) - jl(qr»). (2.12) 

From (2. 11) it follows that outside the range of the 
force, 

(2.13) 

where 

s == k 2 , lInk> 0, (2. 14) 

and h l+) is a spherical Hankel function as defined 

2076 
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in Messiah. 8 This Hankel function satisfies the 
outgoing wave boundary condition implied by (2.4). 
Using (2. 14) it is easy to show that 

100 

r2drjz(pr)hz(+)(kr) =- k-1(s -p2)-1(p/k)Z. 
o (2.15) 

Combining (2. 12) and (2.15) we arrive at 

The solution of (2.23) can be obtained from an in­
homogeneous hypergeometric differential equation 
studied by Babister, 10 namely, 

z(1 - z) d
2
y + (C - (A + B + 1)z] dy - ABy =Z"-1. 

dz 2 dz () 
2.25 

A particular integral of (2.25) is the function1o 

+ (21T2)-1(k2 - p2) fOoo r2drj l(pr)(fll(r, q; s) I,,(A, B; C; z) == a(a + ~ _ 1) 

- jl(qr) - Al(q,k)hz(+)(kr»). (2.16) x 3F2(1,a +A,a +B;a + 1,(T +C;z), (2.26) 

By setting p = k in (2.16), it follows that Al is the 
half-off-shell T matrix. Thus (2.13) and (2.16) be­
come 

fll(r,q;s) ==jz(qr) - 2112k(klm!T(s)!qlm)h/+)(kr), 

(2.17) 
(plm! T(s) !qlm) == (p/k)I(k1m! T(s) !q1m) 

+ (21T2)-1(k2 - p2) fOoo r 2drj l(pr) (fll(r, q; s) 

- j I (qr) + 21T2 k(k1m 1 T(s) 1 q 1m )hl (+) (kr»). 

(2.18) 
Clearly (2.17) is a generalization of the well-known 
result that the coefficient of the outgoing wave in 
the ordinary Schrooinger wavefunction is propor­
tional to the partial wave scattering amplitude. 
(2. 18) is a generalization of the relation9 between 
the half-off-shell T matrix (q = k), the on-shell 
T matrix (p == q == k) and the ordinary Schrodinger 
wavefunction. 

We now turn our attention to finding the 1 = 0 com­
ponent of the off- shell wavefunction for the Hulthen 
potential,4 which is given by 

v(r) == Voe -rla/(1 _ e-r/~. 

If we insert (2.19) in (2.11), set 1 == 0, let 

and 

no(r, q; s) == u(r, q; s)/qr, 

-ria 
z==e 

u == e ikrw , 
we arrive at 

) d2w [ ) ] dw z (1 - z - + C - (A + B + 1 z - - ABw 
dz 2 dz 

== k 2 a2 - q 2 a2 [z i (ka-qa)-l _ Z Hka+qa)-l 

2i 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

_ Z i(ka-qa) + z i(ka+qa)], (2.23) 

where 

A(k) = - ika + ia(k2 + VO)1/2, 

B(k) = - ika - ia(k2 + VO)1/2, 

C(k) = 1 - 2 ika. (2.24) 

where 3F 2 is a speCial case of the generalized 
hyper geometric function defined by 

== t (Cl'1)k(Cl'2)k ... (Cl'm)k zk 

k=O (f3 1) k(f3 2) k •.. (f3n) k k!' 
(2. 27) 

The series in (2. 26) converges when 1 z 1 < 1; it 
converges when Iz 1 == 1 provided that Re(C - A -
B) > 0, which from (2. 24) is true in our case. 

If one uses the relationll 

(a + A) «T + B)j<r+1 (A, B; C; z) = (T(a + C - 1) 

x fo(A,B;C;z)-zo, (2.28) 

it follows from (2.21)-(2.23), (2.25), and (2.26) that 
the reduced off-shell wavefunction is given by 

u(r,q;s) == sinqr - 21T2qT(k,q;s)e ikrF(A,B; C;e-rla) 

ikr 2 
e ~a ~. 

+ 2i (j1+ i (ka_qa)(A,B;C;e ) 

( -ria)] 
-/1+ i (ka+qa)A,B;C;e , (2.29) 

where F is the hyper~eometric function (2. 27) 
with m == 2 and n == 1J and 

Va2 

T(k,q;s) == (kooIT(s)lqoo) == ~2 . 
41T qz 

x f 1+i (ka-qa) (A, B; C; 1) - /1+ i (ka+qa) (A, B; C; 1) 

F(A, B; C; 1) (2. 30) 

The off-shell function u satisfies the boundary 
condition u(o, q; s) == 0 and the boundary condition 
at large r implied by (2.17) and (2.20). 

It is of interest to see how the off-shell wavefunc­
tion u goes over into the ordinary Schrodinger 
wavefunction when q = k. From (2. 26)-(2. 28) it 
follows that 

ABf1 (A, B; C; z) = F(A, B; C; z) - 1. (2.31) 
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If one uses (2.31), the relation 12 

fa-+1-C(A, B; C; Z) = Z1-Cf <T(A + 1 - C, B 

+ 1 - C; 2 - C; z), (2.32) 

with a = 1, (2. 24), and (2. 30), it is straightforward 
to show that 

u(r, k; s) = [2if(k)J-1[j(- k)j(k, r) 

- f(k)j(- k, r»), 

where the Jost 'function 13 

f(k) = F(A,B:C; 1), 

(2.33) 

(2.34) 

where 

I(k,q)=- 1 
41T2iq f(k) 

x r(1 + iqa - ika )r(1 + iqa + ika) 
r(1 + iqa - ika - A)r(l + iqa - ika - B)' 

(2.43) 

This result for the half-off-shell T matrix agrees 
with the result obtained from a different approach 
by Ford. 16 

In order to obtain the fully off-shell T matrix it is 
necessary to combine (2.29) and (2.20), and insert 
the result into (2.18), with I = O. By using (2.31) it 
is easy to show that 

and the irregular solution of the SchrOdinger equa-
tion13 u(r, q; s) - sinqr + 21T2qT(k, q; s)e ikr 

f{k, r) = eikrF{A,B; C; e-r/a). (2.35) 

USing13 

= Voa 2e tkr{ - 21T 2qT{k, q; s)f1{A, B; C; e-r/a) 

+ (2i)-1[ A+i (ka-qa) (A, B; C; e-r/ a ) 

- f1+i(ka+qa)(A, B; C; e-r(a)]}. (2.44) 

f{k) = I f(k) I e-io(k) 
and 

f(- k) = If(k)\eio(k), k real, 

(2.36) If now one makes the change of variable given by 
(2.21) in the integral arising in (2.18), all of the 

(2.37) integrations can be carried out by using the result 

we see that it follows from (2.30)-(2.32), and 
(2.24) that our on-shell T matrix is related to the 
phase shift I) by 

T(k, k; s) = - (21T 2k)-1e to(k) sin6(k). (2.38) 

We now show that it is possible to write the half­
off-shell T matrix given by (2. 30) in closed form 
in terms of r functions. Using the results of Secs. 
3.5 and 3.6 of Ref. 14 one can show that 

[r{s)r{e)r(f))-1 3F 2(a, b, c; e,/; 1) 

= [r(f - a)r(s + a)r(e)]-1 

x 3F 2 (a, e - b, e - c; s + a, e; 1), 

where 

s=e+f-a-b-c. (2.39) 

From the series (2. 27) for 3F2 it follows that 

(c - 1) 
3 F 2(1, a, b; 2, c; z) = z(a _ l)(b _ 1) 

1 

J dz zP-1f (a b' c· z)dz o a- ' , , 

= [a(a + c - 1)(P + 0')]-1 

X 4F3 (l,a + a,a + b,p + a; 0' + l,a + c, 

p + 0' + 1; 1). (2.45) 

This result is obtained by integrating the series 
for f <T [see (2. 26) and (2. 27)] term by term. To 
get our final result for the T matrix we also use 

4Fi1,1 +a,l +11,1 +c;2,1 +e,l +f;z) 

= (el /abcz)[3F 2{a, b, c; e,/; z) - IJ, (2.46) 

which follows directly from (2.27). The final re­
sult for the HultMn T matrix is given by the rela­
tions 

p = ia(p - k), 

a = I + ia(k - q), 

X(p, k) = p-1 3F 2(A,B,p:C,p + I: 1), 

(2.47) 

(2.48) 

(2.49) 

[F{a - 1, b - 1; c - 1; z) - IJ. (2.40) yep, q; k) = u-1{a + C - 1)-1(p + a)-l 

If now we use (2.24), (2.39), (2. 40), and the well­
known result15 

F(a, b; C; 1) 

= r(c)r(c - a - b )/r(c - a)r(c - 11), (2.41) 

it is straightforward to show from (2.30) that 

T(k,q;s) =I(k,q) +I(k, -q), (2.42) 

x 4 F 3 (1,a +A,a +B,a +p;a + l,a + C, 

p + a + 1; 1), (2.50) 

T(p q's) = (k 2
-p2)a {21T2qT(k q's) 

, '4rr2ipq , , 

x [X(p, k) - X( - p, k)] - (V oa2/2i) 

x [yep, q, k) - yep, - q, k) - Y( - p, q, k) 

+ Y( -p, - q,k)]}. (2.51) 
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We have performed a couple of checks on this 
fairly complicated result. If one sets p = k in 
(2.51) and uses (2.49) and (2.27), it is easy to see 
that one gets the correct limit. The other check 
we have carried out is to set q = k and see if we 
got the result obtained from (2.42) and (2.43), 
using the property 

T(p, q; s) = T(q,p; s). (2.52) 

In order to carry out this check, we use (2.24), 
(2.34), (2.36), (2. 37), (2.38), (2.46), and (2.47) to 
show that 

T(p, k; s) = - (k
2 

- p2)a { - f( - k)[X(P, k) 
8rr 2pkf(k) 

- X( - p, k)] + f(k) [x(P, - k) 

- X( - p, - k)]}. (2.53) 

From Eq. (3) in Sec. 3. 7 of Ref. 13, (2.24), (2.34), 
and (2.47), it follows that 

f( ..... k)X(p, k) - f(k)X(p, - k) 

_ 2k r(l + p)r(2 + p - C) (2 54) 
- ia(p2 _ k2) r(l + p - B)r(l + p - A)" . 

Substituting (2.54) in (2.53), using (2.52), and com­
paring with (2.42) and (2.43), we find that (2.51) 
has the right limit when q = k. 

3. THE WEINBERG SERIES 

In this section we show how a simple expression 
for the terms in the Weinberg series5 for the 
HultMn T matrix can be obtained from our ex­
pression (2.51). The Weinberg series 5 for the 
T matrix T(s; X) arising from the potential X V is 
given by 

where the I 1/1 v> and TJ y are the eigenfunctions and 
eigenvalues of the kernel of the Lippmann­
Schwinger equation; i.e., 

(3.2) 

From (3.1) it is obvious that 

Thus we can obtain the terms in the separable ex­
pansion (3.1) directly from the T matrix. 

The s-wave eigenvalues for the HultMn potential 
(2.19) are given by13 

In our formula (2.51) for the T matrix we replace 
V 0 everywhere by X V 0' so, for example, A [see 
(2.24)] becomes 

A(k, x) = - ika + ia(k2 + X VO)1/2. (3.5) 

From (3.3)-(3.5) it follows that for the HultMn 
potential 

V II/Iy (s»( I/Iy(s*) I V 

( 1/1 y (s*) I V 11/1 y (s » 
= (2ika- 211) TJ2(s) lim [A(k,X)+ II]T(s;X). 

Voa2 
y ,A-+-y (3.6) 

Using (2.34), (2.41)-(2.43), (2.49)-(2.51), and the 
relation 

lim(z + n)r(z) = (- 1)n/n!, n = 0,1,2"", _" (3.7) 

we can show that 

lim [A(k,X) + II] T(p,q;s;X) 
~y 

= - (k
2 

- p2)a(C)y [Wy(q, k) - Wy( _ q, k)] 
8n 2pq( II - 1)! 

x [X(P, k; X) - X (- p, k; X)]A=_y, (3.8) 

where 

( - iqa - ika)y 
Wy(q, k) = (1 + iqa - ikat· (3.9) 

From the results of Secs. 3. 5 and 3.6 of Ref. 13, it 
follows that 

X(p, k; X) I A=-y = p-l(p + 1r13F2(1 - II, 1 + II 

-2ika, p; 1 - 2ika, p + 2; 1). (3.10) 

According to Saalschiitz' s theorem (see Sec. 2. 2 of 
Ref. 13) 

3F 2( - n, a, b; c, 1 + a + b - c - n; 1) 

(c - a )n (c - b )n 
= (c) .. (c - a - b )n' n = 0, 1, 2, .... (3.11) 

Combining (3.6), (3. 8), (3.10), and (3.11), we arrive 
at the following expression for the terms in the 
Weinberg series: 

Vll/ly(s»(l/Iy(s*)IV (11- ika)TJy(s) 

(I/Iy(s*) I Vil/ly(s» 
= 

4rr 2pqa 

x [Wy(p, k) - Wy( - p, k»)[Wy(q, k) 

- Wy ( - q, k»). (3.12) 

As mentioned before, this result is much Simpler 
7J y (s) = Voa2/1I(2iak - II), II = 1,2,3, .... (3.4) than the results given previously by other authors.6 
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The Green's function is constructed for the problem of time-dependent scalar diffraction by a planar 
curved edge in a form which includes contributions to the field from nonlocal parts of the diffracting 
edge. The Green's function involves an elementary solution of the wave equation corresponding to the 
diffracted wave which is obtained in the form of a series connected with the geometric properties of the 
wave fronts. The half-plane, slit, and circular aperture are treated as particular cases. 

1. INTRODUCTION 

In diffraction by obstacles with edges, the geo­
metrically next most simple problem after diffrac­
tion by a straight edge is diffraction by any planar 
edge not necessarily straight. Such problems have 
been treated by Keller's "geometrical theory of 
diffraction, "1 - 3 which provides a mechanism for 
obtaining asymptotic solutions of diffraction pro­
blems, and by its suitable generalizations. 4 ,5 

These methods either generate asymptotic expan­
sions for the fields for small values of the wave 
length or provide asymptotic solutions where only 
the local geometry of the diffracting screen is of 
concern, and contributions of waves coming from 
distant parts of the screen are ignored. Exactly 
such problems for time-dependent diffraction by 
regular plane edges shall be considered here for 
the case of zero initial conditions. (Nonzero 
initial conditions can be treated in the same man­
ner, with trivial modifications.) The present inter­
est, however, lies in determining the solution in a 
form which includes contributions to the field from 
nonlocal parts of the screen. 

The problem is to determine the function u(t, P), 
which satisfies the wave equation 

OU y == (V2 - E-)uy(t, P) = itt, P) (1) 
\ at2 

(with wave velocity taken to be unity) everywhere 
except possibly on the screen TT, the initial con­
ditions 

oU y 
uy(O, P) = at (0, P) = 0 (2) 

for all points P of 3- space, and one of the following 
boundary conditions: 

(i) u 1 (t, P) = U 1 (t, P) for P on TT, 

(3) GU2 (il) - (t, P) = U2 (t, P) for P on TT. 
on 

The function u Jt, P) must also satisfy the edge 
condition, U v (t, P) < + r:fJ at the edge. (The same 
condition is assumed for the time-dependent equa­
tion and the reduced wave equation.) Here t repre­
sents the time, which is nonnegative, P is an arbit­
rary point in 3-space, and the functions!, Up U2 
are given arbitrary functions which are assumed 
to be as smooth as necessary and are compatible 
with (2) and (3). 

The objective is the determination of the Green's 
function g(t - T, P, Q} for the problem (1)-(3), 
so that u(t, P) can be obtained in the form 

u(t, P) = JJ!(T, Q)g(t - T, P, Q}dTdQ, 

where dQ signifies an element of volume in 3-
space, and the integral is over all points (T, Q) 
of the four-dimensional space-time for which 
g(t - T, P, Q) is not zero. 

In the special case of a straight edge and U v = 0, 
this problem has been solved. Since the method of 
solution used here for a curved edge is different 
from that employed by Wait,6 it is somewhat more 
illuminating to first review the solution for the 
case of a straight edge. 

The basic tool to be employed in the construction 
of the solution is Green'S theorem for the wave 
operator 0 for the scalar problem. It will be 
referred to as the fundamental formula (F). That 
is, if u(t, P) satisfies Eq. (1) and if v(t, P) satisfies 
the homogeneous wave equation 

Dv(t, P) = 0, (4) 
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1. INTRODUCTION 

In diffraction by obstacles with edges, the geo­
metrically next most simple problem after diffrac­
tion by a straight edge is diffraction by any planar 
edge not necessarily straight. Such problems have 
been treated by Keller's "geometrical theory of 
diffraction, "1 - 3 which provides a mechanism for 
obtaining asymptotic solutions of diffraction pro­
blems, and by its suitable generalizations. 4 ,5 

These methods either generate asymptotic expan­
sions for the fields for small values of the wave 
length or provide asymptotic solutions where only 
the local geometry of the diffracting screen is of 
concern, and contributions of waves coming from 
distant parts of the screen are ignored. Exactly 
such problems for time-dependent diffraction by 
regular plane edges shall be considered here for 
the case of zero initial conditions. (Nonzero 
initial conditions can be treated in the same man­
ner, with trivial modifications.) The present inter­
est, however, lies in determining the solution in a 
form which includes contributions to the field from 
nonlocal parts of the screen. 

The problem is to determine the function u(t, P), 
which satisfies the wave equation 

OU y == (V2 - E-)uy(t, P) = itt, P) (1) 
\ at2 

(with wave velocity taken to be unity) everywhere 
except possibly on the screen TT, the initial con­
ditions 

oU y 
uy(O, P) = at (0, P) = 0 (2) 

for all points P of 3- space, and one of the following 
boundary conditions: 

(i) u 1 (t, P) = U 1 (t, P) for P on TT, 

(3) GU2 (il) - (t, P) = U2 (t, P) for P on TT. 
on 

The function u Jt, P) must also satisfy the edge 
condition, U v (t, P) < + r:fJ at the edge. (The same 
condition is assumed for the time-dependent equa­
tion and the reduced wave equation.) Here t repre­
sents the time, which is nonnegative, P is an arbit­
rary point in 3-space, and the functions!, Up U2 
are given arbitrary functions which are assumed 
to be as smooth as necessary and are compatible 
with (2) and (3). 

The objective is the determination of the Green's 
function g(t - T, P, Q} for the problem (1)-(3), 
so that u(t, P) can be obtained in the form 

u(t, P) = JJ!(T, Q)g(t - T, P, Q}dTdQ, 

where dQ signifies an element of volume in 3-
space, and the integral is over all points (T, Q) 
of the four-dimensional space-time for which 
g(t - T, P, Q) is not zero. 

In the special case of a straight edge and U v = 0, 
this problem has been solved. Since the method of 
solution used here for a curved edge is different 
from that employed by Wait,6 it is somewhat more 
illuminating to first review the solution for the 
case of a straight edge. 

The basic tool to be employed in the construction 
of the solution is Green'S theorem for the wave 
operator 0 for the scalar problem. It will be 
referred to as the fundamental formula (F). That 
is, if u(t, P) satisfies Eq. (1) and if v(t, P) satisfies 
the homogeneous wave equation 

Dv(t, P) = 0, (4) 
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then we obtain (F): 

J !(T, Q)v(T, Q)dTdQ +1 (u dv - v dU)dS == 0, 
D oD dv dv 

where D is any regular region in the four-dimen­
sional space-time throughout which u and v have 
no singularities of any kind, aD is the boundary of 
D, and dS is an element of surface area on aD. 
The directional derivative d/ dv, called the "trans­
versal derivative," is defined by 

where 10 , i1' i 2 , I 3 are the direction cosines of the 
inward normal to the surface. This formula may 
be proved in exactly the same way as Gauss's 
divergence theorem.7 For functions u and v, which 
may have singularities within or on the boundary 
of the region, one can either apply (F) to a neigh­
boring region where no Singularities exist and 
then take limits, or one can interpret the resulting 
integrals in a generalized sense. 8 

2. THE STRAIGHT EDGE 

If l is so small that no radiation could yet be 
received at P from any point Q on the edge, Le., 
o < t < distance from P to the edge, the problem 

does not differ from that for a whole plane, in 
which case the solution is known to be 

uv(t, P) == -; J !(T, Q) o(l - : - R) dTdQ 
1T D; 

where R is the distance PQ; D i is the region 
(space-time) bounded by the portion of the cone 
T = t - R which extends from its vertex (t, P) to 
the half-hyperplane 1T, and the initial hyperplane 
T == 0; R* is the distance P*Q, where p* is the 
image of P in the extension of 1T; D .. is the region 
bounded by the portion of the cone T == t - R * 
which lies on the same side of 1T as does P, the 
half-hyperplane 1T, and the hyperplane T == O. 

Since 0 is the Dirac 6 function, (6) could be written 
in the form 

1 1 (_ 1}1I+1 
uu(t, P) == - - J !(l - R, Q)- dQ +.o....-..!..--

41T Rg R 4. 

x J !(t-R*,Q)-\dQ. 
R*~;t R 

Since the form in (6) shows the Green's function is 

/ 1 
\ - 0 (l -- T - R) in D . - D 

1 ,R ' .. ' 
gv(t - T, P, Q) == --

41T 11 ( 1) v 
- 6(t - T - R) + ~ 6(l - T - R*) 
R R* 

one need only consider the case t is greater than 
the distance from P to the edge. First consider 
the case with P located above the half-plane 11, for 
which case P will receive direct, reflected, and 
diffracted radiation. 

Since the cone T == t - R now will contain a portion 
of the edge of the half-plane, the boundary of the 
region D i , which consists of all those pOints 
(T, Q) from which direct radiation can be received 
at (t, P), is made up of a portion of the cone T == 
t - R, the plane T == 0, the half-plane 1T, together 
with a portion of the "shadow" plane. By "shadow" 
plane is meant the plane determined by the edge 
of the half-plane 1T and the point (t, Pl. Denote this 
shadow plane (actually a hyperplane) by p. Simi­
larly the region D .. consists of all points (T, Q) 
from which reflected radiation can be received at 
(t, P) and has its boundary made up of a portion of 
the cone T = t - R*, the plane T = 0, the half-plane 
1[, together with the shadow plane p*, which is the 
reflection of P in the extension of 1T. Finally there 
is the region D d' which consists of all points (T, Q) 
from which diffracted radiation can be received at 
(t, Pl. Its boundary is a "conelike" surface Cd' 

with equation of the form T == t - a, where a is 
the shortest distance from P to Q by a path which 
touches the edge. That is, by a broken line PE + 
EQ, where E is the point of the edge which mini­
mizes the sum. If P = (x, :v, z) and Q == (X, Y, Z) 
and if the edge is the line x == 0, y = 0, then 

a = [(r + p}2 + (z - Z}2P/2, (7) 

where y = (x2 + y2)1/2 and p = (X2 + y2}1/2. 

The idea is to apply the fundamental formula (F) 
to each of the regions D i' Dr' D d using the (un­
known) function u(t, P} and appropriate solutions 
v of Eq. (4). First apply (F) to D i with v = 
o(t - T - R)/R, yielding 

° = ! - dTdQ + - - - u - - dS, J 0 J (Ii du d 0) 
Dj R CjHj+P+ R dv dv R 

(8) 

where C
i

,1Tp P+ denote the respective portions of 
the surfaces of the cone T = t - R, and planes 1T 

and p which make up the surface aDj' (The inte­
gral over T = 0 is zero since u and au/aT vanish 
there.) One finds that the only part of ci giving a 
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nonzero contribution is the neighborhood of the 
vertex (t, P) and this contribution equals 4rr u(t, P) 
so that (8) can be rewritten as 

- 411 u(t, P) 

= J f ~ dTdQ + J (~dU - u ~~) dS. 
Di R lTi+P+ R dv dv R 

On p+ the transversal derivative is just the out­
ward normal, and 

!i. o(t - T - R) = _1. (0 1 (t _ T _ R) 
dn R R 

+ o(t - T - R») dR 
R dn' 

which vanishes onp becausedR/dn = Othere. Thus, 

- 411 u(t, P) = f - dTdQ + - - - u - - dS J 0 J (0 du d 6) 
D; R IT; R dv dIJ R 

+ J ~ du dS, 
p+ R dIJ 

(9) 

where one notices that the first term on the right­
hand side is known, as is the integral of either 
u(d/dIJ) (o/R) or (o/R) (du/dv), since either u or 
du/ dv is given on 11 • 

Next apply (F) to the region D a picking for v an 
appropriate function w and obtain 

o = J fwdTdQ + J (w du - u dW)dS. 
Dd Ca +1t d++ ITd- dv dIJ (10) 

The only term involving values of u other than on 
11 is the surface integral over C a; so if w is the 
appropriate solution of (4) which agrees with 
o(t - T - R)/R, then one can have 

J ~ du dS = J fu dw _ w dU) dS. 
p+ R dv Cd \ dv dIJ 

(11) 

If this is true then (10) can be added to (9) to yield 

- 411 u(t, P) = I f ~ dTdQ + I fwdTdQ 
Di R Da 

+ J (~dU - u ~ ~)dS 
"; R dv dv R 

J ~ du dW) + w--u- dS. 
"d++ITd- dv dIJ 

(12) 

If this argument is repeated with regions Dr and 
Dd and functions o(t - T - R*)/R* and w*, which 
satisfies the condition corresponding to (11), 
namely 

--dS = u--w - dS, J 6 du J ~ dw* * dU) 
p! R* dv Cd dIJ dv 

(13) 

one obtains 

o = J f 0: dTdQ + J fw*dTdQ + J (0: du 
Dr R D d IT i R d IJ 

_ U ~ 0:) dS + j fw* du _ u dW*) dS. 
dv R lTa++ITd- \ dv dv 

(14) 

Finally, subtracting and adding (12) to (14) yields, 
respectively, 

o 0* 
- 411 u1 (t, P) = J f - dTdQ - J f -; dTdQ 

Di R Dr R 

+ J f(w-w*)dTdQ-2 J U1 ~~dS 
Da IT; dv R 

- 4 J U1 dw dS 
1Td+ dv 

(15a) 

and 
o 0* 

- 411 u.z(t, P) = J f - dTdQ + j f -;dTdQ 
D; R Dr R 

+ J f(w + W*) dTdQ + 2 J U2 ~ dS 
Dd "i R 

+ 4 J wU2 dS, (15b) 
"d+ 

upon taking into account the facts that R = R*, 
0= 0*, W = w*, 

d 0* d 0 
dvR* -- dIJR' 

hence dw* /dIJ = - dw/dv on 1T, and the boundary 
conditions. Thus, if a solution w of (4) can be found 
which satisfies (11) and a w* satisfying (13), Eq. 
(15) give the solutions to the problems (1)-(3). 

3. CONSTRUCTION OF W FOR THE STRAIGHT 
EDGE 

A construction of elementary solutions of quite 
general hyperbolic differential equations has been 
explained by Hadamard7 and is adapted for use 
here. The main difference is that instead of con­
structing the solution of (4) corresponding to the 
region bounded by the conoid r = 0, r == (t - T)2 
- R2, with the form ur-q

, with U regular and taking 
on a specified value at the vertex (t, P) of the con­
oid, one must construct the solution of (4) corres­
ponding to the region bounded by y = 0, y == (t - T)2 
- a2 , which has the form Vy -q, with V regular 
most everywhere and taking such values along the 
hyperplane p that condition (11) is satisfied. 

On the surface T = t - a (the only portion of 
y = 0 the argument is concerned with), where a 
is given by (7), a convenient coordinate system 
can be chosen as follows: If Q(X, Y, Z) is any 
point on this surface, and if E is the point of the 
edge such that PE + EQ is a minimum, then PE 
and QE make equal angles cp with the edge, so if 
E, P have coordinates (0,0, e) and (x,)" z), res­
pectively, and the edge is x = 0 = .y, then 
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r ::: So sincp, p::: a sincp, 

e - Z ::: So coscp, Z - e = a coscp, 

where So denot~he distance PE and S is the 
distance PE + EQ, so 

p = s sincp - r, Z - z = s coscp. 

The rectangular coordinates of a point Q are then 
seen to be 

Q = «s sincp - r) cose, (s sincp -r) sine, 

z + s coscp). 

Thus a natural coordinate system for the surface 
integrals in (15) is (s,6, cp), where 

T = t - s, X ::: (s sincp - r) cos6, 

Y == (s sincp - r) sine, Z == z + s coscp, 

where s ranges from r csccp to t. 

Sinc,e w is expected to be infinite on y == 0, one 
must apply (F) to a neighboring surface and appro­
ach y == 0 by a limiting process. For this purpose 
it is convenient to use the surface T = t - a - E, 
E > O. On this surface, 

dS = '/2 dXdYdZ 
and 

dT + r + p ~ dX + r + p dY + Z - Z dZ::: 0; 
a p a a 

the unit inward normal is 

the directional derivative multiplied by dS is 

which in the coordinates (s, e, cp) of Q (with 
T = t - s - E) becomes 

dS' !!... == (s sincp - r)sdsd6dcp ~ . 
dll as 

For the surface p+, a convenient choice of coordi­
nates is (T,p, El), where X = p cosEl, Y = P sinEl, 
and p has the equation e = e + 71, with e defined 
by x = r cose, Y = r sine. Hence, if one continues 
to write u, w indifferently of the coordinate system 
being used and remembering which surface one is 
integrating over, condition (11) takes the form 

JJ~(!. ~ 6(t - T - R») dTdpdZ 
p ae R e=e~1T 

== IJI1u aw - w au) s(s sincp - r)dsdedcp, 
\: aO' aO' (16) 

since on p+, 

du =!. au 
dll p ae 

and dS = dTdpdZ. 

The term on the left-hand side (lhs) is equivalent 
to 

JJ~au (t-a-E,e+'If,z)dpdz, 
pa ae 

while the term on the rhs can be integrated by 
parts with respect to s, giving 

- J J [ s (s sincp - r)uw l!~scll' dedcp 

+ JJI U(2S(S sincp - r) aw + (2s sincp - rw) as 
x dsdedcp, 

The first term here vanishes, since u(t - s - E, 
s,6, cp) == 0 when s ::: t - E, so that (16) becomes 

lim IJ J.. ~ (t - a - E, e + 'If, z) dpdz 
£->0 pa ae 

::: lim IIP-€ U(2S(S sincp _ r) aw 
<>0 r~ as 

+ (2s sincp - r)w)dSdedCP. 

In this expression, the change of variables from 
p, z to s, cp in the lhs (s sincp = r + p, s coscp ::: 
Z - z), would make the lhs and rhs agree if and 
only if 

lim j 2" u(t _ S - E, s, e, cp) f2(s sincp - r) ~ 
<>0 0 L as 

x w(t - S - E, s,6, cp) + (2 sincp -;) 

x w(t- S -E,s,e,cp)}d6 

== !. au (t _ sse + 'If m) 
p ae " , 't', 

(since a equals the arclength s). 

(17) 

The quantity in brackets must tend to zero with E 

for e '" e + rr and tend to infinity for e ::: e + 'If. 

In fact, it must behave like 0' (6 = e + 11). Hence 
if w ::: Vy-q, with V regular inSide y ::: 0, then V 
must still have a Singularity of some sort where 
y = 0 meets p (Le., where 6 = e + 71), so it may 
be expected that V has, the form V == wr- ex, with 
a> 0 or 

w == wr-cly -q, (18) 

where W remains finite within and on y == O. 
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Substituting (18) for w in the large parentheses in 
(17) gives the expression 

[2rp(1 + cose=e) + 2SE + EZra-1(2s + E)-q-l 

x (2p(2s + E) [2rp(1 + cos&=e) 

+ 2SE + E21 oW + W[4rp(1 + cos~) 
as 

The first term has limit zero and since the first 
term of the integrand is more singular than the 
second, with the second giving rise to the finite 
limit 1/1' (0), necessarily the coefficient of the first 
term must vanish. So {3 = 1, and (24) reduces to 

1 -a 
lim ,\-q+1 J (x2 +,\) 1/I'(x)dx = 201C1/I'(0). 
)...1.0 -1 

x (2p + r - OIr - OIp - 2qp) + ER]), (19) Now the lhs can be written 

where Wis W(t - S - E, s, e, <p), p = S sin<p - r, 
and R indicates the remaining terms which have 
not been written explicitly. In order to satisfy (17), 
the expression in large parentheses in (19) must 
go to zero with E. Hence, W == W(t - s, s, e, <p) 
satisfies the differential equation 

oW -) 2ps - + (2p + r - 201r - 201p - 2pq)W = 0, (20 
AS 

which is readily integrated to give 

lim ~-q+l(tJ;,(O) J1 (xZ + I\.)-Udx + Jl (x 2 + I\.r" 
)...i. 0 -1 -1 

x [tJ;'(x) - tJ;'(O)]dX) ' 

where the second term is less singular than the 
first and the first has asymptotic behavior: 

tJ;'(0) __ I\. + 2 2 I\. • 
( 

1 -q+l r(.!)r(0I -.!) 3/2- U-q) 
~ - 01 r(OI) 

W /'e ) q-1/2 a-liZ =D,,<p s p , (21) Accordin~ly, it follows that 

where D(e, <p) is independent of s and remains 
finite when e = e + 'IT. 

The singular behavior of (20) arises fro~ the 
factor [2rp(1 + cos~) + 2SE + EZru- ,which, 
for e = e + 1T, tends to infinity as E -7 0; since it 
is only the singularity which determines the vali­
dity of (17), it suffices to look at the most singular 
term in (19). Since W is to have no singularities, 
Win (19) may be replaced by W from (21). The 
most singular term in the resulting expression 
can be simplified to 

1 (4 )-U-q+1 -q-1/2 q-3/2, -<t+1 201 r pSI\. 

x (cos2~e - e + 1\.)-«-1 D(e, <p), (22) 

with 

I\. = sE/2rp. 

Near e = e + 1T, cos~(e - e) is near zero, which 
poses difficulties for the choice of 01, q, and D(e, <p). 
Consider for the moment the similar but simpler 
problem of determining 01, q, and f3 > 0, such. that 
for an arbitrary but nice enough function 'I1(x) the 
following relation holds: 

lim I\. -q+1 J-l1 1/l(x)x B
(X2 + I\.)-u-1dx = const· 1/1'(0). 

)...1 0 (23) 

Clearly - q + 1 > 0, and since 01 > 0, integration 
by parts gives 

lim I\. -Q+1(_ 1/I(x)x B -1 (x2 +,\ )-ex /201 11 
AiO -1 

1 
+ (1/2a) il (x 2 + ~)-ex [(f3 - l)x B-2 1/I(x) 

+ x S-1 11"(x)]dx = C1I"(O). (24) 

~-OI=q (25) 

and that the constant in (23) is 

So for (17) to hold with w of the form (18), the 
function D(e, <p) in (21) must have a simple factor 
of cos~( e - e), the constant q is given in terms 
of 01 by (25), and the limit of the lhs of (17) for 
E -70 is then equal to [using (25)1 

01 (4rr1/2pu-2s-ex rWr(OI - ~) (r(a»-l 

x {D(e, <p) [cos~ (e -e)r1
} au (t - s,s, e 
8 0 8+1f ae 

+ 1T, <p). 

Hence, for equality with the rhs of (17) one must 
have 01 = 1, giving C = 1 and 

D(e, <p) = (2/1T) (~) cos~ (e - e), 

and accordingly 

w(t- s, s, e, <p) == W = (2/lT) (rp)1/2 cos·He - e). 
(26) 

Expression (26) is the value of Wonly on the 
surface y = 0, hence one can write 

where VI is a function having no singularities on 
y = O. Since w == Wr- 1y -liZ is to be a solution of 
(4), the equation for VI can be obtained by substitu­
ting w = Wr-1.y -1/2 + Vlyl/2 in (4). Since one 
finds that 

o (Wr-l y -1/2) = 0, 
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V1 = 0 gives a solution (for the straight edge) 

W W-r-l -112 = Y • (27) 

EP = ao<a' coscp + (3' sincp cose, sincp sine,(:l' 

x coscp - a' sincp cos e), 

where e denotes the angle between the plane 1f and 
That this is the only solution of the form (18) which the plane containing EP and the tangent line at 
remains finite on the edge will be shown later E (see Fig. 1). 
(Sec. 7). 

With this function for w, Eqs. (15) give the solution 
of the diffraction problem corresponding to the 
boundary condition (3). One sees that for zero 
boundary conditions these solutions agree with 
those obtained by Wait. 6 It is merely a matter of 
differentiating Wait's solutions with respect to t. 

4. CON5TRUCTION OF AN ELEMENTARY 
SOLUTION FOR DIFFRACTION BY A 
CURVED EDGE 

For simplicity assume first that the point P and 
time t are such that there is only one minimal 
path PE + EQ between P and any point Q via the 
given curved edge, for any point Q of three-space 
such that PE + EQ < t. Suppose also that the 
distance from P to the edge is less than t, so that 
diffracted radiation can be received at P at time t. 
Let a again denote this minimal path length from 
any arbitrary point Q to P via the edge. [Note that 
a is not given by (7) for any but a straight edge.] 
Proceeding exactly as in Sec. 2, we must again 
construct a solution w of (4) which takes on such 
values on the surface y = 0 that Eq. (11) holds. 

To carry out this construction in general one 
needs to define a suitable coordinate system, which 
is done in the following way. Let an arbitrary 
point E of the edge by (a(e), 0, (:l(e», where e denotes 
arc length along the edge. Hence 

(a'(e»2 + ({3'(e»2 = 1. 

Given P(x, y, z), E(a(e), 0, (:l(e» and denoting the 
distance I FE I by a 0' 

ao = [(a -x)2 + y2 + ({3 - z)2]1/2, 

then the angle cp between EP and the tangent line 
at E is given by 

coscp = a~l [(x - a)a' + (z - (3)(:l' ]. (28) 

Since the path PE + EQ is the minimal path from 
P to Q via the edge if and only if the line QE also 
makes an angle cp with the tangent line at E, then 
Q necessarily lies on the cone which has vertex 
E, axis the tangent line at E, and semivertical angle 
cpo It follows that if e denotes the angle between 
the plane 1f and the plane containing QE and the 
tangent line at E, and if a denotes the length I EQ I, 
then the vector EQ is 

EQ = a(- a' coscp + {3' sincp cose, sincp sine, - (3' 

x coscp - a' sincp cose), 

and Similarly the vector EP is 

One finds then that the coordinates (X, Y, Z) of Q 
are given in terms of the coordinates (a, e, e) by 
the relations 

X = a - a(a' coscp - (3' sincp cose), 

Y = a sincp sin6, (29) 

Z = (:l - a({3' coscp + a' sincp cose), 

where cp is given by (28), and one finds the angle 
Q between the lines PE and QE is given by 

cosQ = (EQ,EP)IEQI-1IEPI-l 

= sin2cpcos(e - e) - cos 2cp, 

where 

Since one now has 

cos~Q = sincpcos~(e - e), 

one finds 

a 2 - R2 = 4aoa sin2cp cos2~(e - e), 

and in addition one notes that in these coordinates 
a = a + ao' 

To carry out this construction in general, one 
notices that since a is the minimum distance from 
P to Q via the edge (or, equivalently, since T = 
t - a is a characteristic surface for the wave oper­
ator, i.e., a wave front), it follows that I V'a1 2 = 1. To 

QIX. YI 

FIG.1. E(a(e), 0, !lIe)) is an arbitrary point of the edge. The 
lines QE and PE make equal angles <p with the tangent to the 
edge at E to satisfy the minimal path requirements. The angle 
e denotes the angle between the plane of the edge 7r and the 
plane containing QE and the tangent line at E. The angle 8 is 
defined similarly. 
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show this, suppose the minimum path from P to Q 
meets the edge at the pOint E(a(e), 0, (3(e)). The 
distance from P to Q along the minimal path is 
then 

a = {[x - a(e»)2 + y2 + [z - {3(e»)2}1r.l 

+ {[X - a(e»)2 + y2 + [Z - {3(e»)2}1/2, 

where e is such that oa/oe = O. But then 

Va = {[X - a(e»)2 + y2 + [Z - {3(e»)2}-1/2 

x (X - aCe), Y, Z - (3(e», 

(30) 

from which the observation is obvious. Similarly 
one has I ~ I 2 = 1. 

On the surface T = t - a - E, E> 0, 

dS = -ndXdYdZ 
and 

oa oa oa 
dT + ax dX + a Y dY + az aZ = 0, 

the unit inward normal is 

the directional derivative multiplied by dS is 

which in the coordinate system (a, a, e) is (with 
T=t-a-e) 

d a 
dS dll = Jdadede oa' 

where J is the Jacobian of the transformation from 
(X, Y, Z) to (a, a, e). Thus in place of (16) one now 
gets 

JJJ~ 1 ~ a(t- T-R)\ -~- JdTdade 
asin¢ oa R ) amnf 

8=6+11 

== a-2a-1 sin-2cp J(a, e + 1T, e) ; 

x (t - a, a, (j + 1f, e) ••• 

in place of (17). 

It is shown in the Appendix that 

Hence (29) becomes 

Ii.mJ~u(t-a-E a A e)(2 0W(t-a-E aAe) 
E,j,O 0 ' ,'" a a ' , '" 

+ WV 2a)Jde 

(32) 

1 au 
= -J(a, (j + 1f, e) - (t - a, a, e + rr, e). (33) 

aa2 aa 
Assume that W has the form 

W;: wr- 1y-1/2. (34) 

Then 

w(t-a-E,a,e,e) = W(t-a-E,a,a,e) 

x [a2 - R2 + 2aE + E2 ]-1(2aE + E2)-1/2. (35) 

Since n is the angle PE makes with the plane 1f and 
PE = ao,and hence 

one has 

ow ( acT t-a- E,a,a,e) 

(
loW 

= w - - (t - a - E a a e) 
W oa ' , , 

2ao(1 + cosU) + 2E 1) 
- a2 - R2 + 2aE + E2 - 2a + E • 

= JJJ(u ~~ - w ~~)Jdadede. (31) To satisfy (34) one must have W = Wet - a, a, e, e) 
satisfy the equation 

Use has been made of the fact that on p+, 

du 1 AU 
dll = a sinr£) oe 

and 
1 

dS = a sinqJJdTdade. 

Integration by parts of the rhs of (31) gives 

~ ( ow li~j u(t-a-E,a,e,e) 2J-::;-(t-a-E,a,6,e) 
E,j,O 0 va 

OJ ~ + aa W(t- a-E,a,e,e)jde 

oW -
2aa au + (Au - 2a}W = 0, (36) 

in place of (20), where 

A = aV2a - 1. 

Integrating (36) gives 

W = D(e, e)aa1/2J-1/2. (37) 

Upon substituting 

wet - a - E, a, e, e) ~ W(a 2 - R2 + 2aE + E2)-1 

x (2aE + E2) -112 
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into (33), one finds for the most singular term in 
large parentheses 

4D(e, e)a-l/2aol/2,\1/2a-3/2 

x sin-lrp[cos2}(11 - e) + ,\]-2J-l/2, 

where ,\ == w(2aoa sin2rp)-I. The limit of the lhs 
of (33) is then equal to 

[D(e e)(cos-zl g )-1] ·~1Ta-la~ sin-2rn~ , e=o+7[ ~ 't' ae 

x (t-a,a,1I +1T,e); 

so for equality with the rhs one must have 

D(e, e) == cos~g -217-1 sinrp 

== ± 1T-l(a2 - R2)1/2aoI/2a-1/2 sinrp, 

where the plus sign is taken above the shadow sur­
face and the minus sign below. Hence, 

w == ± 17-l(a2 - R2)1/2aI/2aI/2aol/2J-l/2 sinrp. 
(38) 

Assume that 

w == [± 1T-l(a2 - R2)1/2r-1 + Vo + v1y + ... ] 
X y-l/2, (39) 

with vn independent of t, T. Then one must have 

To determine the coefficients vn ' n 2: 1, it is first 
necessary to make several observations. First, 
note that 

O«a 2 - R2)1/2r-Iy-I/2) == - y-3/2V2 

x (a2 - R2)1/2, 

which may be verified by computation. Second, if 
v is any function independent of t, T then (using 
Ival 2 == 1, IVRI2 == 1) 

n-I/2 n -112 2 (2 1) ,,-3/2 Ovy == Y V v - n - y 

x [(va2 , Vv) + (A + 2n)v], (41) 

and in the coordinate system (a, e, e) one has 

(Va2, Vv) == 2a ~~ (a, a, e). 

Further, by expanding in the obvious way one has 

(a2 - R2)1/2r-l == (a2 - R2)-1/2 - (a2 - R2)-3/2y 

+ (a 2 - R2)-5/2y2 - ••• , (42) 

and upon applying the wave operator term by term 
to both sides of (42) [using (41)] one obtains 

- y-3/2V2(a2 - R2)1/2 

== y-3/2~aa~ (a 2 - R2)-1/2 + A(a2 - R2)-1/2) 

+ y-1/2 (2a1- (a2 - R2)-3/2 
aa 

+ (A + 2)(a2 - R2)-3/2 + V2(a2 - R2)-1/2) 

aa 
- 3yI/2(2a~ (a 2 - R2)-5/2 

+ (A + 4)(a2 - R2)-5/2 + t V2(a2 - R2)-3/2) 

+ 5y3/2 ( 2al. (a2 - R2)-7/2 
aa 

+ (A +6)(a2 - R2)-7/2 + ~ V2(a 2 - R2)-5/2) 

+ .... (43) 

Comparing the coefficients of both sides of (43) 
gives 

2a 1- (a 2 - R2)-1/2 + A(a2 - R2)-1/2 oa 
== - V2(a2 - R2)1/2, etc. (44) 

With the above observations one is in a position 
to determine the coefficients vn ' n 2: 1, in (39). 
First, 

O[± 1T- I (a2 - R2)1l2r-l + vo]y-1/2 

== y-l/2v2 vo + y- 3/2 (2a ~:o + Avo 

± 17-l V2(a 2 - R2)1/2) == y-1/2V2 vO' 

since the term in large parentheses vanishes 
because of (44). It follows that 

o[± 1T-l(a2 - R2)1/2r-l + Vo + vl y]y-l/2 

I ( 
aVl 

== yl 2V2 Vl - y-1/2 2a ¥ + (A + 2)vl 

- V2vo). 

Now choose vI so as to make the last term vanish, 
that is 

aV l 
2aaa- + (A + 2)v l == V2vo' 

Equation (45) may be integrated by using the 
integrating factor ta-1/2Jl/2, so that 

(45) 

vI == ia-1/2J-l/2 (fYa-l/2J 1/2V2Vod(J + C1 ), 

(46) 
where C 1 denotes an arbitrary constant of inte­
gration-possibly a function of e and e but inde­
pendent of a. 

Assuming for the moment that the C" are deter­
mined, the above procedure for vI can be repeated 
for each of the vn in turn, leading to the differential 
equation for v,,: 
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~a o~ + A + 20 Vn = (2n - 1)-l V 2 vn_l, 

which, upon using the integrating factor ~an-3/2Jl/2, 
yields 

vn = [2(2n - 1)]-la-n+l /2J-l/2 

x (JO"an-312J 1/2V2 vn_1dlJ + Cn)' (47) 

for n 2: 1. 

With such functions vn' whatever the integration 
constants Cn' w given by (39) will, by construction, 
be at least a formal solution of the homogeneous 
wave equation (4), and also take on such values on 
'Y = ° that Eq. (11) holds. The determination of 
the constants C n will be taken up in Sec. 7, after 
the remaining steps in the formal construction 
have been completed. Before attacking the general 
problem, it will be worthwhile to construct the 
solution of the comparatively simpler problem 
of the slit, in order to gain insight into the effect 
of the edges on waves already diffracted. 

5. THE SLIT 

The construction of the solution of the wave 
equation (1) in the presence of a plane with an 
infinite slit will be carried out much as was done 
in the two-dimensional case. 9 Namely,one first 
constructs the function oulI(t, P), which is the solu­
tion for small enough time t such that the two half­
planes have not had time to interact, that is, for 
t :s d, where d is the width of the slit. For such t, 
the solution is the same as for the two half-planes 
separately. Thus, if a1 and a2 denote the minimum 
distances from P to Q via the edges (say, left and 
right) , respectively; if Di and Dr are the regions 
(in space-time) from which, respectively, direct 
and reflected radiation can be received at (t, P)j if 
Dl and D2 are the regions from which diffracted 
radiation can be received via the respective edges, 
so that 

Dj ::: {(T, Q): a j < t - T}; 

and if one defines 

( (l/R)o(t - T - R) for (T, Q) ( Di' 

ol?)t - T, P, Q) ::: - .!) (- 1)V (l/R*)o(t - T - R*) for (T, Q) ( Dr' 

(- [Wj + (- l)vwn for (T, Q) (Dj , j = 1 and 2, 

where Wj is defined by (27) with a == a i,j = 1 and 2j 
then one has 

OUv(t,P)::: Jf(T,Q) ogv(t- T,P,Q)dTdQ, 
(48) 

where the integration is over Di> Dr> Dl> and D2 
separately and the results are added. Verification 
that (48) satisfies the differential equation (1) 
involves the same computations as for the case of 
the half-plane and are accordingly omitted here. 
To verify that the boundary value of OU1 (or 
(d/dn)ou2 ) is zero for ° :s t < d, but not for t 2: d, 
one notes that on the plane, R ::: R*, 0 = 0*, 
(d/dn)o =- (d/dn)o*, while w l =- wt, (d/dn)wl::: 

(d/dn)w;, w2 ::: w;, (d/dn)w2 = (d/dn)w; to the right 
of the left-hand edge, and w2 == - w~, (d/dn)w2 
= (d/dn)w;, w l = w~, (d/dn)w l == - d/dn w; to the 
left of the right-hand edge. Thus the boundary 
condition is satisfied until such time as Dl meets 

the right-hand edge or D2 meets the left-hand 
edge, that is, at least until t 2: d. 

It follows that one needs to construct a function 
1 uv(t, P) which satisfies the homogeneous wave 
equation (4) and which takes on the negative of the 
values of OUl' if II = 1 [or has normal derivative 
equal to - (d/dn)ou 2 if 11= 2) on the slit plane, in, 
which cases the sum 

will be the solution of the problem. Such a function 
lUll can indeed be constructed by using the terms 
in (15) corresponding to a nonzero boundary con­
dition. (One needs a pair of such boundary inte­
grals, one for each half-plane.) 

Suppose one uses rectangular coordinates, with the 
slit being the set of points y == 0, - id:s x:s ~d. 
Then the value of oU l on the slit plane will be 

OUl (t, x, 0, z) = 2; J f (T, X, Y, Z)wi(t - T, x, 0, Zj X, Y, Z)dTdXdYdZ 

{ 
O:s T < t - ({x + M + [(X + M)2 + Y2)1/2}2 + (z - Z)2)1/2, 

over 
o:s T < t - ({- x + %d + [(X - id)2 + Y 2)1/2}2 + (z - Z)2)1/2, 

and 
1 0 J 1u l(t,x,y,z) =- 211" oy oul(t',x',O,z')[(x - x')2 + y2 + (z - z')2]4./2 

x o[t - t' - [(x - x')2 + y2 + (z - z,)2]l/2}dt'dx'dz', 

X 2: M, 
x:s - id, 

i == 1, 

i ::: 2, 

(49) 
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over ° ~ t' < t - [(x - X')2 + y2 + (Z - Z')2)1/2, x' 2': ~d, and x' ~ - ~d, 

-} ;y f OUl(t',x', 0, z,)wP - t',x,Y, z;x', 0, z')dt'dx'dz ' 

{
o ~ t' < t - ({x' - ~d + [(x - ~d)2 + y2]1/2}2 + (z' - z)2)1/2, 

over ° ~ t' < t - ({- x' - ~d + [(x + ~d)2 + y2]I/2}2 + (z' - z)2)1/2, 

x' ? ~d, j = 2, 

x' ~ - M, j = 1. 

Hence one can write 

lU1(t,x,y,Z) = ff(T,X, Y,Zhg1(t- T,x,y,z;X, Y,Z)dTdXdYdZ, 

where 

g (t - T x y z· X Y Z) == - _1_ ~fW.(t' - T x' ° z,· X Y Z)[(x - x')2 + y2 + (z - z')2]-1/2 
1 1 '" , , , 41T 2 ay' " , , , , 

x oCt - t' - [(x - x')2 + y2 + (z - z,)2)1i2)dt'dx'dz' 

over 
)

T + ({x' + ~d + [(X + ~d)2 + y2]1/2}2 + (Z'- Z)2)1/2 ~ t' < t- [(x- x')2 + y2 + (z- z')2]1/2, 

x' ? ~d, i = 1 

T + ({~ x~ +~ ~d +.[~ -~d)2 + y2)1/2}2 + (2' - Z )2)1/2 ~ t' < t- [(x - x~2 + y2+ (Z - zl)2]1/2, 

X _ 2d, Z - 2, 

__ 1_ ;:. f w.(t I - T ,x',O, z'; X, Y,Z)wj (t - t' ,x,Y, z;x' ,0, z')dt 'dx'dz' 
21T2 vy Z 

)

T + ({x' + ~d + [(X + ~d)2 + y2)1/2}2 + (ZI - Z)2)1/2 ~ t'< t - ({x' - ~d + [(x - !d)2 

over + y2]l/2}2 + (z' - Z )2)1/2 ,X'2': ~d, i = 1, j = 2, 

T + ({- x' + ~d + [(X - ~d)2 + y2]l/2} 2 + (ZI - Z)2)1/2 ~. t'< t - ({- x' - ~d + [(x: + M)2 

+ y2]l/2} 2 + (Z' - z)2)1/2,X' ~ - ~d, i = 2, j = 1. 

The case of boundary condition (3. 2) is quite similar and it turns out that 

a 
19l(t - T ,x,y,ZjX, Y, Z) = ay 192(l - T ,x,y,ZjX, Y, Z). 

Then the Green's function for the slit problem in 
the case U v := ° is given by 

(50) 

(51) 

is the solution being sought. 

Notice that the solution for nonzero boundary con­
ditions may be obtained by adding to the rhs of 
(51) the quantity 

1 d (j 1 dW l 1 
-- f, U --dS -- f, U1 -dS--

21T lT i 1 dll R 1T ?ttl 1 dll 7T 

if 11=1 

or 

where 1T i denotes the portion of the slit plane 7T 

which is included in the boundary of D i' 7T tl . denotes 
the upper side of the portion of 7T included Jin the 
boundary of D .,j = 1 and 2. [Each of these terms 
is a solution eff (4) which vanishes and has vanishing 
'normal' derivative in the plane of 1T, except on 
that portion indicated as the range of integration.) 

Verification that (51), with g v defined by (50), is 
correct can be carried out in manner similar to 
that done 9 for the corresponding two-dimensional 
problem and hence will not be done here. One 
need only be able to observe that the rhs of (49), 
with an arbitrary function oU l (t', x', 0, ZI) in the 
integrand does in fact give a solution of the homo­
geneous wave equation (4) which has continuous 
first partial derivatives everywhere save on the 
plane itself, and there the solution takes on the 
value of ou 1 (t,x,0,z). 

6. DIFFRACTION BY PLANE CURVED EDGE 

In resuming the discussion of the problem of dif­
fraction for a planar screen having a curved edge, 
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there are a few observations which will be useful. 
One should notice that the function 19 v above is 
nonzero inside the region bounded by the secon­
dary diffraction wavefronts. That is to say, the 
surface of D1 (and likewise D 2 ) may be thought of 
as a primary diffraction wavefront which, upon 
striking the opposite edge of the slit, gives rise to 
a secondary diffraction wavefront, and it is within 
this region that )Bv is nonzero. Furthermore 19 v 
is a solution of t4). 

If one were to apply the fundamental formula (F) 
to the region D1 when the time t is larger than d, 
the width of the slit, one would find that D1 would 
for some points P meet the other edge, and hence 
its boundary would include portions of the other­
half-plane. This would introduce an additional sur­
face integral which would require another equation 
for its elimination. This additional equation would be 
obtained by applying (F) to the region bounded by 
this secondary diffraction wavefront with an 'appro­
priate' solution of (4). This, it would turn out, is 
essentially Ig2 (or half it, the other half is due 
to the secondary wave from D 2 ). A similar thing 
does not occur when this secondary wavefront 
reaches the edge. No effect of a tertiary diffrac­
tion wavefront or so on ad infinitum has to be con­
sidered, because the rei evan t portion of Ig2 is zero 
and has zero normal derivative in the extension of 
the corresponding half-plane. 

This observation is important in the treatment of 
the case of a planar screen with a curved edge 
where the primary diffraction wave from one part 
of the edge can meet another part of the edge. The 
observation implies that the only essential new 
feature the curved edge has different from the sUt 
(other than geometrical) occurs in the construction 
of an elementary solution of the wave equation (4) 
corresponding to a primary diffraction wave. A 
method of obtaining this solution was described in 
Sec.4. One may now complete the solution of the 
diffraction problem for a curved edge much as 
was done for the slit. 

Define 

for (T, Q) E: D i 

for (T, Q) E: Dr' 

for (T, Q) E: D d , 

from those in D i' even though the two regions over­
lap in four-space. Then 

where the integration is over D i' Dr' and D d sepa­
rately and the results are added and where dQ is 
the spatial integral, Le., Jdod8de for D d' is a solu­
tion of the problems (1), (3), with Uu = 0, for 
times t sufficiently small that no secondary diffrac­
tion occurs. 

For larger t, one needs to define an additional func­
tion 19 v just as in the case of a slit by 

192(t - T,P, Q) =_(41T2
)-1 in.w(T' - T, Q', Q)R'-I 

• 

and 

X oct - T' - R')dT'dS' _(21T 2 )-1 

xfJr d weT' - T, Q' ,Q) wet - T', P, Q')dT'dS', 

a 
Igl ::: - 192' ay 

where R' ::: Q'Q and where dS' denotes an element 
of surface on the plane 1T. 

7. THE EDGE CONDITION AND THE 
INTEGRATION CONSTANTS 

The functions vn,n ~ 1, of Sec. 4 were defined by 
Eq. (47) except that the integration constants en 
and the lower limit of integration have not yet 
been specified. What should now be done is to show 
that the "edge condition" 

(52) 

at the edge of 1T determine the Cn (and hence the 
v ) uniquely and that the resulting series for w 
a~tually does converge in some region, thereby 
establishing the existence of a solution uv(t, P) to 
the stated problem. Unfortunately the existence 
problem has not yet been resolved, being apparently 
much more difficult than the uniqueness problem. 
However, assuming existence [Le., that for some 
chOice of constants Cn the resulting series con­
verges to a function w satisfying the edge condition 
(52)] it will be shown that the C!I., are uniquely de­
termined. Namely, that all the l;" == 0 and the lower 
limit of integration in (47) is zero, so that one has 

Vn == [2(2n _l)r Ia-n +1/2J -1/2 fOOa"-3/2JI/2V2 

where by D d is meant the set of all pOints (T, 0, e, e) x V,._1do , n ~ 1, 
from which diffracted radiation can be received (53) 

at time t at the point P. Thus 

D d == {( T, 0, e, e) : a < t - T}. 

To see this, note that if w remains finite at the 
edge, then from (34) so does W, and from (39) one 
has 

One notices that to anyone point Q of Euclidian W == ± 1T- I (a 2 _ R2//2 + r(v
o 

+ VI'}' + ... ) 
three-space there may correspond more than one 
"point" (0, e, e) in the space consisting of all such for y small enough, 
triads. Such "points" are to be considered distinct, 
just as the paints in Dr are considered distinct, from which it obviously follows that each of the 
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VII must remain finite (since the vn are independent 
of t, T.) But since va = 0(a1/ 2) as a~ 0, is as easy 
to verify from Eqs. (37) and (40), and J = O(a), and 
since the effect of the Laplacian can only be to re­
duce the powers of a by 0, I, or 2, it is clear that 
v1 cannot remain finite at a = 0 unless the quantity 
in large parentheses in (46) vanishes there, which 
impUes that the integral is actually of order a1/ 2 

(or higher) and not of order a-lor Ina, as at first 
sight appears possible. This means that the lower 
Umit of integration can actually be taken to be 
zero and that then C1 = 0 also. The same argu­
ment can clearly be repeated for each V n in turn, 
yielding (53) as stated. 

8. A SPECIAL CASE OF DIFFRACTION BY A 
CIRCULAR HOLE 

In the case of a circular hole, if the observation 
point P is on the axis of the hole, one can carry 
out the computations involved in the construction 
of the function denoted above by Wj these have been 
done in part. For example, if the radius of the hole 
be denoted by c then in Eqs. (30) one has 

a(e) = c cose/c, (3(e) = c sine/c, 

c,o(e) = 7T/2 for all e, 

also 
-1 -1 -1 

A = -1 + 2aa - aca p , p = c + C1 cosS, 
-1 

J = ac p. 

Hence, with W from Eqs. (36) and (39), one finds 

Vo = ± 1T-1(a 2 - R2)-1/2 (M - 1), 

M = (- ap-1 cose)1/2. 

From here on the computations become rather 
tedious, but one can obtain 

V
2 -If 2 R2)-1/2[1(p-2 -2)M Vo = ± 1T \a - 4: - a 

_ (a 2 _ R2f1aoo -I(M _ 1)2], 

which is actually 0(0-
1
/
2

) as a ~ 0, and not 
0(0- 2/ 3) as appears at first sight. Thus v1 ::: 
0(01/ 2 ). 

The leading term of V2 v1 has been computed and 
found to be 0(a- 1 / 2 ); hence v2 = 0(01/2) also. 

APPENDIX: 

The Jacobian J of the transformation (29) is clearly 
equal to 

- a'coscp + Wsinc,o cosS -WsinS n' + 0 :e (-n'coscp + WSincp cos~ 

J::: a sincp sincp SinS cosS a :e (sincp) sinS 

- {3'coscp - a'sincp cosS a'sinS {3' - a :e ({3' coscp + a'sincp cose) 

which straightforward computation shows (cp de­
pending on e) to be just 

~::: a sincp (sincp + aR), 

where 
-1 -1 

~ = ao sincp- a" (/3') (cose + cose). 

Notice that on the shadow surface this reduces to 
just 

-1 . 2 
J = aaao sm cpo 

OJ 2 
Proof that as = JV a 

First note that from the above expression for J, one 
has 

-1 oJ -1 -1. 2 
J as = 20' - J sm cpo 

On the other hand, differentiation of (30) yields 

a2
a 2 -3 -1 -= -(X- a) a + a ax2 

_{a,0'-1 + (X - a)a-3 [(a - X)a' 

+ ({3 - Z)W]}~~' 
a2a • .2 3 -1 - = -r a- + a 
ay2 

{ 
-3 ae 

- Yo [(a -X)a' + ({3 - Z){:l']) aY' 
2 
~ ::: -(Z - (3)20-3 + a-1 

az2 

-{/3'a-1 + (z -(3)a-3[(a -X)a' 

+ ({3 - Z){3 ']} ~~ j 
hence 

2 -1 -1(" ae + (3' ae) 
V a = 2a - a \a ax az 

- a-
2
[(a -X)a' + ({3 - Z){3'] ( (X - a)a-1 ~ 

-1 ile -1 ae) + Ya ay + (Z - {3)a ilZ' 

But the quantity in large parenthesis is just (aj aa) 
e(a, e, e), which is zero since a, S, e are independent. 
Hence 

V2 _ 2 -1_ -1( , ~+ {3'~) a - a a a ax az' 
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But 

E!!.. = [1 afY' ZI ax O<1,e 
= sincp [a' sincp sin2e - cose(j3' coscp 

- ex' sincp cose)], 

E!!.. = [1 of' ~ oz a <1,e 
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so 

sincp [tl' sincp sin2e + cose(a' coscp 

+ (3' sincp cose)], 

, oe + {3' ae J- 1 . 2 
a ax az = <1 sm cp, 

from which the stated result is obvious. 
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Via Lagrange multipliers for inequality constraints, an upper bound on the absorptive part of the 
elastic scattering amplitudes is derived assuming unitarity, a fixed total and elastic cross section, and 
the condition that the partial waves decrease monotonically with increasing angular momentum. 
Numerical results are given. 

1. INTRODUCTION 

Consider the elastic scattering of equal mass 
particles of spin zero. Given the total cross sec­
tion and the elastic cross section, as well as the 
unitarity requirement on the partial wave amp~i­
tudes, how large can the absorptive part of the 
elastic scattering amplitude become at any given 
scattering angle? This problem has been solved by 
Singh and Roy,l and the maximum value has been 
compared with experimental differential cross 

o 4 8 12 16 20 24 

FIG.1. An example of a local maximum. 

sections at high energies and for small scattering 
angles on the basis of several further assumptions: 
(i) At high energies, the equal mass assumption 
can be relaxed. (ii) The unpolarized differential 
cross sections are independent of the spin of the 
external particles and, hence, the spin-zero bound 
applies. (iii) The amplitude, in the region of the 
diffraction peak, is purely imaginary. The com­
parison1 with experimental data is rather good for 
small angles, but for larger angles the data fall 
far below the calculated bound. 

The distribution of partial wave amplitudes which 
achieves this bound looks very much like a Fresnel 
zone plate, carefully constructed to maximize the 
scattering in the given direction. The distribution 
is illustrated as the shaded region of Fig. 1, the 
details of which will be explained later. The larger 
the angle, the more zones are required. More con­
ventional models of matter would have a central 
core surrounded perhaps by successively less 
absorptive regions. A particularly simple way to 
implement this intuition is to require the imagin­
ary parts of the partial wave amplitudes to de­
crease monotonically with increasing angular 
momentum. 2 This is not unreasonable for energies 
above resonances. Adding this assumption to those 
given above should yield a better bound at larger 
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achieves this bound looks very much like a Fresnel 
zone plate, carefully constructed to maximize the 
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angles, precisely where the preceding one fails. 
It is to the solution of this problem that this paper 
is devoted. 

The approach used in the construction of the solu­
tion is the method of Lagrange multipliers gen­
eralized to include inequality constraints. 3 One of 
the main purposes of this paper is to illustrate 
their use in both a discrete and continuous maxi­
mization problem of physical interest. 

In Sec. 2, the exact problem is formulated and 
solved by considering the partial wave amplitudes 
as discrete variables. In order to clarify the solu­
tion, the same problem is treated in Sec. 3 by 
approximating the discrete partial wave series by 
a continuum and by assuming the scattering angle 
is small. Section 4 compares the improved bound 
with experimental data and interprets the results. 
Finally, in Sec. 5 we summarize our conclusions. 
In an appendix, a number of sums are tabulated. 

2. MATHEMATICAL DETAILS 

The mathematical statement of the problem is as 
follows4 : Maximize 

given the total cross section 

the elastic cross section 

k2 2 2 
L; == -4 <Tel = D21 + 1}(az + r z), 
el 1T 

and unitarity 

I = 0, 1, 2, .... 

This is essentially the problem solved by Singh 
and Roy. 1 In addition, we will require that the 
partial waves decrease monotonically,2 Le., 

(1) 

However, thinking of the requirements of statistics 
as well as of most dynamical models, one would 
like to impose this requirement separately on the 
even and odd partial waves, i.e., 

(2) 

Fortunately, this is a minor complication. To avoid 
notational confUSion, we solve the problem first 
assuming (i) and then state the result assuming 
(ii). From a mathematical point of view, these 
requirements are interesting since they impose a 
relation between neighboring partial waves, unlike 
those examples discussed in EB.3 

To this end, we introduce the auxiliary function 

eC = A + a[Ao - L;(2l + 1)az] 

+ 2~ (R - L;(21 + 1)(a~ + r~~ 
+ L;(21 + 1)AzU z + L;wz(az - al+1)' (3) 

where, on the basis of the theorem3 that the multi­
pliers are the rate of change of the maximum with 
respect to the constraint, we anticipate that 

o < a < 1 and a > O. 

Of course, Al 2:: 0 and Wz 2:: 0 for all I. Varying 
with respect to r l , we find 

oeC (1) or
l 

= (21 + 1) - a - 2AI r l = O. 

This implies r I == O. Also, 

o£ ( az - = (21 + 1) P - a - - + AI (1 - 2a l ) oaz I a 

WI - W l - 1) 
+ 21 + 1 = O. (4) 

For convenience, we have defined w -1 = O. First, 
we must find the necessary conditions on a local 
maximum. The most general form for a local 
maximum under these assumptions is 

x = (1 = 1 = ... = aN > aN +1> ... > aL = aL +1 
o o· I I 

= aL +N > aL +N +1 > ... > aL = aL +1 
I I I I 2 2 

= aL + N > aL + N + 1 > ... >fL = 0 
2 2 2 2 -LN 

In words, the solution is a series of plateaus, on 
which at least two partial waves have the same 
value, and regions where successive partial waves 
are strictly decreasing. Our problem is to deter­
mine where the transition points and jumps occur 
as well as the values of az. As in EB, we define 
three partitions of the partial waves: 

B1 ={llal = 1}, 
I={llo< al < 1}, 

Bo={llal=O}. 

A priori,B l' I, or Bo could be empty. It follows 
from our variational equations (4) that, in B v 

1 wl - w/-1 
Al = PI - a - a + 21 + 1 2:: 0, (5a) 

in I, 

(5b) 
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W/-1 - w/ 
A/ :::: a - p/ + 2l + 1 2: O. 

Let us first determine the properties of each of 
the transition points where a/ actually decreases. 

(a) aN> aN +1 implies wN :::: 0; hence, from (5a) 
o 0 0 

consequently, 

1 P -a--
No a 

In particular, this means that a(PN - a) 2: 1; so, 
as in the case without monotonicity, 3 B 1 is empty 
if a(1 - a) < 1. 

(b) In I, if, for any l, one has a/_1 > a/ > a/+!> then 
w/-1 :::: Wz :::: O. Hence, from (5b) 

a z :::: a{Pz - a). 

Of course, by the definition of I, one must have 
1> a(Pz - a) > O. 

(c) a L -1> a L :::: 0 implies wL -1:::: 0; so, from 
(5c), N N N 

and, consequently, 

In particular, this means that a 2: PL. 
N 

Now we come to the heart of the problem, how to 
determine the plateaus of constancy. The three 
points (a)-{c) immediately above suggest that the 
multipliers a and a determine where B 1 stops 
and the value of largest nonzero partial wave 
amplitude, just as in the case without the mono­
tonicity requirement. In I, we shall find that the 
transition points are determined independently of 
a and a. In other words, a T and a el determine 
the size of the core (B 1 ) and the value of the 
largest contributing partial wave (Bo). However, 
in the intermediate region (I), the shape of the dis­
tribution is determined solely by the requirement 
that the strength of the partial wave amplitudes 
should be monotonically decreasing. To see this, 
consider any particular plateau 

a L .-1 > a L · :::: ••• :::: a L ·+N . > a L .+N .+1• 
J J J J J J 

We know that W L .-1 :::: O. Using the difference 
1 

equation (5b), one can then solve for 

n :::: 0,··· ,Nj • 

Using W L .+ N. :::: 0, we find 
J 1 

It is convenient at this pOint to define a weighted 
average of the Legendre polynomials 

N IN 
N(PZ'k =. z~ {2l + l)P/lz~ (2l + 1). 

Notice that J..P/)N :::: PN and that 

N(PZ + c'k :::: J..Pz'k + C 

for any constant c. We have found in Eq. (4) that 

a L . :::: a(L.+N.(PZ)L. - a). 
J J J J 

Thus the value of the partial wave amplitude is 
related to the weighted average of the Legendre 
polynomials across the plateau. The requirement 
a L. > 0 implies L .+NJ(PZ>L. > a 2: O. Therefore, a 

J J J 
determines the largest nonzero partial wave. 
Inserting this solution for a L. into the equation for 
wL .+n ' we have J 

J 

L/n 

- W L .+n:::: ~ (2l + I)(Pz - L .+N.(PZi. ), 
J L

j 
J 1 J 

n::::O,···,Nj • 

Note that this can also be written as 

Lj+Nj 

wL .+n :::: L; (2l + 1)(P/ - L.+N.(Ih'>; 
J L .+n+1 J J J 

J 

n ::::O,···,Nj -1, 

The condition W L. +n > 0 therefore implies 
J 

Lj+N/P/)Lj 2: Lj+n(P/)Lj 
for n ::::O,···,Nj 

or 

(6) 

{7} 

Lj+Nj(P /)Lj+Nrn 2: Lj+Nj (P/)Lj 
for n :::: 0,··· ,Nj • 

It can be shown that the conditions that W L .-1 :::: 0 
J 

and a L .-1 > a L. imply P L .-1 > L .+N.(PZ)L.' while the 
J J J J 1 J 

conditions W L .+N. :::: 0 and ·a L . > aL .+N .+ 1 imply 
J 1 J J J 

We may summarize all of these inequalities as 
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P L .-1 > (P\ > P J Lj+Nj ZlLj L j +Nj +1 (8a) averages over the even and odd partial waves 
separately: 

and 

Lj+Nj (PAj+m ~ Lj+N/PZ~j ~ Ltn(PAj, 

n, m = 0,1,'" ,Nj • (8b) 

As the derivation shows, either of the two in­
equalities in (8b) implies the other. Notice that all 
reference to Q' and a have disappeared so that the 
plateau interval [L., L. + N· ] may be determined 
solely by propertie's 01 the Legendre polynomials. 
Since successive plateaus must be monotonically 
decreasing, the condition L .+N .(PA. ~ Q' is signifi-

J J J 

cant only for the last interval, i.e., only for deter­
mining Bo. Thus we may determine all possible 
plateau intervals independently of the multipliers 
Q' and a. Since for a maximum Q' is greater than 
zero, we may restrict our determination to those 
for which L.+N.(P/>L. > O. 

J J J 

We have now completely characterized the neces­
sary conditions on a local maximum. In summary, 
the last value No in B 1 must satisfy a(PN - Q') ~ 1. 

o 
H a Z- 1 > a z > aZ+l> then 1> a z = a(PI - Q') > O. 
The plateau interval must satisfy the sets oi in­
equalities expressed by Eqs. (8a) and (8b). On a 
plateau, 1 > a L . = a(L.+N.(PA. - Q') > O. Finally, 

J J J J 

the first partial wave L N for which a Z vanishes 
must satisfy Q' ~ PL • To determine the local 

N 

maximum, one must determine the sufficiency of 
these many conditions. We have not been able to 
show that these conditions uniquely determine the 
local maximum; indeed, we suspect that one can 
probably find some angles for which the local 
maximum is not unique. 5 Given any given scatter­
ing angle, one can use the inequalities to determine 
the plateau intervals. Then, given a T and a el> one 
can try to determine Q' and a to satisfy the equality 
constraints. In practice, it is easier and faster to 
choose Q' and a and to then calculate the corres­
ponding a T and a el . 

It is a simple matter now to solve the problem 
where the monotonicity requirement is applied to 
the even and odd partial waves separately [Eq. (2)]. 
The general form of the local maximum is 

x even = (1 = . .. = a > a > ... > a 2Mo 2Mo+2 2Kl 

= a 2K1+2 = '" = a2Kl+2Ml > a 2K1+2M1+2 

> ... > a 2KM = 0 = 0 = ... ), 

x odd = (1 = ... = a 2N +1> a 2N +3 > ••• > a 2L +1 
o 0 1 

> ... > a2L +1 = 0 = 0 = ... ). 
N 

Correspondingly, we are led to define weighted 

N N 

2N(PZ>2M == ~ (4n + I)P2n/~ (4n + 1), 
n=M n=M 

N N 

2N+1(PZ>2M+l == ~ (4n + 3)P2n+1/~ (4n + 3). 
n=M n=M 

The preceding solution then becomes the correct 
solution to this problem if one everywhere treats 
the even and odd partial waves separately. For 
Elxample,. for the even case, the last value in B 1 
must satisfy a(P2M - Q') ~ 1. The plateau inter-

o 
vals [2Kj' 2Kj + 2~] must satisfy 

P2Kr2 > 2Kj+~ (Pz>2Kj > P2Kj+2Mj+2' 

2K
J
.+2M,(PZ>2K

J
.+2M >2K.+2M,(PZ>2K. > 2K.+2n(PZ>2K. 

-7 JJ J J J 

m, n = 0, 1, ... , M j • 

On the plateau, we find 

Finally, the first partial wave which vanishes 
satisfies Q' ~ P2K • Corresponding statements 

M 

hold for the odd integers. In an appendix, we record 
the values for a number of the sums and.averages. 

3. CONTINUUM APPROXIMATION 

It is slightly more convenient in numerical applica­
tions to approximate 1 by a continuous variable 
since many partial waves contribute in general, and 
to assume the scattering angle is small. This 
approximation also makes it possible to carry the 
solution further analytically and clarifies the 
result. Since one of our purposes here is to illus­
trate a somewhat unfamiliar mathematical method 
we will solve the problem again in this approxi- ' 
mation. Via the standard replacement of the 
Legendre function by a Bessel function, the auxi­
liary function £ of the last section becomes 

2 sin2f£ = {\dxJo(x)a(x) + Q'(~:aT 
roo ~ 1 (a2 

00 ~ 
- Jo xdxa(x)J+ 2a 81Tae1 - fo xdxa 2 (x)J 

+ roo xdx.\(x)u(x) _ Joo dxw(x)dda(x). 
Jo 0 x ' 

where 

a 2 == - t = 4K2 sin2 ill, X"" (2l + 1) sinill, 

w(x) == 2 sin2 i Il WI • 

(For Simplicity we have set rz = 0 at the outset.) 
One consequence of replacing the Legendre poly­
nomials by Bessel functions has been to shift the 
dependence on the momentum transfer to the 
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boundary conditions. [Compare Eq. (3).] It is im­
portant to remember that this approximation is 
best for small angles and when many partial waves 
contribute to the sums. Notice that the monoto­
nicity requirement, Eq. (1) naturally translates 
into a negativity condition on the slope of the par­
tial wave amplitude. One could, of course, also 
generalize the monotonicity condition separately 
applied to the even and odd partial waves by defin­
ing partial wave amplitudes of even and odd signa­
ture, but for simplicity, we will ignore this alter­
native. We will also assume that a(x) is a con .. 
tinuous function, so the most general behavior pos­
sible has regions where a(x) is strictly decreasing 
separated by regions of constant a(x). 

Formally, £ is a function of a(x) and its first 
derivative da/dx; thus the maximum satisfies the 
usual Euler- Lagrange equations. One finds 

J (x) - a - a(x) + A[l - 2a(x>l + 1.. dw = O. 
o a x d x (9) 

As before, we label the three partitions of the solu­
tion B 1> I, and Bo. The obvious analogs of Eqs. 
(5a), (5b), and (5c) are, respectively, 

1 1 dw 
A(X) = J (x) - a - - + - - 2: 0 o a xdx ' 

(lOa) 

I: A(X) = 0, -1 dw = J (x) _ a _ a(x) (lOb) 
x dx 0 a ' 

law 
A(X) = a - Jo(x) - - -d 2: O. x X 

(lOc) 

On any interval Yj ::s x =::: Xj+l on which a(x) is 
strictly decreasing, w(x) = 0 and, hence, dw/dx = O. 
Therefore, 

a(x) = a[Jo(x) - a]. ,(11) 

Continuity of a(x) then implies that 

(12) 

where Yo is the largest value of x in B 1 and 

(13) 

where xN is the smallest value in Bo- Thus, the 
equality multipliers a and a determine the sets 
B1 and Bo. Of course, if 1> a(l- a), then Bl is 
empty. 

Let us further explore the intervals Xj ::s x ::s Yj in 
I, on which a(x) is constant. These are surrounded 
by intervals on which a(x) is strictly decreasing 
and, by Eq. (11), a(x) = a[Jo(x) - a] on the surround­
ing intervals. However, since a(xj ) = a(Yj), con­
tinuity of a(x) then implies Jo(xj) = JO(Yj). It 
fallows from (lOb) that w(x) is continuous in I and, 
since w vanishes on the surrounding intervals, we 
have w(xj ) = w(Yj) = o. Inside the plateau interval 

Using w(xj ) = 0, this may be easily integrated to 
obtain w(x). The condition w(Yj) = 0 then leads to 

J o(xj) = y,(J 0\.' , . 
where, as in the previous section, we define the 
weighted average 

/Jo>x == fxY Jo(Z)ZdZ/C zdz. 

(See the Appendix for the explicit evaluation.) In 
summary, the end points of the plateau interval 
satisfy 

(14a) 

which may be compared to Eq. (8a) for the discrete 
case. One may further exploit the condition w(x) 2: 

o inside the interval to obtain the analog of Eq. (8b), 

for x j ::s x, y::s Yj. 

(14b) 

One can shOW, however, that these inequalities in 
fact follow from (14a), provided that the plateau 
interval extends over only one cycle of Jo(x). This 
makes finding the plateau intervals easier in the 
continuous case than in the discrete case. And, as 
before, the determination of the possible intervals 
do not involve a and a. 

Given the multipliers a and a, the necessary con­
ditions given above are also sufficient to deter­
mine the solution. These multipliers, in turn, are 
to be determined from the equality constraints 

~2 

81T ur 

~2 

s:rr ue1 = 

where 

XN 
b5 + f xdxa(x), 

Yo 

XN 
bfi + f xdxa2 (x), 

Yo 

Yj::S x ::s Xj+l> 

Xi ::s x ::s Yj' 

(15) 

(16) 

and, if B 1 is empty, Yo = 0, whereas, if B1 is not 
empty,l = a[Jo(yo) - a]. In any case,xN satisfies 
a = JO(xN). A typical solution is indicated in Fig. 
1, where the dashed curve is a[ J 0 (x) - QI] and the 
solid curve is the solution a(x). The shaded regions 
indicate the partial wave amplitudes in the prob­
lem without the monotonicity constraint described 
in the Introduction. 

It is interesting to compare the expressions for the 
end of B 1 and the start of B 0: 
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As a becomes large,Jo(Yo) "" JO(xN). Since both 
these pOints must lie on falling part of the curve 
a(x), one has Yo "" xN as a gets large. Thus the 
ratio a ella T approaches unity as a gets large. On 
the other hand, if a is smaller than (1 - a)-1, then 
B 1 is empty and one expects a small value of the 
ratio a ella T. 

Given values of a T and a el from experimental data, 
one can determine a and a and, subsequently, the 
maximum value of the absorptive part of the 
scattering amplitude may be computed. We now 
turn to the numerical computations. 

4. NUMERICAL RESULTS AND CONCLUSIONS 

Because it is somewhat easier to evaluate, we dis­
cuss in detail the results in the continuum approxi­
mation. We have compared this to the evaluation 
in the discrete case and found little difference for 
the momentum transfers with which we will be 
concerned below. We believe that for the entire 
range of data presented, the continuum approxi­
mation gives a bound within a few percent of the 
actual bound, and, as we shall see, it is of little 
interest to inquire into the precise discrepancy. 

To find numerical values for the upper bound, the 
candidates for plateau intervals must first be 
determined. The end points (Xi' Yi ) of each interval 
are all quite close to the odd zeros of J (x). For 
example, the first region of constant a(x) extends 
from Xl "" 2.35 to Yl "" 8.55. For comparison, 
the first and third zeros of Jo occur at 2.40 and 
8. 65. Values of Xi and Yi for successive intervals 
lie even closer to the higher odd zeros of Jo(x). 

Physical values of aT for processes of interest 
are around 40 mb, and realistic values of a ella T 

are in the range ~ -~. For values of the momentum 
transfer 6.2 ;:; 2 (GeV /c)2, these constraints can be 
accommodated with Yo -;;;: 1. 6 and a in a range 
that allows between two and eight plateaus. Since 
there are two equality constraints, the maximum 
value of da/dt (neglecting the real part of the 
amplitude) will depend, in general, on two variables. 
It is convenient to choose these to be T = 6. 2a T and 
R = a el /a T. Figure 2 shows the maximum value of 

16~ ~~/a; = ~~/( ~~) t~ 
versus T for two values of the ratio R. 

In Fig. 3, the solution to this problem is compared 
with data and with the solutions of the problems 
discussed by Singh and Royl and by Ravenhall and 
Pardee. 2 To facilitate comparison with earlier 
results, ~e have used for the abscissa the variable 
P = (6.2aT/4~ael) = TR/4~. Data for ~p andpp 
scattering are indicated. 6 Curve A is the upper 
bound derived by Singh and Roy in the absence of 
monotonicity constraints. Curve B is the bound 
given by Ravenhall and Pardee for the same pro­
blem as we have discussed. 7 The curves C and C' 
are the same bounds appearing in Fig. 2, only here 
plotted as a function of p rather than of T. Notice 

that, in Fig. 2, C' lies below C, while, in Fig. 3, C' 
lies above C over most of its range. 

Inasmuch as the variable p has been ascribed 
some significance,1,2 let us comment on this 
variable. Suppose B 1 were empty, so that Yo = o. 
Then since a(x)/a is independent of a for all x, the 
ratio 

XN \ / xN 
A/Ao = fo xdxJo(x)a(xr fo xdxa(x) 

is independent of a and depends only on a. How­
ever, setting Yo = 0 in Eqs. (15) and (16), one sees 
that a is determined by the ratio 

(
6. 2a T) 2/6.2Gel _ 1-
8~ 8~ - 2P· 

Therefore, if B 1 is empty, A/Ao is a function of p 
only, a property which has been called "univer­
sality." 1,2 This result is independent of the mono­
tonicity assumption. However, the actual values 
for the experimental data usually require that B 1 
not be empty. Thus, in general, the upper bound 
derived here will depend on R as well as on p. In 
fact, one can show that 

bl~ 
-0-0 
~O.I 

F:INf-
~ b 

0.01 ~ __ -L ____ ~ __ ~ ____ ~ __ ~ __ ~ 

o 40 80 120 

C,2 o-T 

160 200 240 

FIG. 2. Upper bounds for R = 0.20 and R = O. 25. 

0.1 
S' 

bl~ "0"0 

~ 

bl~ 
"0"0 

0.01 

0.001 ~--~---'------'-~---'--'------' 
o 20 40 60 

P 
FIG. 3. Comparison of the present solution with previous bounds 
and with data (see text for full explanation). 
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where the differentiation is performed for fixed p. 
While this is zero when B 1 is empty, it is not zero 
in general. 

Comparing Our upper bound with the data, we see 
that the addition of the monotonicity requirement 
has significantly improved the bound of Singh and 
Royl; however, it still approximates the data only 
for a very small range of p. Already at p = 10, the 
bound exceeds the data by a factor of 2; for typical 
values of a T and a el' this corresponds roughly to 
~2;:; 0.3(GeV/c)2. 

5. SUMMARY 

One could have hoped that with such general con­
siderations as crude unitarity (u z 2: 0), and the 
values of the total and elastic cross sections, the 
shape of the diffraction peak might have been 
understood. Even assuming the real part of the 
scattering amplitude is negligible, we found that 
only for very small values of the momentum 
transfer does the bound approximate the data. An 
exponential fit to the data is a good approximation 
far beyond values for t for which our bound is 
relevant. 

One should note that the values of the az which 
realize the maximum at a particular angle depends 
on that angle. The upper bound plotted in our 
graphs is not a reflection of anyone set of partial 
wave amplitudes, but rather, as the angle changes, 
the values of the az also change. Thus, for example, 
the area under the upper bound could be much 
larger than a e1 , and this turns out to be the case. 

We conclude that if the shape of diffraction peaks 
is to be understood, it is not on the basis of the 
naive considerations discussed here. There is 
probably a deep dynamical reason both for the 
small real part (if, indeed, it is small for all t) and 
for the rapid decrease of the differential cross 
section with momentum transfer. 
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APPENDIX: 

L 

6(2l + l)Pz = PL+l + P{, 
Z=O 

N 

6 (4n + 1)P2n = P 2N+l> 
n=O 

N 

6 (4n + 1) = (N + 1)(2N + 1), 
n=O 

N 

2:; (4n + 3)P2n+l = P 2N+2 , 
n=O 

N 

2:;(4n + 3) = (N + 1)(2N + 3), 
n=O 

where 

PI = :z Pz(z). 

Consequently, we have 

P 2r(+2M+l - P 2K-1 
2K+2M(PZ>2K = (M + 1)(4K + 2M + 1)' 

PL+N+l + PL+N - Pl- P L-l 
(N + 2)(2L + N) 

In the continuous case, we have, analogously, 

the necessary conditions are not also sufficient is of mea­
sure zero; we have not tried. 

6 Data were taken from the graphs in Ref. 2. 
7 There seems to be some confusion in Refs. 1 and 2 on how to 

treat Bland its effect on the solution. In addition, one might 
wonder why the "upper bound" B determined by Ravenhall 
and Pardee lies below ours. The answer lies in their identi­
fying the incorrect intervals as plateau intervals, and their 
curve consequently not being the upper bound. The use of 
inequality multipliers to impose the monotonicity constraint 
allows one to uniquely determine the regions of constant 
a(x). 
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It is shown that if Ci denotes an n X n antisymmetric matrix of operators Cipq ,p, q '= I, 2, ... ,n, which 
satisfy the commutation relations characteristic of the Lie algebra of SO(n), then a satisfies an nth 
degree polynomial identity. A method is presented for determining the form of this polynomial for any 
value of n. An indication is given of the simple significance of this identity with regard to the problem 
of resolving an arbitrary n-vector operator into 11 components, each of which is a vector shift operator 
for the invariants of the SO(n) Lie algebra. 

1. INTRODUCTION 

The structure of 3-vector operators in quantum 
theory was investigated by Dirac,1 GuUinger, and 
Pauli,2 who considered the matrix elements of 
such operators in an angular momentum basis. 
Later Wigner 3 indicated the possibility of a sys­
tematic treatment of any set of operators trans­
forming according to an irreducible representation 
of the rotation group, and the calculus of tensor 
operators was subsequently developed by Racah. 4 

Some of the results of these investigations, and 
their application to calculations in the quantum 
theory of atomic spectra, can be found in the books 
by Condon and Shortley5 and Slater. 6 

Racah 7 and Biedenharn 8 have emphasized the de­
sirability of finding, in the case of other semi­
simple groups, the generalization of these and 
other results in the theory of angular momentum, 
or SU(2). We present here some results in the 
theory of SO(n), or, more accurately, of its univer­
sal covering group [for convenience, this group is 
subsequently referred to as SO(n)}, relating in par­
ticular to the description of n-vector operators. 
Even in the much studied case n = 3, our approach 
has, we believe, some novel and attractive features. 

We are concerned with the general situation where 
one is given a set of operators Bp, aqr (= - a"q), 
p, q, r = 1, 2, , n, satisfying the commutation 
relations 

[Bp, aqr} = opqB" - oprBq. (2) 

In particular, the apq could be anti-Hermitian 
operators acting in a Hilbert space, in which case 
they form the generators of a unitary representa­
tion, in general reducible. of SO(n). Then 8 
[ = (Bv 82 , ••• ,en)) is an n-vector operator act­
ing within the corresponding representation space. 

In such a case, the Casimir operator 0"2 = a pqa qp 
can be expressed in the form 9 

0"2 = 2A 1(A 1 + n - 2) + 2A 2{Az + n - 4) + ..• 

+ 2A.n<A.n + n - 2m), (3) 

where m is the integral part of !n and the eigen­
values >.; of the operators Ai' which serve to label 
the irreducible components of the representation 
of SO(n), are either all integers or all half-odd 
integers and satisfy 

Al 2: A2 2: ... :::: Am-1 2: IAml :::: 0, n = 2m. (4) 

When n = 3, an established result 1. 2 is that 8 can 
be resolved into three components, each of which 
is a 3-vector shift operator for AI> the magnitude 
of the angular momentum. Thus 

9 = e+ + 00 + 0-, 

where 

The results obtained by Bhabha,lO in investiga­
tions of 4-vector operators within finite-dimen­
sional representations of SO{3, 1), enable us to 
deduce that, for n = 4, 

where 

A2(}~ = 6~(A2 ± 1), 

It is not difficult (see Appendix B) to deduce the 
generalizat~on of these results for n = 3 and 4. 
Thus when n = 2m + 1, (} can be resolved into 
components (}O,8t,8i, i= 1,2, ... ,m, where 

(5) 

while, in the case n = 2m, the result is the same, 
except that 0 ° does not occur. 

In what follows, it is convenient to think of a1q as 
the element in the pth row and qth column 0 an 
antisymmetric n x n matrix of operators. We de­
note this matrix by a and by akand akthe mat­
rices whose pqth elements are 

k k-l 
(a )pq = (a )prarql k = 2,3, ... , 

(a
k 

)pq = (a
k 

)qp' 

Furthermore (cf. 0"2)' we define O"k by 

We shall show that, as a consequence of the rela­
tions (1), a satisfies an nth-degree polynomial 

2099 
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identity, of the form 

F,,(O') :::: an + alO',...l + ... + an = 0, (6) 

where the coefficients ak' k = 1,2, ... ,n, are 
invariants of the SO(n) Lie algebra. 

The existence of this identity is in no way depen­
dent on the existence or nonexistence, within the 
representation space for a, of an n -vector opera­
tor 6. However, when such a 6 does exist, its re­
solution into n n-vector shift operators for the 
SO(n) invariants, as in Eqs. (5) above, can most 
readily be achieved with the use of this identity, 
as we shall see. 

We are mainly concerned with the determination 
of the form of the coefficients ak in Eq. (6), as 
functions of (12' 0" 3' ••• ,which are in turn func­
tions' also to be determined, of A l , A2 , •• , ,Am' 
Before proceeding, however, we make the following 
general remarks concerning the identity expressed 
in Eq.(6). 

It is clearly an analog of the Cayley-Hamilton 
identity for an n x n matrix of complex numbers. 
There are, however, some interesting differences. 

In particular, suppose we define the determinant 
of an n X n matrix A of noncommuting elements, by 

where Eij ••• m is the alternating tensor, with 
E l2 ... " = 1. Then in the present context, we find 

( ) 
n ,...1 

det 0' - pI = P + a1 p + .•. + a~, (7) 

where p is an arbitrary complex number, I is the 
n x n unit matrix, and ai., k = 1,2, ... ,n, like 
ak' is an invariant of SO(n). However, we find that, 
in general, ak '" a k' in contrast with the case when 
0' is a matrix of complex numbers. 

The existence of the polynomial (7) is compara­
tively well known, having been discussed in studies 
of Lie algebras by Killingll before the turn of the 
century and, more recently, by Racah7 and Bieden­
harn.s Much less, it seems, is known of identities 
of the form in Eq. (6). 

This equation actually expresses n2 identities in 
the elements of 0'. Lehrer-llamed12 has shown 
that n2 identities of more general form are satis­
fied by the elements of any n X n matrix, provided 
these elements belong to a free associative alge­
bra. Here we are dealing with a special case, 
where the algebra is in fact a Lie algebra, whose 
structure constants are such that these identities 
can be expressed in the simple form of a poly­
nomial identity in 0'. [One of the authors (H. S. G.) 
has now determined similar identities for SP(n) 
and SU(n).] 

In the course of investigating certain identities 
satisfied by elements of any representation of the 
Lie algebra of SU(3), Lehrer-Ilamed13 has utilized 

similar generalized Cayley-Hamilton identities 
satisfied by some elements of the algebra. (See 
also Racah.14) However, to our knowledge, the 
identity (6) for SO(n) has not previously been pre­
sented, even for the case n = 3. 

2. VECTOR SHIFT OPERATORS AND THE POLY­
NOMIAL IDENTITY 

Considering a system of operators 9,0' as in Eqs. 
(1)-(5), we find that 0 0 , ot, and OJ are eigenvectors 
of the generator matrix 0' , in the sense that if (J T 

represents anyone of these n operators, 

i.e., 

where d T is an invariant of SO(n). This follows 
from the fact that, for any vector operator Or' 

For,in view of Eqs.(3) and (5) above, 0"2 commutes 
with 0 0 , so that 

(0' - ~n + ~)OO = O. 

Also, 

[0"2,9t] = 2[A j {A i + n - 2i), Btl 

= 2(2Aj + n - 2i + 1)0;, 

so that 

(0' - ~n + 1)97 = (At + }n - i)et. 

Similarly, 

(8) 

(9) 

(0' - ~n + 1)0[ = - (Ai + in - i)Bi. (10) 

In Appendix A we show that a satisfies a poly­
nomial identity of the general form of Eq. (6). 
The results (8)-(10) then allow us to write the 
identity in more precise form, effectively deter­
miningak , k=1,2, ••• ,n as a function of Ai' 
i = 1,2, •.. ,m. We must have 

where 

n = 2m, 

n = 2m + 1, 

and 

a = 0' - ~n + 1, 

(11) 

(12) 

(13) 

(14) 
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Conversely, once the results (11)-(14) are known, 
one can see why and how an arbitrary n-vector 
operator 6 can be resolved in the manner indicated 
by Eqs. (5). Thus, in the case n = 2m + 1, we use 
Eq. (11) in the obvious way to define projection 
operators PO(QI),Pj(QI),Pi(QI), i = 1,2, ... ,m, 
which are polynomials of the (n - 1)th degree in 
QI and which satisfy 

(QI - ~n + ~)PO = 0, 

[QI - ~n + 1 'F (Ai + ~n - i)]Pf = 0, 

pop=!: = p=!=po = p~p-;- = p-;-p-t: = 0, 
, , 'J' J 

m 

po +:0 (Pt + Pi) = 1. 
i; 1 

Then the required resolution is 
m 

6 =6 0 +:0 (6j +Oi), 
i=1 

with 

The case n = 2 m is similar, except that po and 
0 0 do not occur. 

(15) 

(16) 

We do not go into details here, but mention that in 
order to confirm that Eqs. (5) follow from Eqs. 
(15) and (6), it is not sufficient to consider the 
commutators of 6 0 , 0; only with 0"2' Rather one 
needs to calculate the commutators of these vec­
tors with a complete set of invariants, which, like 
0"2 but unlike Ai' are explicitly constructed from 
the set of Qlpq ' Finally, one ~ust know the e~pres­
sion for each member of thIS complete set III 
terms of the Ai' We return to this last point in 
Sec. 5. 

3. SYMMETmC AND ANTlSYMMETRIC POLY­
NOMlALSlNa 

If the matrix polynomialf(QI) is symmetric, Le., 

iff(QI) = f(QI), then 

g(QI) = (QI - ~n)f(QI) + ~ tr [J(QI)] 

is antisymmetric, Le.,g(QI) = - g(QI). 

Furthermore, if g(QI) is anti symmetric, then 

(17) 

By putting q = r and using frs(QI) = fsr(QI), we have 

Qlf(QI) + f(QI)QI = nf(QI) - tr [f(QI)], 

with the help of which the anti symmetry of g(QI), 
defined as in Eq. (17), is readily established. On 
the other hand, iffr~(QI) is replaced in Eq. (19) by 
grs(QI), where grs(Qlj = -gsr(QI), we deduce that 

Qlg(QI) -g(QI)QI = (n - 2)g(QI), 

which establishes the symmetry of h(QI), defined 
as in Eq. (18). 

Noting that QI 0 = 1 is symmetric and that QI is anti­
symmetric, we see from these results that any poly­
nomial of degree 21 in QI, 1 = 0, 1, 2, ... ,can be 
expressed as the sum of a symmetric one of de­
gree 21 and an anti symmetric one of lower degree. 
Similarly, any polynomial of degree (21 + 1) can 
be expressed as the sum of an anti symmetric one 
of that degree and a symmetric one of lower de­
gree. 

We then infer from Eqs. (11)-(14) that Fn(QI) is 
symmetric or antisymmetric, according as n is 
even or odd, Le., 

(20) 

4. METHOD FOR THE DETERMINATION OF 
THE MATRIX POLYNOMIAL 

For any given value of n, Fn(QI) can be"calculated 
by reduction to polynomial form of the appropriate 
equation (A3) or (A10), as shown in Appendix A for 
n = 3,4, and 5. However, as n increases, such a 
calculation quickly becomes very involved. Here 
we present, in each of the cases n even and n odd, 
a method of obtaining Fn(QI) quite easily for any 
given n. 

(a) When n = 2m is even, Fn(a) is completely 
determined by the conditions 

(i) Fn(QI) = Gm(a 2 ), where Gm(a 2 ) is a poly­
nomial in a 2 of degree m and a = 
QI - m + 1, 

(ii) Fn(QI) = Fn(QI), 

(iii) tr [Fn(QI)] = 0, 

which follow from Eqs. (12), (20), and (11). The 
proof is as follows. 

Consider the sequence of polynomials defined by 

fo = 1, f1 =QI(QI-m + 1) +bofo, 

h(QI) = (QI - ~n + 1)g(QI) (18) fz+l = [QI(QI - 2m + 1) + bl]fz 

is symmetric. + [~QI + C IQI(QI - m + 1) +dl]tr [fz], 
The proof is as follows. Since fpq (QI) transforms 
as a tensor under SO(n), 1 = 1,2, ... , (21) 

[QI pq,jrs(QI) 1 = ° qrfps (QI) - oprJqS (QI) 

+ Oq.frp(QI) - 0psfrq(QI)· 

where b 0' b l' C I' and d I are arbitrary constants. 
According to the results of the preceding section, 

(19) each polynomial in the sequence is symmetric. 
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Moreover, in view of the conditions (ii) and (iii) 
above, we see that, for some choice of b 0' b I' C I' 

and d l , 1 = 1,2, ••• ,m - 1, 

Fn =fm -tr [f",]!(2m). (22) 

Then f m' like F n , must be even in a, and we shall 
use this to determine b 0' b I' C I' and d I uniquely 
[except for dm-l> which remains arbitrary, but 
which does not in any way contribute to F n , in view 
of Eq. (22)]. 

We denote by f? that part offl which is a linear 
combination of positive powers of a, with numeri­
cal coefficients, i.e., not involving 02' ° 3' •••• It 
is evident that 

f~ = a(a -m + I)P /[a(a - 2m + 1)] 

= a(a + m -1)pz[(a + m -1)(a - m)], 

where P I(X) is a polynomial of the (l - l)th degree 
in x. It is also clear that iffm is even in a, so are 
f~ and (fm - f~). But, iff~ is even in a, we have 

(a + m - I)Pm[(a + m - 1) (a - m)] 

= (a - m + I)P m [(a - m + l)(a + m)]. 

We set, in succession, a = m -1, a = m - 2, ... , 
a :::::: 1 in this identity and thus obtain (for n > 2) 

Pm[I(2 - 2m)] =pm[2(3 - 2m)] = ... 
= Pm[(m - 1) (- m)] = 0, 

and therefore 

p",(x) = (x + 2m - 2)(x + 4m - 6) ••• 

x [x + m(m - 1)], 

f~ :::::: (a + m - 1)[(a - m + l)(a + m - 2)] 

x [(a - m + 2)(a + m - 3)] ••• [(a - 1)(a)]a, 

= a[(a - 2m + 2)(a - 1)] [(a - 2m + 3)(a -2)] 

x··· [(a-m)(a -m + 1)](a -m + 1). 

Thus b 1= l(2m - 1 + 1), 1 = 0, 1, ••• ,m - 1, and 
in order thatf", should also be an even function of 
a, we must take C z =- 1/(2l), 1 = 1,2, ... ,m - 1 
and d l = - ~(m - 1), 1 = 1,2, ... ,m - 2, while 
d m-1 is left arbitrary. 

Thus, when n :::::: 2m, 

where 

f1 = a(a - m + 1), 

f l +1 = (a -l)(a - 2m + 1 + l)f l - (a - m + 1) 

x (a - I) tr [/1]/(2l). 

For example, when n = 2, 

F 2(a) ::::::f 1 - ~ tr [J1]' 

fl :::::: a 2 ; 

for n = 4 [cf. Eq. (A6)], 

F 4(a) =f2 - i tr [J2], 

f1 = a(a - 1), 

f2 = (a - 2)(a - 1)2 - ~(a - 1)2°2; 

for n = 6, 

F 6(a) =/3 -~ tr [J3j, 

f1 :::::: a(a - 2), 

h = (a - 4)(a - 2)(a - l)a - ~(a - 2)(a -1)02' 

f3 :::::: (a - 4)(a - 3)(a - 2)2(a -1)a - ~(a - 3) 

x (a - 2)2(a - 1)<12 - ~(a - 2)2[204 - 14°3 

+ 1602 - (02)2]. 

(b) When n = 2 m + 1 is odd, F n (a) is completely 
determined by the conditions 

(i) F .. (a):::::: (a - ~)G",(a2), where G.,,(a2) is a 
polynomial in a2 of degree m and a = 
a-m+!, 

(ii) Fn(a):::::: -Fn(a), 

which follow from Eqs. (13) and (20). 

In this case we consider the sequence of antisym­
metric polynomials generated by 

gl+1 = [a(a - 2m) + bdgl + [cia + t] tr [ag l ], 

1:::::: 1,2, •..• 

For some choice of b I and C I' 1:::::: 1,2, •.. ,m, 
we must have F n :::::: g m+1' We determine these con­
stants uniquely by requiring that g .,,+1 satisfy con­
dition (i) above. 

Suppose g? is obtained from g I by dropping terms 
involving ° k' Then 

g?+1 = aPI[a(a - 2m)], 

= [a + m - ~]Pd(a - ~)2 - m 2 ], 

where P I(X) is of degree I in x. From condition (i), 
we see that g~+1 must vanish for a = t so that 
P m(- m 2 ) :::::: 0 for m > 0, and we can write 
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Again from condition (i), we see that (a + m - ~) 
(a - ~)qm[(a - ~)2 -m2] must be an even poly­
monial in a, so that 

(a + m - ~)(a - ~)qm[(a - ~)2 - m 2] 

= (a -m + ~)(a + ~)qm[(a + ~)2 -m2]. 

W t · . 1 3 e se ,In successlon, a = m - 2, a = m - 2' .•• , 
a =~, and obtain, for m > 1, 

qm[l(l - 2m)] = qm[2(2 - 2m)] = ... 

= qm[(m -1)(- 1 - m)] = 0, 

whence 

qm(X) = [x + 1(2m -l)][x + 2(2m - 2)] ••• 

x [x + (m - l)(m + 1)], 

g2,+1 = (a - ~)(a + m - M(a - m + t}{a + m - ~)] 

X [(a - m + ~)(a + m - ~)] ... 

x [(a - ~)(a + ~)](a - ~), 

The identity tr [ez] = 0 then expresses 0'21-1 as a 
function of 0'2,0"3' ••• '0"2Z-2' Thus 

0'3 = ~(n - 2)0'2' 

0"5 = ~(3n - 4)0'4 - ~(n - l)(n - 2)0"3 - ~(a2)2, 

etc. 

k 
We see also, from the fact that tr [a Fn(a)] = 0, 
k = 1,2, ... ,that O"n+1' an+2, ••• can be expressed 
as functions of <12 , <1 3 , ••• ,an' It follows that all 
a k can be regarded as functions of a2 z, 1 = 1,2, 
... ,m, or, alternatively, and more conveniently 
from our point of view, as functions of T Z' where 

TZ = tr [fz]!(21), n = 2m, 

TZ = tr [ag1]!(2l), n = 2m + 1, 

withfz,gz as in Eqs. (23) and (24). 

The functional dependence of T I on Ai' i,l = 
1, 2, ... ,m, and hence the eigenvalues of T l' can 
be determined by comparing the two forms G m(a2 ) 

given, on the one hand in Eq. (14), on the other via 
Eqs. (23) or (24). 

= 0'[(0' _ 2m) + 1(2m -1)][0'(0' _ 2m) + 2(2m -2)] Thus in the case n = 2m + 1, we deduce from Eq. 
(24) that 

x ... [0'(0' - 2m) + m 2]. 

Form=l, qm=l. Thusb z =l(2m-l),and,to 
make g m+1/(a - t) an even polynomial in a, we 
must also take C I = - 1/(21). 

Thus, when n = 2m + 1, 

where 

gl+1 = (a -1)(0' - 2m + l)gl- (a -l)tr[agz]/(2l). 

(24) 

For example, when n = 3 [cf. Eq. (A12)], 

for n = 5 [cf.Eq.(A13)], 

g2 = (a - 1)(0' - 3)0' - ~(a - 1)0'2' 

g 3 = (a - 2)2(a - 3)(a - l)a - ~(a - l)(a - 2)2<12 

- t{a - 2)[0'4 - 40'3 + 30"2 - ~(a2)2]. 

5. INVARIANTS OF SO(n) 

Consider the sequence of anti symmetric poly­
nomials ez(a), 1 = 1,2, ... ' ,defined by 

e1 = a, e1+1 = a(a - n + 1)e1 + ttr[aez]. 

G m(a 2 ) = {- T .. - [a 2 - t]T m-1 

- [a 2 - t] [a 2 - f]T m-2 - ••• 

- [a 2 - t][a2 -n··· [a2 - (m _;)2]T1 

+ [a2 - t][a2 - iJ ... [a 2 - (m - ~)2]}, (25) 

so that 

Tm=-GmW, Tm-1=~[-Tm-GmG)], 

Tm_2=[-Tm-6Tm_1-Gm(7)]!24, etc. 

Then from Eq. (14) we have, writing Xi = 
(Ai + ~ - i)2, -

m+1 m 1 
T m =(- 1) ig1 (Xi - 4), 

T m-1 = (- 1) m+1 ~a (Xi - f) - i~ (Xi - t»), etc. 

We note also, from a comparison of Eqs. (25) and 
(AID), that 

(m) (m) ( 1) m m ( 1) 
(3p (3p = - mT m = m - ill Xi - 4 • 

In the case n = 2m, we find from Eq. (23) that 

Gm(a2) = {- T m - a2T m-1 - a2[a2 -l]T m-2 - ••• 

- a2[a2 - 1] ... [a2 - (m - 2)2]T1 

+ a2 [a 2 -1] ••• [a 2 - (m _1)2]), (26) 
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Tm=-Gm(O), T m - 1 =-Tm -G m(1), 

T m-2 = & [- T m - 4T m-1 - G m(4»), etc. 

Again writing Xi = (Ai + ~ - i)2, we see from 
Eq. (14) that 

m+1 m 
T = (- 1) II X" 

m i=l ' 

m+l [m m ] 
T m-l = (- 1) iVI (Xi - 1) - iV

I 
Xi , etc. 

The set of operators TV T 2 , ••• ,T m-]: and T m 

(or {3;m)f3;m» is a complete set of invariants for 
SO(2m + 1). However, in the case n = 2m, as is 
well known, one pseudoscalar invariant such as 

{3(m) (see Appendix A) or Am is needed. We note 
from a comparison of Eqs. (26) and (A3) that 

[i3(m»)2/m 2 = - T m' so that 

i3(m) = m(i) m.Ii (A,- + ~ - i), ,=1 

where we have taken the sign of the square root 
which is consistent with that weight vector inter­
pretation of (xl' X2 ' ••• ,X m ) adopted in Appendix 
B. The !'let of operators T l' 1 = 1,2, ... ,m - 1, 
and {3(m) is a complete set of invariants for SO(2m). 

APPENDIX A: 

Here we establish the existence of an nth degree 
polynomial identity for a. Following Bakri, 15 we 
define the completely antisymmetric tensors 

{3;:) ••• p k = 0,1, •.. ,m, of rank n - 2k, with 

11(0) - E: 
I-'pq ... v - pq ... v' 

Il(k) -!.a Il(k-l) 
I-'pq ... t- 2 uvl-'pq ... tuv· (AI) 

Then one finds that, for k = 0,1, ,m _1,15 

(k) (k) n+1(li Q (k+1) 
{3pq ... tuauv - k{3pq ... tv = (- 1) pvl-'qr ... t 

-li Il(k+l) + ... + (- 1)no t (3~k+1) )/(k + 1). qVl-'pr ... t v yq .•. s 
(A2) 

In the case k = 0, this identity is proved by inspec­
tion, and the proof for general values of k is ob­
tained by induction. 

(a) When n = 2m, we take k = m - 1 in Eq. (A2) 
to obtain 

a(m-1) _ ( _1)Il(m-1) = _ 6 Il(m)/m 
I-'pq aqr m I-'pr prl-' , 

i.e.,fj(m-1)(a -m + 1) =_{3(m)/m. Moreover, 
afj(m-1) = fj(m-1)a, so that 

(m-1) 
The quantity [{3 ]2 can be reduced to a poly-
nomial of degree (2 m - 2) in a, so that Eq. (A3) 
is in fact the required identity. It is not a simple 
matter to complete this reduction for a general 
value of m. However, for small values of m, the 
desired result can be obtained from the identity 

E:pij .,. klrE qst ... uvr = E (- l)S(P)Opqli j s 0jt ••• ° kuOlv, 

(A4) 

where ~(- l)S(P) means a sum over all permuta­
tions ofP,i, ... ,k,and l,with appropriate sig­
natures, by multiplying with 

(a ij' •• a kl Ha st'" a uv) 

and shuffling factors till the required order is 
reached. For example, when n = 4, 

[{3(1»)2 = - a 2 + %0"2 = - a 2 + 2a + %0"2 

so that 

{In the important related case of 50(3, 1), with 
generators JAil' X, ,i = 0,1, 2,3, satisfying 

(A5) 

where gAil is the pseudo-Euclidean metric tensor, 
the corresponding result is 

J C"1. J PJ O"J 11 _ 4' J C"1. J PJ 11 
Il C"1. P (J" Z Il C"1. P 

+ (J1 - 5) J il C"1.J / - 2i(J 1 - 1)JIl 11 

= (J 1 + [J 2]2)1>/, 

h 1 J All d 1 AIlJ 11 P } were J 1 = 2" AIlJ ,an J 2 = li E AIl1lPJ • 

(b) When n = 2m + 1, we take k = m - 1 in Eq. 
(A2) to obtain 

a(m-1) _ ( _ l)ll(m-l) 
I-'pqr a rs m I-'pqs 

( / )( 
(m) (m» = 1 m osp{3q - OSq{3p • (A7) 

Pre multiplying this equation, on the one hand by 

aM' on the other by (3~m), we obtain 

a Il(m) = (3(m)a = ma(m) 
pql-'q q qp I-'p, 

and 

YqrayS + (m - l)Ysq = (l/m)(f3!m)f3~m) 
_ a(ro )a(m)o ) 

I-'p I-'p qs' 

(A8) 

(A9) 

where Ypq = - Yqp = {3~m){3!;;l). Next, premultiply­
ing Eq. (A9) by (aus - mlius) and using Eq. (A8), we 
obtain 
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(a - m)[ I'a + (m - 1)1' + (1/m){3~m){3:m)] = 0 

or, since I' is antisymmetric, 

This is the required identity, as I' can be reduced 
to a polynomial of degree (n - 2) in a. 

In this case, using Eq. (A4), we find 

- 2(2-n)(a ••• a )(a ••• a ) I'pq- ij kl st uv 

(All) 

For example, when n = 3, we find I' = a, so that 

(A12) 

for n = 5, after a lengthy calculation, we find 

so that 

APPENDIX B: 

Here we justify the assertion that an arbitrary 
n-vector operator 9 can be resolved into com­
ponents satisfying Eqs. (5). 

An irreducible representation of SO(n) is charac­
terized by a set of integers or haif-odd integers 
(A1' A2 ••• ,Am), as in Eq. (4). This set may be 
interpreted as the weight vector of highest weight 
for the corresponding representation, 16 when each 
weight vector is defined as an ordered set of 
eigenvalues of, in particular, - ia 12' - ia 34' ••• , 
- ia2m-1.2m' Accordingly, for such a represen­
tation, one can find an element 1/1 of the represen­
tation space, such that 

i = 1,2, ... ,m. (Bl) 

Moreover, since 1/1 corresponds to the highest 
weight and since, for q > 2i > 2j, 

and 

• This work was done in part at the University of Adelaide and 
in part while the authors were at Michigan State University 
and the International Centre for Theoretical Physics at 
Trieste. 
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m 
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A hierarchy of tensor identities, satisfied by the generators of the general linear group GL(n), is obtain­
ed in terms of two different sets of invariants. An application to the identification of irreducible repre­
sentations and the decomposition of reducible representations is described. Similar results are obtained 
for the generators of orthogonal, pseudo-orthogonal, and symplectic groups. 

1. INTRODUCTION 

The generators of the group GL(n) satisfy the com­
mutation relations l 

[ 
i k] k i i k 

a j , a I = a ja I - a I a j , i, ... ,1=1, ... ,n, 
(1) 

and their matrix representations are of some 
interest, as they also furnish representations for 
other Lie algebras. Indeed, the commutation rela­
tions 

in which the structure constants necessarily 
satisfy 

k kim lm 1m 
C ij + C ji = 0, C ijC kl + C jkC il + C kiC jl = 0, 

can be satisfied identically by writing 

provided that a ~ satisfy (1). Different irreducible 
representations of the a l . are, moreover, associa­
ted with different sets of} eigenvalues of the invari­
ants (Jy defined by (repeated affixes i,j,k, l, ... 
are understood to be summed over values from 1 
to n; however, subscripts r, s, . .. are exempted 
from this summation convention) 

etc., which are Casimir operators, i.e., commute 
with all elements of the algebra. Thus, an irre­
dUCible representation of GL(n) can, in principle, 
be identified by determining the eigenvalues of 
(J l' (J 2' ... , (J". Of course, such a representation is 
not necessarily irreducible for the Z i , and the (J r' 

r :s; n , are not necessarily independent. The prob­
lem of determining a complete set of independent 
invariants for a semisimple Lie algebra has been 
considered by Biedenharn2 and by Gruber and 
0' Raiff eartaigh. 3 

Another, less explicit but sometimes more con­
venient way of defining a set of invariants for 
GL(n) is in terms of the highest weights of the 
finite-dimensional irreducible representations. 
Let Al be an operator whose eigenvalue, in a par­
ticular representation R of this kind, is the same 
as the maximum eigenvalue (1 of all in this re­
presentation. Further, let A?;, r = 2, ••• ,n) be an 
operator whose eigenvalue ty in R is the same as 
the maximum eigenvalues of aYy, when all' •.. , 

aY-\-1 have the eigenvalues tl' '" ,ty_r,respec­
tively. Then, if 1/1 is a vector such that ar y1/l = 
(y1/l,it must satisfy aij1/l = O,j > i,and (as one 
can verify by computing (J 11/1 and (J 21/1 ) 

n 

(Jl =6 A r , 
r=l 

" 
(J2 = 6 Ar(Ay + n + 1 - 2r). (3) 

y=1 

The representation R is labeled by ( = «(1' l2' ..• , 
i,,), where iy - is is integral and nonnegative 
when r < s, and can be identified in this way if the 
dependence of the first n of the a y on the A s is 
known. Unfortunately, the complexity of the expres­
sions for the (J y in terms of the A s increases 
rapidly with r. 

One use of the invariants is in the decomposition 
of a redUCible representation into distinct irre­
ducible components, which can be solved by deter­
mining the projections on to different eigenvectors 
of the (Jy (or As)' There are, of course, other ways 
of dealing with this problem, notably the method 
of character analysis, which has been applied to 
U(n) and SU(n) by Blaha. 4 Our present interest in 
the problem arises from its connection with a 
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A hierarchy of tensor identities, satisfied by the generators of the general linear group GL(n), is obtain­
ed in terms of two different sets of invariants. An application to the identification of irreducible repre­
sentations and the decomposition of reducible representations is described. Similar results are obtained 
for the generators of orthogonal, pseudo-orthogonal, and symplectic groups. 

1. INTRODUCTION 

The generators of the group GL(n) satisfy the com­
mutation relations l 

[ 
i k] k i i k 

a j , a I = a ja I - a I a j , i, ... ,1=1, ... ,n, 
(1) 

and their matrix representations are of some 
interest, as they also furnish representations for 
other Lie algebras. Indeed, the commutation rela­
tions 

in which the structure constants necessarily 
satisfy 

k kim lm 1m 
C ij + C ji = 0, C ijC kl + C jkC il + C kiC jl = 0, 

can be satisfied identically by writing 

provided that a ~ satisfy (1). Different irreducible 
representations of the a l . are, moreover, associa­
ted with different sets of} eigenvalues of the invari­
ants (Jy defined by (repeated affixes i,j,k, l, ... 
are understood to be summed over values from 1 
to n; however, subscripts r, s, . .. are exempted 
from this summation convention) 

etc., which are Casimir operators, i.e., commute 
with all elements of the algebra. Thus, an irre­
dUCible representation of GL(n) can, in principle, 
be identified by determining the eigenvalues of 
(J l' (J 2' ... , (J". Of course, such a representation is 
not necessarily irreducible for the Z i , and the (J r' 

r :s; n , are not necessarily independent. The prob­
lem of determining a complete set of independent 
invariants for a semisimple Lie algebra has been 
considered by Biedenharn2 and by Gruber and 
0' Raiff eartaigh. 3 

Another, less explicit but sometimes more con­
venient way of defining a set of invariants for 
GL(n) is in terms of the highest weights of the 
finite-dimensional irreducible representations. 
Let Al be an operator whose eigenvalue, in a par­
ticular representation R of this kind, is the same 
as the maximum eigenvalue (1 of all in this re­
presentation. Further, let A?;, r = 2, ••• ,n) be an 
operator whose eigenvalue ty in R is the same as 
the maximum eigenvalues of aYy, when all' •.. , 

aY-\-1 have the eigenvalues tl' '" ,ty_r,respec­
tively. Then, if 1/1 is a vector such that ar y1/l = 
(y1/l,it must satisfy aij1/l = O,j > i,and (as one 
can verify by computing (J 11/1 and (J 21/1 ) 

n 

(Jl =6 A r , 
r=l 

" 
(J2 = 6 Ar(Ay + n + 1 - 2r). (3) 

y=1 

The representation R is labeled by ( = «(1' l2' ..• , 
i,,), where iy - is is integral and nonnegative 
when r < s, and can be identified in this way if the 
dependence of the first n of the a y on the A s is 
known. Unfortunately, the complexity of the expres­
sions for the (J y in terms of the A s increases 
rapidly with r. 

One use of the invariants is in the decomposition 
of a redUCible representation into distinct irre­
ducible components, which can be solved by deter­
mining the projections on to different eigenvectors 
of the (Jy (or As)' There are, of course, other ways 
of dealing with this problem, notably the method 
of character analysis, which has been applied to 
U(n) and SU(n) by Blaha. 4 Our present interest in 
the problem arises from its connection with a 
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hierarchy of polynomial identities existing be­
tween the generators of GL(n) and of certain of its 
subgroups. Earlier work by Lehrer-llamed5 

showed that there are always n2 identities satis­
fied by the elements of an n-d\mensional matrix 
which are also elements of an associative algebra. 
Here we shall show how to determine such identi­
ties explicitly for the Lie algebras derived from 
GL(n). The method is a generalization of that 
developed previously for O(n) by Bracken and 
Green. 6 We shall also show how to obtain corres­
ponding identities for tensor operators of arbit­
rary ranok and symmetry type, involving the gene.,. 
rators alj linearly. 

There is, indeed, a hierarchy of characteristic 
identities for GL(n),O(n),and Sp(n). The simplest 
and most fundamental type is the characteristic 
equation satisfied by the generators of GL (n), re­
garded as a matrix. If we (cf Racah7) define 
series of tensor operators aY, r = 0, 1,2, '" ,or 
powers of a, by 

• i i (Y+ 1) i i ( T k 
(aO) 0 = a j , a j = a k a ) j' 

J 
(4) 

it is easy to verify that, for n = 1 and n = 2, 

a - 0'1 = 0 (meaning ail - a 1 6 i
j = 0), 

a2 - (0'1 + l)a + ~ (a~ + 0'1 - 0'2) == 0, (5) 

respectively. These identities are in some sense 
analogous to the Cayley- Hamilton identity satis­
fied by numerical matrices, ~ut, because of the non­
commutative nature of the a ~,cannot be obtained 
by the usual elementary metnod; the polynomials 
in a on the left sides are, indeed, different from 
the Killing determinantal polrnomials appearing 
in the work of Racah8 and Biedenharn and Louck. 9 

The a
Y 

defined in (4) can be regarded as linear 
operators on an n-dimenSional space of vectors 
or vector operators 1/1: (a Y 1/1)1 == (a")~~. The next 
in the hierarchy of identities involve linear opera­
tors on a space of symmetric or antisymmetric 
tensors of the second rank. In general, we define 

(aO)pq .. s. _ 6Pq .. s 
Jk .. m - jk .. m' 

_ P ( Y)iq .. S + q ( T)Pi •• S + '" - a i a jk .. m a i a jk .. m 
s T pq 0 + a i (a) .. I jk .. m , (6) 

pq S JOk m pq s pq S where a .. 0 1/1" = 1/1 .. when 1/1 •• is a Jk .. m , 
tensor or tensor operator of given rank and sym-
metry, Then, tor instance, we have oiikl = 
Mol kOJI + a'IOJk ) for symmetl'ic tensors of the 
second rank, and the characteristic identity for 
n = 2 is 

(a - 0'1- 2) [a2 - 2{O'1 + l)a + 2(0'1 2 + 0"1 - 0"2)] =0. 

(7) 

Our principal aim in the following section is to 
show how to obtain similar identities for arbitrary 
n and tensors of any rank and symmetry. In Sec. 3 

we show informally how such identities are con­
cerned in the decomposition of redUCible repre­
sentations, in particular the direct product of two 
irreducible representations. Finally, in Sec. 4 we 
shall outline the extension of these results to 
generators of the orthogonal, pseudo-orthogonal, 
and symplectic groups. 

2. CONSTRUCTION AND PROPERTIES OF THE 
IDENTITIES 

We shall develop here a method for the systema­
tic determination of the identities for arbitrary n. 
The actual procedure is summarized in (34), (36), 
and (39) of this section; we first enumerate the 
results on which the procedure is based and, where 
necessary, outline a simple proof. 

[1) The characteristic equation satisfied by the 
matrix operator a, defined as in (4), may be written 

n 
II (a - A - n + r) == 0 y=1 Y , 

(8) 

where the Ay are the operators appearing in (3). 

To prove this, suppose 1/1 is a vector operator satis­
fying 

(9) 

e.g.,1/I could be the column with elements a~+1 of 
the matrix a l

j in which 1 ~ i,i ~ n + 1. Since 

there must be a component, 1/1 Y say, of 1/1 which 
increases the eigenvalue of Ay by 1, leaving the 
eigenvalues of the other As unchanged: 

(10) 

Now, if a is the negative transpose of the matrix a, 
i.e., 

(11) 

then we have,for any vector 1/1, 

a1/-' = !/I(n - €i) (12) 

[0"2,1/1] = a1/l -1/Ia = (2a - n)1/I. (13) 

But, according to (3) and (10), 

[U2 ,!/IyJ = [Ay(Ay + n + 1- 2r),1/Iyl 

= (2AT + n - 2r)1/I.,. 

Hence, by substitution of !/I y for 1/1 in (11), we have 

(a - AT - n + r)1/I., == 0, (14) 
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and (6) follows. We note, in retrospect, that It should be noticed that 

1/1.,. = P .,.(a, >")1/1, 

where P .,.(a, >..) is the projection operator given by 

(a - >.. - n + s) 
P .,.(a, A) = g (A -: - A + s) • 

S-r r S 

[2) The characteristic equation satisfied by the 
transpose Ii defined in (11) is 

n 
II (li - X.,. - n + r) = 0, 

.,.=1 
(16) 

where 

(17) 

and (i'" is defined recursively by 

(18) 

This result follows directly from (14), which, with 
the help of (12), can be written 

I/I.,.(a + A.,. - r + 1) = o. (19) 

[3) The characteristic equation satisfied by the 
operator a, defined in (6), depends on the contra­
variant (or covariant) rank p of apq··~k •. m and the 
symmetry type of this tensor, which corresponds 
to an irredu'cible representation (m 1,m2 , ••• ,m,,), 
with L;m.,. = p, of GL(n). It is .,. 

II(a-1.t -L;m'(A +1. n +1.-!.m'-r))=O m 22 r r r 2 2 2.,. , 

t2=6mr(m.,.+n+1-2r), (20) 
.,. 

where the product II is over all sets of the non­
negative integers tWy , such that 

mn ~ m~ ~ m 1, r = 1,2, ... ,n, 

m,,-1 + mIl ~ m~ + m~ ~ m 1 + m 2 , r '" s, 

m,,-2 +m,,-l +m" ~m~ +m~ +m t ~ml 
+ m 2 + m 3 , r '" s '" t, 

Bm~ = 2]m r = O. 
r .,. 

(21) 

The labeling (m 1 ,m2 , ••• ,mIl) of the irreducible 
representation is the usual one and implies .~hat 
if more than m 1 superscripts of a tensor 1/1')" m 

of the corresponding symmetry type have the same 
value r 1> or if more than me superscripts have the 
same value r c when there are already m l' ..• , 

m c-l s~perscripts with the values r l' .•• ,r c-l' 
then 1/1 .j •• m vanishes identically. This is the origin 
of the inequalities in (21), as will be seen in the 
following proof of (20), which is similar to that of 
(8). 

( ",)jk .. m i",ik •• m + k.,,ji m + ... +am.",ik •. i a'l' = a i'l' a i'l' •• ,'I' 

(22) 

and that Ii can be defined so that 

(23) 
with (i/ given by (11). Then we have 

(24) 

where b ~ is the multiple substitution operator de­
fined by 

bi.cpkl •• " = f/,rl-.il •• " + F/,rl-. ki 
•• " + ... + 0",rl-. k1 

•• " 
) ) 'I' ) 'I' ) 'I' , 

(25) 

for a tensor cp of the same rank as 1/1. As the b i 
consti~te a realization of the generators of GL tn), 
and 1/11 

•• m an irreducible representation, it follows 
from (3) that 

(26) 

with t2 given by (20). Hence, 

(27) 

But, if 1/1 st .. v is a tensor (with tensor superscripts 
jk •• m omitted) such that 

A.,.1/Ist .. V = 1/Ist •• v(A.,. + o.,.s + on + ... + 0.,.), . 
(28) 

then it follows from (3) that 

[u 2 , 1/1 st •• v] = ,L;m~(2Ar + n + 1 - m~ - 2r), (29) 
r 

where m ~ is the number of subscripts of 1/1 st •• v 

which are equal to r. Combining (27) and (29), we 
have 

x 1/1 st •• v = 0 

and our result follows. 

[4] Similarly, 

(30) 

IIm [a - ~t2 - .Bm~(~r + ~n + ~ - ~m~ - r)]=O, 
y (31) 

where Xr is again given by (17), and the m ~ again 
satisfy the inequalities (21). 

The remaining results of this section are directed 
towards the expression of these identities in terms 
of the u y, instead of the A.,. which cannot, in general, 
be expressed directly in terms of the generators 
of the group. They will concern only properties of 
the simple tensor a~ and identities of the type (8), 
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though generalizations corresponding to (7) or 
(20) are certainly possible. 

[5] If o' y :;:: (a
Y
)\ and u y == (li y)/ ,and 

" F(a, a) :;:: n (a - Xr - n + r) (32) 
.-=1 

is the character,islic polynomial in a [which vani­
shes when the G'j are generators of GL(n)], then 

F(a, a) :;:: (- 1)" F(n - 1 - a, a). (33) 

For, if a r = a r (X), then (j y = a r (~). This identity 
then follows from (8) and (17). 

[6] We call a polynomial g(a, a) in a symmetric 
if g(a, a) = g(li, a), and antisymmetric if g(a, 0') == 
-g(a,u). Then,iffo =0,f1=a,and 

[~Yl-1 

fr+1 :;:: (a - ~n)fr + /r) + 6 c;~~o-1 f r-2s -1, 
s~o 

10) _ (y) _ .!. _ /)( )i - a, f - (2 a r f r i' (34) 

thenfr is symmetric or antisymmetric according 
as r is even or odd. 

The proof, by induction, is very simple. Iffr is 
symmetric (antisymmetric), it follows from 

[a
i
j , (fr)\] :;:: n(fr) \ - o\(fYj 

that (a -1n)fr + 1 (fr)ii is anti symmetric (sym­
metric). 

[7] The polynomial F(G, a) of (32) is completely 
determined by the conditions 

F(a, a) = (- 1)" F(n - 1 - G, a), (35a) 

F(a, a) is symmetric when n is even, antisymmet-

ric when n is odd, 

[F(a,O')]ii = O. 

(35b) 

(35c) 

Equivalently, we could assert that F(a, 0') is gener­
ated recursively by (34) and 

(36) 

and that the coefficients c~s) are uniquely deter­
mined by the condition (35a) only. This is, in fact, 
what we shall prove. Of course, all three condi­
tions are trivial consequences of the vanishing of 
F(a, a), but the point is that by using only these 
conditions we can determine F(a, a). 

The proof is as follows. From the method of con­
struction, it can be seen that 

a - t n which is even or odd according as r - s 
is odd or even, respectively. If the condition 
(35a) is to be satisfied, 

(a -1s)p ~S)(a -1n,O') :;:: (a - n + 1 + 1s) 

x p ~s) (a - 1 n + 1, a) • 

By setting a - in == r,for r:;:: 1(n - s) -l,r:;:: 
i (n - s) - 2, ... , r :;:: 1 when n - s is even, or r :;:: 
1 (n - s - 1), r :;:: 1 (n - s - 3), •.. r :;:: 1 when n-
s is odd, we see that the polynomial P ~s) must have 
zeros for these numerical values of a. Consequent­
ly, 

i~ -s)-l 

P ~S) :;:: (a - in) n [(a - in)2 - r2], 
.-=1 

n - seven, 

}(n -s-1) 

P ~S):;::!!1 [(a - }n)2 - (r - ~)2], 

n - s odd. (38) 

Thus, fn has been completely determined. 

[8] The characteristic polynomial is given by 
(36), where fn is determined from (34), with coeffi­
cients c ~) given by 

s+ 1 
c(s)_ (-1) (2s)! (n-r)! '(39) 

r - 24s+3 s !(s +1)! (n-r-2s-2)! 

The coefficients are determined as follows. By 
inspection of the coefficients of the polynomials 
P~-1) we see that 

c (0) + c (0) - - (n - r - 1)2/4 
r "1- , 

(1) (1) (0) (0) (s) (s) 
C r + C r+ 1 = C r+ 1 C y+ 2' •• " c y + C y+ 1 

_ (0) (s-1) + (1) (s-2) 
- C r+ 1 C r+ 2 c r+ 1 C r+ 4 + 

(s) (1) 
+Cr+1Cr+2s-2 . 

These difference equations can be solved with the 
help of 

(0) (s) 
C n-1 = 0, C n-2s-1 = 0, 

giving 

c ~o) = - (n - r) (n - r - 1)/23 , 

c~l) :;:: (n-r)(n-r-l)(n-r-2)(n-r-3)/27, 

and, by induction, (39). 

[9] If 

Br :;:: (fr)jj/r, Lr:;:: r - Xr - }(n + 1), 

1 nIL 5-1 n 1 

(40) 

F = - n (L + -s) + - (- 1) n (L - -s) (41) 
(37) s 2 F1 r 2 2 .-=1 r 2 , 

where p~) = p ~) (a - 1n, 0') is a polynomial in 
then the Brand the L s are connected by the rela­
tions 
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F 5 = - (S - 1)! 0,,-s.1 - (s - 2)! 0"-5.3/1! 

- (s - 3)!8,,_s.5/2! _ ... ,sf 

e" -5+1 

= - sFs + s·(s - 2)F s-2/1! 

- s(s -1)·(s - 4)Fs_4/2! + .... (42) 

The first of these relations follows from the iden­
tity 

n 
+ ° _ a ' (a '2 - 1) + ... ] ::: n (L + ') 

" 3 ,.=1 ,. a, (43) 

where a' = a - ~(n - 1), which is obtained by equa­
ting F(a, 0"), as given by (36), (37) and (38), with the 
left side of (8). We simply form Fs by substituting 
a' = !s and a' = - !s in (43). The second relation 
is obtained by solution of the first. 

We note also the following associated results, 
obtained by direct comparison of coefficients of 

a ,n-1 1"-2 . ( ) ,a , ... In 43 : 

S2 =0 LrL 5 = - °2 - (n + 1)n(n - 1)/24, 
r>s 

S3 = 6 LrLsLt=-03 +n(n-1)(n-2)0/24, 
r>5>t 

S4 = 6 LrLsLeLu = - ° 4 + (n -l)(n - 2) 
r>s>t>u 

x (n - 3)°2/24 + (n + l)n(n - 1)(n - 2) 

X (n - 3)(5n + 7)/560, (44) 

etc. The eigenvalues of L 1,L2,L3, •.. are in 
ascending order and are therefore easily identi­
fied. The above relations allow symmetric func­
tions of the L,. to be expressed in terms of the 0" r , 

by substitution of the explicit forms of f r into 
0,. = (fYj/r. Thus, we have, from (34) and (39), 

°1 = 0"1' 282 = 0"2 - 0"1. 

3°3 = 0"3 - !n0"2 - ! (0"1 - !n)(0"2 - 0"1) 

- (0"2 - ~0"1 - CiO)0"1' etc. (45) 

The continuation of this table is most conveniently 
effected with the help of a LISP computer program. 

3. IDENTIFICATION AND DECOMPOSITION OF 
REPRESENTATIONS 

In this section we shall discuss some applications 
of the foregoing results, which will, inCidentally, 
throw further light on the role of the characteris­
tic identities. 

One way of identifying an irreducible representa­
tion is to determine the characteristic identity 
satisfied by the generators. It is, however,.neces­
sary to note that although the generators a~ in 

general satisfy an equation of the nth degree, they 
may also satisfy a reduced equation of lower de­
gree in a particular irreducible representation. 
For, if the eigenvalues is and it of As and At are 
equal in such a representation and t > s, then the 
component of the vector operator 1/1 satisfying 
(a - As - n + s)1/I = ° must vanish in this repre­
sentation, and the factor (a - is - n + s) may there­
fore be omitted from the characteristic equation 

n (a - ir - n + r) = 0. ,. (46) 

By omitting all such factors, we obtain the reduced 
equation of the representation. If this reduced 
equation is of the qth degree in a, the eigenvalues 
s,. of the O"r satisfy a qth-order difference equation 
[obtained by multiplying (46) by am and contracting 
the resulting tensor identity J. The solution of this 
difference equation is of the form 

'" ,,-1 
S T = DC t (l t + n - t) , (47) 

t 

where the C r are numerical constants. We tabulate 
for reference the characteristic identities and the 
eigenvalues of the invariants in some of the simpler 
irredUCible representations: 

r-1 
(1,0, ... ): (a-n)a=O, sr=n ; 

r-1 
(1,1,0, ... ): (a-n+1)a=0, sr=2(n-1); 

r-1 
(2,0, ... ): (a-n-1)a=0, sr=2(n+1); 

(1,1,1,0, ... ): (a-n +2)a +0, 
r-1 

sr = 3(n - 2) ; 

(2,1,0, •.. ): (a-n-1)(a-n +1)a=0, 
,-1 r-1 

sr=3[(n+1) +(n-1) ]/2; 
r-1 

(3,0, ..• ): (a-n-2)a=0, s .. =3(n+2) . 
(48) 

We consider now the problem of decomposing a 
reducible representation into distinct irreducible 
components. The latter are, of course, distinguished 
by the eigenvalues of invariants, and can be isola­
ted by applying prOjection operators corresponding 
to the different sets of eigenvalues. We intend to 
apply this procedure to the decompOSition of 
GL(n) XGL(n). We denote the ge(lerator~ in two 
irredUCible representations by alj and b Ij , so that 
those in the product space are 

(49) 

(or, more precisely, a i
j 

X 1 + 1 x b ij ). We adopt 
tt· .1, .I,rs .. u d'" ",'kIn tensor represen a lons 'I' = ~ an 'i' = 'i' •• 

for vectors in the range of a~ and b~, respectively, 
so that 

X kl .. " = 1> kl .. " 1/1 

is a vector of the product space which we wish to 
decompose. Distinct irreducible representations 
correspond to different eigenvalues of 
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I( i i b i bi i i) i b j 
Y=2 a pi+ j i-CPt =-a j i' 

Suppose C (m) are the eigenvalues of y in the re­
presentation, so that 

n ( (m). kZ •• n 0 
m :y - C JX =. 

According to (25) and (23), 

A. kl •• n __ ( k A.i l •• n Z A. kj .. ", + '" kl •• j) 
Y'I' _ a j'l' + a j 'I' a j 

= (ef>a) kZ •• n, y2ef> kZ •• n = (ef>a 2) kl •• n , 

(50) 

(51) 

etc. with a defined in the generalized way of (6). It 
follows, then, from (51), that 

(ef>!!(a - c(m)~ kZ .. n1/l = O. (52) 

This is evidently the reduced counterpart, in the 
special representation we are considering, of the 
identity (31), and it follows that 

c(m)_.!t +"'m'(i +{n+'!_'!m'-r) (53) - 2 2 L.J r r ·2 2 2 r , 
r 

- -
wh~re iy = - In+l-r is the appropriate eigenvalue 
of ~r and the m ~ must satisfy the inequalities (21). 
The eigenvalue (53) corresponds to the irreducible 
representation (el + mi, £2 + m 2,.·.) contained 
in the product space we are considering. This 
shows that the factors of the characteristic equa­
tion (8) correspond to different representations 
generated by the direct product of the adjoint re­
presentation (1, 0, ... ) and that associated with the 
a~. The factors of the generalized equation (20) 
correspond to different representations generated 
by the direct product of the irreducible represen­
tl\.tion (m l' m 2' ••• ) and that associated with the 

I 

a j' 

Of course, not every set of values of the m~ 
satisfying (21) is necessarily represented in the 
reduced characteristic identity. The vector 

(
cf> n (a - c Cp»/(c(m) - c (P») kl .. n1/l 
p~m ' 

which is the component of X corresponding to a 
proper irreducible representation (el + mi, ~2 + 
m 2' ... ), cannot vanish, and this requirement in 
general imposes further conditions on the m~, 
analogous to those which restricted the degrees of 
the characteristic equations shown in (48). These 
additional conditions can be found by considering 
in the first instance the possibility that ef>kl .. n is 
completelyantisymmetric. Then the conditions 
(21), and. 

(54) 

are sufficient. The corresponding conditions for 
tensors of other symmetry types are obtained by 
expressing them in terms of direct products of 
completely antisymmetric tensors, e.g., (2,0, ..• ) = 
(1 , 0, ... ) x (1, 0, ••. ) - (1, 1, 0, ... ). It should be 

remarked that a given irreducible representation 
may appear multiply within the product space, so 
that although (54) is a vector of only one distinct 
irreducible representation, it may still be decom­
posable. The decomposition can be effected by 
projection onto eigenvectors of other independent 
invariants a~b} kbki ,a~bj ~ ~ b Ii' etc., of the reducible 
representations, but we shall not pursue this ques­
tion here. 

4. IDENTITIES FOR SUBGROUPS OF GL(n) 

It is well known that the introduction of a metric 
tensor is necessary for the definition of the ortho­
gonal and symplectic subgroups of GL(n). If gi· 
is symmetric and we define } 

k k 
a ii =gik a j-gjk a i 

[where the ai
k , as before, are generators of GL (n)], 

then the a ij are generators of the orthogonal tranl;!­
formations which leave the quadratic form g IJef> i1/lJ , 
involving two vectors ef> and 1/1, invariant. SimIlarly, 
if g ij is antisymmetric and 

k k 
all =gik a i + gika i' 

then the a ij are generators of ~he symplectic trans­
formations which leave gj .ef> i 1/1) invariant, We can 
accomodate both possibilities by writing 

aij=gika~-gkjaki' gi)=11gj i' (55) 

where 11 = 1 for O(n) or - 1 for Sp (n). These genera­
tors satisfy 

[aii,a kz1 = gk/l;Z- gilakj - gikajl + gz/l ki' (56) 

If 1/1 k is a vector operator, 

[a Ii' 1/1 k] = 0 kj1/l i - 111'/i 1/1 i' 1/1 i = g ij1/li • (57) 

It is necessary to assume that gii is nonsingular, 
which is only possible tor Sp(n) when n is even. 
Then a contravariant gil exists such that 

ij -ii i 
g gjk = g kjl5 = 0 k' (58) 

and we can proceed to define tensor operators a 
and il analogous to a and a given by (22) and (23), 
but constructed from 

i ik i ki i 
a) = g a kj' a j = ajkg = - OJ' (59) 

The invariants are defined by 

( 
r i 

(Jr = a ) i' (60) 

but (J 1 now vanishes identically and, as we shall 
see, the (J2r+l can be expressed in terms of the 
(J2r' There are, therefore,h independent invari­
ants, where 

h=~, neven, or h=1(n-1), nodd. 
(61) 
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In addition, there is the inversion P, when det(- g) 
=-1. 

We can also introduce the well-known invariants 
Xr , r = 1,2, ••• h, implicitly in the following 
way. First a transformation reducing gii to the 
canonical form giJ. = ± Ojj for O(n);gij = 6i+1 · 
(i odd) or - 6ij+1 {i even} for Sp(n) is applied. 
Then, in a particular irreducible representation, 
suppose that i1 is the maximum eigenvalue of a 1

2 , 
and that ir is the maximum eigenvalue of a2r-12r, 
when the a2s-12s with s<r already have the eigen­
values is' When t/I is the eigenvector of this re- . 
presentation corresponding to the eigenvalues t s , 
it is readily verified that 

h 

(J2t/1 = 2~lr(lr + n + 1 -1/ - 2r)t/I. 
r=1 

We define Xr as the operator whose eigenvalue is 
tr within the irreducible representation described, 
so that 

h 

(J2 = 2~ Xr(.\r + n + 1 -1/ - 2r) 
r=1 

for any representation. If we define .\r for h < 
r"; n by 

.\ r = 1/ - Xn + 1-r , r = n - h + 1, ... , n, 

(62) 

Xh+ 1 = 1, n odd, (63) 

then we can also write 

" (J2 = 1/h(n - h) + ~ Xr(Xr - 1/ + n + 1 - 2r) 
r=1 (64) 

From this starting point, it is a straightforward 
matter to derive the characteristic identities, by 
the methods of Sec. 2. We shall simply state the 
principal results. There are, in general, 2h vec­
tor operators t/I s (excluding t/I h+ l' when n is odd) 
such that 

(65) 

When n is odd, the additional vector operator 
t/lh+l commutes with all the Xr . The vector opera­
tors thus specified satisfy 

(a - Xr - n + 1/ + r)t/I r = 0, 

IJir(a + ~r + 1-r) = 0, r = 1, •• . ,n, (66) 

where at/l and t/lii denQte );ector operators within 
components (at/lF = a'kt/l ,respectively. The 
characteristic identity is therefore 

n 

II (a - X - n + 1/ + r) = 0 
~1 y , 

(67) 

and ii satisfies the same equation. An equivalent 
result was obtained previously, for O(n) , by Brac­
ken and Green 6; the application to sp (n) is new. 
Also, the analogy with the corresponding result (8) 
for GL(n) is interesting. 

The result (67) is just the first of a hierarchy. 
There is a generalization in which a is the tensor 
operator defined by 

(at/l)jk .. m = a j
i 
t/lik .. m + a k; t/lii .. m + ... a mj t/ljk .. m 

(68) 

for any irreducible tensor representation of O(n) 
or Sp(n). If we disregard associated representa­
tions (derived from one of lower rank by the use 
of the alternating tensor) the irreducible tensor 
representations can be labeled by (m 1,m2"'" 

mh ), where ~:=lmr =p, the rankofthetensor. With 
'k m 

such labeling of t/I'" ,the characteristic identity 
satisfied by a is 

I! (a - it2 - ~m~(Xr + tn - trJ + ~-~; -r~=O, 
r=l 'l 

h 

t2 = 2 E mr(m r + n + 1 - 1/ - 2r), 
y=l 

o .,; m~ .,; m 1., 

o .,; m ~ + m; .,; m 1 + m 2' 

" h 
Em~.,; Emy =p. (69) 
r=l r=l 

Finally, we give the procedure for constructing 
the characteristic identity (67) in terms of the (J YI 

this is somewhat simpler than that given for GL(n), 
but again depends on the construction of a se­
quence of self-conjugate or anti-self-conjugate 
polynomials in a, the conjugate being defined by 

i k Ii Ij = gjJ,g • (70) 

The sequence defined by 

12 = a(a - tn + 1/), 

12r+ 2 = (a -r)(a -n + 1/ +r)f2y 

- (a - r) (a - ~n + 1])(f2y)ii/(2r) (71) 

is self-conjugate and is unique in leading to a poly­
nomial 12 h which is even in a - h, when n = 2h is 
even. The characteristic polynomial is therefore 

1211 - (f2h)ii/(2h) = 0, n even. 

On the other hand, the sequence defined by 

11 = a, 12r+l = (a - r)(a - n + r)/2r-1 
- (a - r)(a/2r_1)ii/(2r) 

(72) 

(73) 

is anti-self-conjugate and is unique in leading to a 
polynomial/2h+1 which is of the form (a - h) 
times a polynomial even in a - ~ n, when n = 2h + 
1 is odd. The characteristic identity for O(n) 
(given by Bracken and Green6) is therefore 

(74) 



                                                                                                                                    

CHARACTERISTIC IDENTITIES FOR GENERATORS 2113 

We noted previously the existence of identical 
relations between the 0"2 ... +1 and the O"~Y for O(n) 
and Sp(n). For instance, 0"3 == (~-1]}0"2' These 
relations are easily obtained from (71), if we note 
that (a - ~)12Y + ~(f2r)i i is anti-self-conjugate, 
so that 

i 
(0'12Y) j == O. (75) 

1 See, e.g., M. Hammermesh, Group Theory (Addison-Wesley, 
Reading, Mass., 1962), p. 389. 

2 L. C. Biedenharn,J. Math. Phys.4, 436 (1963). 
3 B. Gruber and L. O'Raiffeartaigh,J. Math. Phys. 5, 1796 (1964). 
4 S. Blaha,J. Math. Phys.l0, 2156 (1969). 
5 Y. Lehrer-Ilamed, Bull. Res. Counc. Israel 5A,197 (1956). 
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By substituting explicit forms for 12y ' we obtain 
the desired identities. 
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Expressions are developed which describe exactly the ensemble average of the number of nearest, next­
nearest, and third-nearest-neighbor pairs per particle, when indistinguishable particles are arranged on 
a two-dimensional rectangular lattice. 

I. INTRODUCTION 

In previous papers1
,2 exact relationships were de­

veloped which describe the occupation statistics for 
one-dimensional arrays of dumbbells and ~-bells. 
(Here X refers to the number of contiguous lattice 
sites occupied by a particle; X == 2 for dumbbells.) 
The purpose of the present paper is to point out 
that these previously obtained results can be utili­
zed to determine the ensemble average of the num­
ber of nearest-neighbor pairs, next-nearest­
neighbor pairs, etc., for single particles (X = 1) 
arranged on a two-dimensional retangular lattice. 

n. NEAREST-NEIGHBORS PAIRS, n1 

Consider a rectangular lattice conSisting of M 
columns and N rows on which are arranged a total 
of p particles. (See Fig. 1.) If there are q particles 
on one of the rows (0 ~ q ~ M) and these particles 
are arranged in all possible ways, then there are 2 

Ny(q, M1 = (M - q + 1) (M - r - 1) (1) 
\ q-r 

runs along that row which are composed of r con­
tiguous particles. This expression is the result of 
the following reasoning. If we consider the run of 
r contiguous particles and one of the vacancies 
which terminates the run as a unit, then there are 
M - r - 1 individuals remaining. q - r of these 
are particles, and M - q - 1 are vacancies, and 
these may be arranged in all possible ways. How­
ever each of the arrangements arising from the 
permutation of these M - r - 1 individuals may be 

created in (M - q - 1) + 2 == M.- q + 1 ways be­
cause the unit consisting of the unit composed of 
the r particles and the terminating vacancy can be 
inserted between each of the M - q vacancies in 
M - q - 1 ways, in addition, it may be inserted be­
tween a vacancy and each end of the array. When 
the q particles on a row are arranged in all possible 
ways and the positions of the remaining p - q particles 

FIG.1. When three particles are placed on a 
2 x 3 array in aU possible ways, there are 28 
nearest-neighbor pairs (dashed lines); 16 next­
nearest-neighbor pairs (solid lines); 8 third­
nearest-neighbor pairs (arrows),2 with an inter­
vening particle (IP) and 6 with no intervening 
particle (NIP). 
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are held fixed, n, the number of nearest-neighbors 
pairs along that row is given by 

q 

n = [; (r - I)N,,(q, M) 
"=1 

two particles occupying adjacent sites along a 
diagonal as constituting a next-nearest-neighbor 
pair. Assume that a diagonal d units long (1 .,; 
d .,; N) contains q particles and that these are 
arranged in all possible ways. Then there are2 

= t (r - I)(M - q + 1) (M - r - 1) 
'"=1 q - r 

(2) [see Eq. (1)] 

N (q, d) = (d - q 1- 1) (d - r - 1) 
because each run of r contiguous particles along a 
row contains r - 1 pairs of filled nearest-neighbor 
sites. This sum is from the smallest to the largest 
possible run and yields 

(M-2) .n = (M - 1) \q _ 2 • (3) 

A row containing a particular arrangement of q 
particles will occur (M<:--l) times because the 
rest of the particles,p - ~,are arranged in all 
possible ways on the rest of the sites, Mf/V - 1). 
Then n 1h' the total number of horizontal nearest­
neighbor pairs which appear on the N rows, is ob­
tained by summing 

" q-r 
(8) 

runs along that diagonal which are composed of r 
contiguous particles. The number of occupied 
adjacent pair sites along the diagonal is then 

t (r - 1)N,,(q,d) = t (r -1)(d _ q + 1) /d - ~ -1\ 
"=1 "=1 \ q r) 

(d -2) = (d - 1) \q _ 2 • 

When p particles are arranged in all possible 

(9) 

ways, a diagonal containing a particular arrange­
ment of q particles will occur(~-d) times be­
cause the p - q remaining particles can be arrang­
ed in all possible ways on the remaining (MN - d) 

N(M _ 1) (M - 2) (M(N - 1)\ 
q-2 p-q) 

sites. Thus the number of occupied adjacent pairs 
(4) which appear along a diagonal of length d is ob­

tained by summing 

over all possible values of q. There are three 
possible intervals over which the sum is to be 
taken: 

(i) A particular row can be empty but cannot 
be filled because p < M, i.e., 0 .,; q .,; p; 

(ii) a particular row can be empty and can 
be filled because M < p < M(N - 1), i.e., 
0.,; q.,; M; 

(iii) a particular row cannot be empty be­
cause p > M(N - 1), Le.,p - Mf/V - 1) 
.,;q .,;M. 

All three situations lead to the same conclusion: 

(d _ 1) (d - 2) (M N - d) 
'1-2 p-q 

over all possible values of q. There are three 
cases: (i) 0 .,; q .,; p, (ii) 0 .,; q .,; d, (iii) P - MN 
+ d .,; q .,; d, and all yield3 

(d - 1)(~~22). 

On an M x N rectangular lattice (M ~ N) there 
are (see Fig. 2) four diagonals 1 unit long~ four 
diagonals 2 units long, four diagonals 3 units long, 
four diagonals (N - 1) units long, 2(M - N + 1) 
diagonals N units long. 

(
MN - 2) nih = N(M -1) P _ 2 . (5) Each diagonal of length d (1 .,; d.,; N - 1), occurs 

four times and the diagonal N units long occurs 
2(M -N + 1) times. Thus,n 2 , the total number 
of next-nearest-neighbor pairs occurring when j: 

Similar reasoning leads to the number of "verticle" 
nearest-neighbor pairs so that n1. the total 
number of nearest-neighbor pairs arising when p 
particles are arranged in all possible ways, is 

n1 = (2MN - M -N) ~--2 2). 
Thus the ensemble average number of nearest­
neighbor pairs per particle is 

(6) 

particles are arranged in all ways, is 

(
MN - 2) n 2 = 2{N - 1) (M - 1) p _ 2 • 

The ensemble average number of next-nearest­
neighbor pairs per particle is 

(10) 

/MN\_ T (J> - 1) 
n 1/p \ p )- (2Mli - M -N) MN(MN _ 1), (7) n /p (MN~ (2MN - 2M _ 2N - 2) (J> - 1) . 

2 \p r MN(MN - 1) 
(11) 

In the limit as M and N approach infinity the 
number of nearest-neighbor pairs per particle is 
twice the lattice coverage. 

III. NEXT-NEAREST-NEIGHBOR PAIRS, n2 

The following calculation of the number of next­
nearest-neighbor pairs will be based on a deter­
mination of the number of next-nearest neighbors 
along a diagonal. In other words we will consider 

In the limit as M and N approach infinity, the 
number of nearest-neighbor pairs per particle 
also increases twice as fast as the coverage. 

IV. THIRD-NEAREST-NEIGHBOR PAIRS, n3 

A. With No Intervening Particle (NIP) 

If there are q particles on one of the rows and they 
are arranged in all possible ways, then Nv" the 
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number of contiguous vacancies of length v, is 
given by2 

(M - V-I) 
Nu = (q + 1) \ q _ 1 ' (12) 

because the v-tuple vacancy plus one of the par­
ticles terminating it can be considered as a unit 
containing v + 1 individuals; there are then M -
v - 1 individuals remaining on the row of which 
q - 1 are particles and (M - q - v) are vacancies. 
These can be arranged in 

(M ~ ~ 11) 
ways. Distinguishable arrangements can be created 
in (q - 1) + 2 = q + 1 ways by inserting the v-
tuple vacancy and one of its terminating particles 
between and at the ends of the remaining q - 1 
particles. 

To determine the number of third-nearest-neighbor 
pairs (with no intervening particles, NIP) along a 
row containing q particles arranged in all possible 
ways, we set v== 2 in Eq. (12). Since the remain­
ing p - q particles may be arranged in the re­
maining MN -3 sites in all possible ways, the total 
number of "horizontal" third-nearest-neighbor 
pairs (NIP) is 

N ~ (q + 1) (M - 3) (MN - 3) 
q q-1 \p-q 

(
MN - 3\ = N(M - 2) P _ 2 ) , (13) 

where again there are the three possible ranges for 
q discussed in connection with Eq. (5). The num­
ber of "vertical" third-nearest-neighbor pairs 
(NIP) can be obtained by interchanging M and N 
so that n 3' the number of third-nearest-neighbor 
pairs (NIP) arising when p particles are arranged 
in all possible ways is 

(NIP) per particle is 

n3 (2MN - 2M - 2N)(P - 1) (P - 2) 

p(bJ,~ == MN(MN - l)(MN - 2) (15) 

For large M and N, the number of third-nearest­
neighbor pairs (NIP) per particle varies as 28(1 - ~, 
where 8 is the lattice coverage. 

B. With Intervening Particle (IP) 

If there are q particles along a row and these are 
arranged in all possible waYs, then there are2 

q 

~ (r- 2)N .. (q,M) 
r=2 

= t (r - 2)(M _ q + 1) (M - r - 1) 
r=2 q - r 

== (M - 2) (16) 

units composed of three particles in a row, i.e., 
a third-nearest-neighbor pair (IP). The remaining 
p - q particles may be arranged on the remaining 
MN - M sites in 

(MN -M) 
\ p-q 

ways so that the total number of horizontal third­
nearest-neighbor pairs (IP) is 

(MN - 3) 
n 3h =N(M-2) p-3 ' 

so that n 3 , the total number of third-nearest­
neighbor pairs (IP), is 

(
MN - 3) n 3 == (2MN - 2M - 2N) P _ 3 ' 

(17) 

(18) 

or the ensemble average Qf the number of third­
nearest-neighbor pairs (IP) per particle is 

~~ _ _ _ (p - 1)(P - 2) 
p (~~ - (2MN 2M 2N) (MN)(MN _ I)(MN - 2)" 

(19) 

(
MN - 3\ 

n3==(2MN-2M-2N) p-2j" 
(14) Thus, the total number of third-nearest neighbors 

per particle is [(2MN - 2M - 2N)(P - 1)]1 (MN) 
(MN- 1). Thus, the number of third-nearest-neighbor pairs 

FIG. 2. On an M = 7,N = 6 
array there are four diagonals 
1, 2, 3,4, 5 units long (only two 
of each are shown) and four 
diagonals 6 units long. 

1 D. Lichtman and R. B. McQuistan, J. Math. Phys. 8, 2441 (1967). 
2 R. B. McQulstan, Nuovo Cimento 58B, 86 (1968). 

V. SUMMARY 

We have calculated the ensemble average of the 
number of neare&t-, next-nearest- and third­
nearest-neighbor pairs per particle when par­
ticles are arranged on a two-dimensional array. 
In each case, for large arrays, this number varies 
as twice the coverage of the array. 

The methods described above may be used for 
exact higher-order nearest-neighbor statistics. 
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It is shown that there is a simple relation between master equation and random walk solutions. We 
assume that the random walker takes steps at random times, with the time between steps governed by a 
probability density 1/I(M). Then, if the random walk transition probability matrix M and the master equa­
tion transition rate matrix A are related by A = (M - 1)/T 1 , where T1 is the first moment of 1/I(t) and 
thus the average time between steps, the solutions of the random walk and the master equation approach 
each other at long times and are essentially equal for times much larger than the maximum of (Tn/n 1)1/n, 
where Tn 1S the nth moment of 1/I(t). For a Poisson probability density 1/1(1), the solutions are shown to be 
identical at all times. For the case where A- '" (M - 1)/T l' the solutions of the master equation and the 
random walk approach each other at long times and are approximately equal for times much larger than 
the maximum of (Tn/nl)l/. if the eigenvalues and eigenfunctions of A and (M - 1)/T 1 are approximately 
equal for eigenvalues close to zero. 

1. INTRODUCTION 

There exists an extensive literature on master 
equations and random walks and their solutions.1 

We show in this paper that there is a close rela­
tion between random walks and master equations 
and their solutions. We consider random walks2 

in which the walker takes his steps at random 
times tl , t2 ,'" and where the random variables 
T1 := t1lT2 = t2 - f1' ••• ,Tn = tn - tn_1 have a 
common probability density lJ; (T). A random walk 
with constant time intervals Tl = T 2 = ... '" T be­
tween steps is the special case with lJ; (t) = {j (t - T). 

In Sec. 2 the random walk and the master equation 
are formally solved in terms of Green's functions. 
It is shown that a simple relation between the 
Green's functions exists if the master operator A 
and the random walk transition matrix M are re­
lated by A = (M - 1)/T 11 where T 1 is the first mo­
ment of lJ;(t), i.e., the average time between steps. 

In Sec. 3 it is shown that for a Poisson process. 
characterized by lJ;(t) = (I/T 1 )e-tlT1 , the solutions 
for a random walk and the corresponding master 
equation with A:= (M - 1)/T 1 are equal for all 
times. This is the only time step distribution for 
which this is the case. It is also shown that the 
random walk equation and the corresponding mas­
ter equation are identical for a Poisson process. 
It should be stressed that this equivalence is valid 
independently of the value of the average time be­
tween steps, T 11 and that it is not necessary to go to 
the limit T1 ~ O. 

In Sec. 4 processes with arbitrary lJ;(t) are investi­
gated. We discuss there the implications of the 
main result of this paper which can be stated here 
loosely as the following: If A = (M - 1)/T1' then the 
random walk and master equation solutions approach 
each other at long times, and are approximately 
equal for times much greater than the maximum of 
(T nln !)lln, where Tn is the nth moment of the dis­
tribution lJ;(t). For A ,r. (M - 1)/T1 some additional 
conditions must be imposed. These results are 
stated more precisely in Sec. 4 and are proved in 
the Appendix. We also present in Sec. 4 a mathe­
matically preCise formulation and a rigorous proof 
of the often stated equivalence of the random walk 
and master equations in the limit as the time inter­
val between steps tends to zero. 

2. FORMAL SOLUTION OF THE RANDOM WALK 
AND MASTER EQUATIONS 

The general equation for a random walk is 

P(a;n + 1) = L; Maa,P(a';n) = MP(a;n), 
a' (2.1) 

where P(a; n) is the probability that the walker is 
in state a after the· nth step, M aa' is the probability 
that the walker goes from a to a' in one step, and 
M is the transition probability matrix. We impose 
no restrictions on the number of states between a 
and a', Le., random walks with nonnearest neigh­
bor transitions are included in our subsequent 
analysis. If there is a continuum of states, the 
sum over a is understood to be an integral over 
the continuous part and a sum over the discrete 
part of state space. 

To calculate the probability P(a; t) that the ran­
dom walker is in state a at time t, we must specify 
the probability that the random walker makes a 
step in a given time interval. We shall assume2 

that jumps are made at random times tv t~, t 3 , "', 
where the random variables T i == (ti - ii_1), 
i = 1,2, ... ,with to := 0, have a common prob­
ability density lJ;(T). 

The general form of the master equation is 

a 
at Q(a; t) = L; Aaa' Q(a'; t) = AQ(a, t), (2.2) 

a' 

whereQ(a; t) is the probability that the system is 
in state a at time t, A aa, is the transition rate 
from state a' to a, and A is the transition rate 
matrix. The transition J .te ACta' is related to the 
more usually employed gain and loss rates Baa' by 

Aaal = Baa' - (j aa' L;B a" a' 
a" 

in which /) a a' is the Kronecker /) for discrete 
states and the Dirac /) function for continuous 
states. 

(2.3) 

We consider only processes which are temporally 
homogeneous, i.e., for which M and lJ;(T) are inde­
pendent of nand t, and A is independent of t. 
The formal solution of the random walk equation, 
Eq. (2. 1), is 

2116 
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P(Q'jn) ==Mn 
P(Q'jO). (2.4) The generating function for the master equation 

is defined by the Laplace transform: 
The generating function 3 for the random walk is 
defined by 

00 

P(Q' j z) '= 6 zn P(Q'; n) = (1 - zM)-l P(Q' j 0), (2.5) 
n=cO 

and the corresponding Green's function is 

(2.6) 

The formal solution of the random walk problem 
in continuous time is given by2 

Q() 

P(Q'; t) = 6 ~t(n)P(Q';n), (2.7) 
n"'O 

where ~ t (n) is the probability that the walker has 
made exactly n steps at time t. This probability 
is related to the probability density I/In (t) that the 
walker makes his nth step at time t, t ::= tn' by 

where 

f"" I/I(r')dr'dr, 
t-r 

t 
I/In(t) == ~ I/In_l(T)I/I(t - T)dT, n> 1, 

1/I1(t) ::= 1/I(t), I/Io(t) = o(t). 

(2.8) 

(2.9) 

The generating function for the random walk as a 
function of time is defined by the Laplace trans­
form: 

f oo -st 
P(Q' j S) '= e P(otj t)dt. 

o 
(2.10) 

Substitution of Eqs. (2. 7)-(2. 9) into Eq. (2.10) 
yields 

P(ot;s) == (s - s;j;<:) (M-l»)-l P (Q'j 0), 
1 -I/I(s) (2.11) 

where 

I/I(s) '= f) e-st I/I(t)dt (2.12) 

andP(Q'jO) ::=P(Q';n == 0) ==P(Q';t = 0). The cor­
responding Green's function is 

( 
s1ji(s) ~-1 G ««,(s) == s - _ (M - 1) Ii 0.,0." 

1 -1/1(5) (2.13) 

This Green's function is related to the one in Eq. 
(2.6) by 

[I-1ji(s)] -
Ga«,(s) = s Gaa,[z=l/I(s»). (2.14) 

The formal solution of the master equation, Eq. 
(2.2), is 

At Q{otj t) = e Q(ot; 0). (2.15) 

Q(Q'js) '= 100 e-st Q(Q'jt)dt = (5 -A)-l Q(Q'jO). 
o (2.16) 

The corresponding Green's function is 

(2.17) 

It will be shown in the following sections that the 
solutions of the random walk problem and the mas­
ter equation are closely related if we make the 
identification 

A=(M-l)/r1 , (2.18) 

where 

r 1 '= ~oo tl/l(t)dt (2.19) 

is the average time between steps. F a«'(s) and 
G ac/(s) are then related by 

G«al(S) == [1 - ~(s)] F 0.«' (1 -_~(S»), 
71SI/l(S) 711/1(S) 

(2.20) 

while F «a'(s) and G aa'(z) are related by 

(2.21) 

It is thus clear that the solution .of anyone of the 
three problems in terms of Green's functions 
immediately gives the solutions of the other two 
problems in terms of Green's functions. All 
three problems can in prinCiple be solved by the 
diagonalization of the same operator. 

In terms of the eigenfunctions and eigenvalues of 
the operator A, the solutions of the random walk 
and the master equation can be written as 

P(Q';n) == 6 (1 + 7 1a)n fa(ot) P(a; 0), (2.22) 
a 

) ,,[ 1 j,C+ioo 5t ( Si;i(S)T1a)_1] P(Q'; t = L.J -. d8e 8 - _ 
a 21Tl c-ioo 1 -1/1(8) 

xfa(Q')P(a;O), (2.23) 

Q(Q'; t) = 6 eat fa(Q') Q(a; 0), 
a 

where 

P(a; 0) = '6 ga(Q') P(ot; 0), 
a 

Q(a; 0) = '6g a(Q') Q(Q'; 0), 
a 

(2.24) 

(2.25) 

(2.26) 

and a,ga{Q'), andfa{Q') are the eigenvalues, left 
eigenfunctions, and right eigenfunctions of A, res­
pectively. If the spectrum of A has continuous 
parts, the sum over a is understood to be an inte­
gral over these parts. The quantity c in Eq. (2. 23) 
is any positive constant. 



                                                                                                                                    

2118 DIe K BED E A U X, ETA L. 

In order that P(a; n) be a well-defined probability, 
o .;; P(a; n) .;; 1, it is clear that the Euclidean norm 
of the operator M must be bounded: 

IIMII == maxllMhll:5 1, IIhll = 1. (2.27) 

Because of the relation between A and M in Eq. 
(2.18), the bound on M gives upper and lower 
bounds to the spectrum of A; 

(2.28) 

Since we have made no restrictive statements on 
conservation of probability, the results of this 
paper are also valid for "open" systems, Le., sys­
tems where probability is not preserved in that 
some or all of the walkers are removed in time 
(trapped, absorbed, evaporated, etc.). 

The existence of a lower bound on the eigenvalues 
of the operator A is crucial to our technique of 
relating the solutions of the random walk and the 
master equations via their Green's function, Eqs. 
(2.14), (2.20), and (2.21). Since, however, eigen­
values with a large absolute value do not contribute 
appreciably to the long-time behavior of the solu­
tions, it is possible to relate the long-time be­
havior of the solutions of a master equation with 
those of a random walk equation if the eigenvalues 
of A do not obey Eq. (2.28). In that case it is, how­
ever, impossible to relate A and M by Eq. (2.18); 
hence it is also impossible to give a simple rela­
tion between the various Green's functions. This 
will be explored further in Sec. 4. 

3. POISSON PROCESSES 

The following question immediately arises: Does 
there exist a probability density I/I(t) such that the 
solutions of the master equation (2.2) and of the 

Equation (3.5) yields: 

random walk equation in continuous time (2.7) are 
identical at all times for identical initial conditions? 
It follows from the Green's functions for both prob­
lems (2.13) and (2.17) that this will be the case if 
and only if A and M are related by Eq. (2. 18) and if 

s~(s) 1 
1 - \lies) = Tl 

Equation (3.1) has the solution 

~(s) = (TIS + 1)-1, 

which then yields upon inversion 

(3.1) 

(3.2) 

(3.3) 

This is the probability density for a Poisson pro­
cess.4 For such a process, the probability that the 
walker has made exactly n steps at time t is the 
Poisson distribution 

..T-. ( ) _ .!.. (~)" -tiT! ""t n - Ie. n 71 
(3.4) 

It is possible to show directly that the difference 
equation for a random walk with a Poisson density 
I/I(t) is equivalent to a master equation at all times 
t. From the formal solution [Eq. (2. 4)] of the ran­
dom walk equation and the relation (2.7) one ob­
tains 

P(aj t) = L; <pt(n) M"P(aj 0), 
,.:0 

(3.5) 

00 

where 6 cf>t<n)M" can be considered as an operator 
,,=0 

which translates the initial distribution to the dis-
tribution at time t. 

pea; t + hl-p(a j t) = h-1 [exp (t :1h) (M -1») - exp (:/1 (M -1~J P(ajO) 

It is clear from what has been said above that Eq. 
(3.6) is valid for all h > O. In the limit as h ~ 0, 
Eq. (3.6) becomes 

ap(a; t) _ (M -1) pea' t) = AP(a' t) (3.7) at - 71' , , 

which is the master equation as given in Eq. (2. 2). 

(3.6) 

The Poisson density I/I(t) of Eq. (3. 3) of time inter­
vals between distinct events is characteristic of a 
large class of uncorrelated random processes 
developing in time. For such stochastic processes, 
where the random walk formulation with discrete 
steps is completely equivalent to the master equa­
tion formulation in continuous time for all times t, 
it is evidently only a matter of personal choice 
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which equation one wants to employ in the solution 
of the problem at hand. 

4. PROCESSES WITH GENERAL DENSITIES I/I(t) 

In this section we discuss the conditions under 
which the solutions of the random walk in continu-
0us time and the random walk as a function of step 
number approach and are approximately equal to 
the solution of the master equation at long times. 
This analysis is subject to identical initial con­
ditions for all processes, Le., 

Plain = 0) = Pta; t = 0) = Q(a; 0). (4.1) 

We will first analyze this problem for A == (M -
1)71 using the solutions of the random walk in con­
tinuous time and of the master equation, Eqs. (2. 23) 
and (2. 24): 

P{a; t) == ~ e a(t) fa(a) P{a; 0), 
a 

(4.2) 

Q(aj t) == ~ eat fa(a) P{a; 0), 
• a 

(4.3) 

where 

_ 1 l c+ioo st ( S!ji(S)7 1a)-1 e a{t) - -2 . dse s - - . 
1I't c-joo 1 -I/I(s) 

(4.4) 

Let 7 n by the nth moment of the probability den­
sity I/I(t): 

Tn == JOO t
n 

I/I(t)dt 
o 

and let us define 

Y == sup(Tnln!)1/n. 

(4.5) 

(4.6) 

The following theorem, which is the main result of 
this paper, is proved in the Appendix: 

P(a, t) - Q(a, t) = Q(a, t) O(ylt) + O(e-
t1y

) 

(4.7) 

for t »y, T1 of order y, and A == (M - 1)/T1 • 

The order symbol 0 denotes that if f(x) == O(x), 
then f(x) Ix remains bounded for all x. This th~o­
rem states that the solutions of the random walk 
in continuous time and the master equation are 
essentially equal for times much larger than y. 
Our subsequent discussion in this section explores 
the implications of this theorem. 

In order for theorem (4.7) to hold for all densities 
I/I(t) , it is necessary to note the following caveat. 
For a certain restricted class of sharply peaked 
densities I/I(t) , which are precisely defined in Eq. 
(A19) of the Appendix [an example would be I/I(t) == 
o(t - T)], it is necessary to exclude random walks 
with oscillatory solutions which persist at long 
times. 5 This corresponds to the exclusions of mas­
ter equations with an operator A which has eigen­
values a in the range O:s; a + 2/r1 «1/y. 

If the spectrum of A contains eigenvalues which 
satisfy the condition 

0< - a «1/y, (4.8) 

then the theorem implies that the two solutions 
are essentially equal before equilibrium is reached. 

If any moment of I/I{t) is infinite, it is clear from 
theorem (4.7) that the two solutions will become 
equal only at equilibrium. For probability den­
sities I/I(t) that decay at least exponentially at long 
times, all moments Tn are finite. Typical exam­
ples of probability densities I/I(t) with infinite yare 
those that decay with negative powers of t for 
large times. 

One quite frequently sees the statement that in the 
limit as the time interval between steps goes to 
zero, the random walk equation becomes equivalent 
to a master equation. We now give a mathemati­
cally precise formulation of this statement. We 
consider a sequence of random walks characterized 
by a sequence of transitions matrices {MJ and a 
sequence of densities {I/I j(t)} with the property 

lim Yj = O. 
i~oo 

(4.9) 

The meaning of condition (4.9) is that our sequence 
of random walks is so constructed that as the se­
quence index i increases, the moments of the prob­
ability density 1/1 j(t) all go to zero as specified. If 
we now define 

P (oo)(a; t) == limp(i)(aj t), (4.10) 
i-+oo 

then p(oo)(a; t) is a solution of the master equation 

;tP(OO)(a;t) ==A(oo) p(oo)(a;t) 

if and only if the limit [see Eq. (2.18») 

A (00) == lim (Mj - 1)/7
1 

i 
i ..... oo I 

(4.11) 

(4.12) 

exists, where as before, T 1. j is of order y j' There­
fore, the random walk equation indeed becomes 
equivalent to a master equation "in the limit as 
the time interval between steps goes to zero." 
Equation (4.12) is an analog of the well-known 
Kolmogoroff condition. 6 

It should be pointed out that if one considers the 
random walk in the continuous time and continuous 
space limits, which in general yields a diffusion­
like equation, it is still necessary that Eq. (4. 9) be 
satisfied. The conditions on the density I/I(t) for 
passage to a diffusion equation are therefore the 
same as for passage to a master equation. 

It is also possible to relate the solution of a ran­
dom walk as a function of step number to the solu­
tion of the corresponding master equation. This is 
easily seen with the choice I/I(t) == ott - 71 ), in 
which case P(a;n) == Pta; t == nT1)' The use of 
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theorem (4.7) yields 

P(ll';n) -Q(ll';nT l ) = Q(ll'jnT l ) O(I/n) + O(e-n) 

(4.13) 

for n »1. Since the 1) function is an example of a 
sharply peaked distribution as defined in Eq. (AI9) 
of the Appendix, we must exclude transition opera­
tors M with eigenvalues m such that 0 :S m 
+ 1 « 1. 

We will now consider cases for which A '" (M -1)/T 1 
As will be proved in the Appendix, our main theo­
rem, Eq. (4. 7), and its consequences as discuss£:d 
above, are still true, subject to a condition on the 
eigenvalues and eigenfunctions of A and M. If we 
define 

B:; (M - 1)/7"1' (4.14) 

then this condition can be stated as follows: For 
eigenvalues a, b of the operators A, B which lie 
in the range 

0< -a «1/1', o < - b « 1/1', (4. 15) 

there must be a one-to-one correspondence be­
tween the right eigenfunctions fa, h b of A and B such 
that 

la-bl«-a, (4.16) 

(4. 17) 

Theorem (4.7) thus still holds if the eigenvalues 
and eigenfunctions of A and (M -1)/71 are app roxi­
mately equal for eigenvalues close to zero. This 
extended version of theorem (4.7) specifies the 
class of random walk problems which have the 
same long-time behavior as that of a given master 
equation or vice versa. 

The relation between A and M is determined by the 
physics of the problem. Consider, as an example, 
an open system in which the total probability is not 
conserved, due to irreversible trapping or evapo­
ration. The transition rate A can now be written as 
the sum of two terms, A = Al - A:a, where A1 con­
serves probability and A:a describes the irrever­
sible losS process. Then the physically appro­
priate choice of M is7 

(4.18) 

The matrix M of Eq. (4.18) describes a situation 
in which the random walk within the system and the 
loss process therefrom are statistically indepen­
dent and hence enter multiplicatively. That this 
choice of M is physically more reasonable for open 
systems than Eq. (2.18) is easily seen if one takes 
the case where ~ is a constant, A2 = k. Then 
(1 +Tl~)-1 = (1 + 7"1k)-l is the probability per 
step that the random walker remains in the system. 
This probability ranges between 0 and 1 as the 
rate k in the master equation ranges between 00 

and O. If k « l/y , then the conditions of Eqs. 
(4.15)-(4.17) are satisfied and the random walk 
solution and the master equation solution approach 
each other at long times. 

A number of other examples could be discussed 
involving various physically plausible relations 
between A and M different from that in Eq. (2.18) 
for simple closed systems. In all such cases, 
conditions (4.14)-(4.17) determine whether and 
how rapidly the solution of the random walk and 
the master equation approach each other. 
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APPENDIX: 

We will now prove the theorem stated in Eq. (4. 7). 

We begin by considering densities I/I(t) for which y 
definEld in Eq. (4.6) is finite. If this is the case, 
then I/I(s) is analytic at s = 0 and can be expanded 
in a power series: 

_ 7"2S2 T3s3 

I/I(s) = 1 - 7"1 S + 2! - 3! + "" (AI) 

where the first term in the series is unity because 
I/I(t) is normalized. The Tn are defined in Eq. (4. 5). 
Since I/I(t) is positive-definite, all its mome..!lts Tn 

are positive. Therefore the singularity of I/I(s) 
closest to the origin will be on the negative real 
axis. The distance R of this pole from the origin 
is then the radius of convergence of the power 
series in Eq. (AI). This radius of convergence 
can be related to the moments of I/I(t) by Hada­
mard's formulas 

R = [!:~ (Tn/n!)l/n]-1:::: y -1, (A2) 

where lim indicates the limes superior, which is 
the greatest limit point of the sequence. This 
limit exists, sin£e the sequence has the upper 
bound y. Since I/I(s) is analytic on the real axis to 
the right of -R, iii(s) is analytic for all s for which 
Res> -R, and for such s it is given by9 

;j,(s) = {' e-
st tJ;(t)dt, Res> -R. (A3) 

The function (J a(t) of Eq. (4. 4) can be expressed in 
terms of the singularities of the integrand. Only 
the singularities to the right of -R are important 
for the times we are interested in. For Res> -R, 
the only singularities are simple poles, which, for 
a '" 0, are the zeros of the function I/I(s) -
(Tla + 1)-1 in that region: 

;j;(s) - 1/(T l a + 1) = 0, Res> -R. (A4) 

If a zero s a is of nth order, then 

dk;j;(s) I =0 ( ) , k = 1,2, ... ,n - 1, A5 
dsk S=Sa 
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and the pole in the integrand of Eq. (4. 4) is also 
of nth order. For a = 0, it is easy to see that 
(}o(t) = 1. 

Since ;J;(s) is real for s real and s > -R, it follows 
from the reflection principle 1 0 that 

iii(s*) = iii*(s) (A6) 

for all s. This implies that the solutions of Eq. 
(A4) which do not lie on the real axis occur in 
complex conjugate pairs. From Eq. (A3) it follows 
that iii(s) is a monotonic decreasing function of s 
for s real and s > -R. Since iii(O) = 1, Eq. (A4) has 
exactly one solution on the real axis for -R < s 
~Oif 

where 

iii+ == lim ;J;(-R + E), 
e+O+ 

with € positive and real. This solution is of first 
order. From Eq. (A3) it follows that 

Relj/(r + ir) ~ Reiii(r) = Ij/(r), r > -R, (A8) 

where rand r are real. From this it follows that 
the complex solutions of Eq. (A4) do not lie to the 
right of the real solution discussed above. If Eq. 
(A7) is not satisfied, Eq. (A4) will have neither real 
nor complex solutions for -l/r t ~ a ~ O. For 
-2/Tl < a < - 1/71' (1 + T1a)- is negative. In 
this case Eq. (A4) can only have solutions on the 
real axis left of -R, but may very well have com­
plex solutions to the right of -R. If we denote the 
solution on the real axis by s a and the complex 
solutions in the upper half-plane by sa. i = r a, i + 
i r a.i' with r a,i and r a,i real, then 

-R<ra,i~sa for -l/Tl~a~O. (A9) 

The complex solutions in the lower half-plane are 
than given by sa,i = r a.i - i r a.i' which follows 
from Eq. (A6). 

For t »1', the only contributions to (} a (t) which 

are not of O(e-tty) come from poles for which 

o ~ - sa ~ - r a.i «1/1' 

o ~ - r a,i « 1/1' for 

for - l/T 1 ~ a ~ 0, 
(AI0) 

- 2/Tl <a <-1/T1 • 

The function iii(s) can be expanded in a power 
series about any of the solutions sa.i: 

i 
- 1 i ) T2 
1/I(s) = + 1 - T1 (s - sa,i + -2' T 1a . 

x (s - S .)2 - ••• a.) , 

where 

(All) 

(A12) 

(A13) 

But 
dn n+l 

-n ~x Ix~-r oy« (n + I)! dx \J.-x, a,) 
(A14) 

This yields 

IT~I ~ Tn + t.., t.. «(n + l)!yn. (A15) 

From Eqs. (A15) and (A8) and the fact that 
1(1 + T 1a)-11 ::-:: 1, it follows that poles with real 
parts that fulfill Eq. (A10) can occur only for 
values of a in the ranges 0 ~ -a «1/1' and 
o ~ a + 2/T1 «1/1" In addition, we will show that 
the complex poles with real parts raj satisfying 
Eq. (A10) occur only in the extreme case where 
1/I(t) is a superposition of very sharp peaks. For 
such sa.i' Eqs. (A8), (All), an~ (A15) show for the 
real and imaginary parts of 1/I(ir a) that 

o ~ 1 -I {O cosra•j t 1/I(t)dtl« 1 (A16) 

and 

(A17) 

Since 1/I(t) is normalized to unity, Eqs. (Al6) and 
(A17) can hold for 0 ~ - a «1/1' only if l/I(t) is 
appreciably different from zero only for 

n = 0 or n = 1 or n = 2 or ... (A1S) 

with ra 0 of order l/y or greater. For 0 ~ a + ,J 

2/T1 «1,Eqs.(A16) and (A17) can hold only if 
I/I(t) is appreciably different from zero only for 

n = 0 or n = 1 or n = 2 or ... (A19) 

with r a,j of order 1/1' or greater. It is possible 
that a density 1/1 (t) belongs to both of the cases 
described above. An example of such a density is 
1/I(t) = o(t - t..t). The values of 1/I(t) outside of 
these peaks must be so small that their contribu­
tion to 100 

1/I(t)dt is <::< 1: This proves that com­
plex polgs satisfying Eq. (A10) can occur only if 
1/I(t) is sharply peaked in the manner described 
above. 

We now proceed to show that the poles correspond­
ing to 0 ~ - a «l/y , which lie close to the ima­
ginary saxis, Eq. (A10), are of first order and that 
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the distances between them are of the order 271/y. 
We first consider the real pole sa' For I s I «1/y , 
Eq. (Al) becomes 

(A20) 

For T 1 of order y, the third term in Eq. (A20) is 
much smaller than the second term. Equation (A4) 
then yields 

Sa = a[1 + O(ya )], 

ISa-al«-a. 

(A2l) 

(A22) 

From the way in which this solution was construc­
ted, with T 1 of order y, it is clear that there are 
no other solutions of Eq. (A4) fulfilling Eq. (A22). 

The poles due to a sharply peaked density 1/I(t) of 
the type described above which lie within a dis­
tance « l/y of the imaginary S axis lie within a 
distance « 1/y of a finite subset of the poles of 
an appropriately chosen superposition of I> func­
tions. To analyze the behavior of such sharply 
peaked densities, it is therefore suffiCient to study 
distributions which are superpositions of I> func­
tions. Consider, therefore, 

00 

1/I(t) == 2: cn I>(t - nllt), cn 2: 0, (A23) 
n=O 

with Ilt of order y or less. Then 

_ 00 -nsAt 
1/I(s) == 2: en e • 

n=O 

This is a periodic function: 

~(s + 21fi/ Ilt) == ~(s). 

(A24) 

(A25) 

Therefore, if sa is the solution of Eq. (A4) on the 
real axis, then 

(A26) 

are also solutions of Eq. (A4). Since S a is a first­
order pole, so are the sa,i' The distance between 
the poles is of the order 21f/y. 

The results up to this point can be summarized 
as follows. It is possible to divide the probability 
densities 1/I(t) with finite y and T1 of order y into 
three classes: 

(i) Densities which are superpositions of 
sharp peaks as specified in Eq. (Al9). For 
such distributions we will consider only 
master operators A which have no eigen­
values in the range 0:5 a + 2/T1 «l/y. 

(ii) Densities which are superpositions of 
sharp peaks as specified in Eq. (Al8) 
excluding those which are of the first 
class. 

(iii) All other densities. 

Densities in the third class produce only a single 

pole in the integrand of (J a(t) which contributes 
for long times. This pole is real and of first 
order. Densities in the first and second classes 
produce, in addition, first order complex poles 
which lie sufficiently close to the imaginary S axis 
to contribute to (J a(t) at long times for O::s - a « 
l/y. Densities in the first class produce additional 
poles in the range O::s a + 2/T1 «l/y. Since in 
this class of densities we only consider master 
operators A which have no eignvalues in this 
range, these poles do not contribute to P(a, t). 
This corresponds to the exclusion of transition 
matrices M of the random walk with eigenvalues 
which cause oscillations in the random walk solu­
tion that perSist at long times. These eigenvalues 
cause no persistent oscillations for distributions 
of the second and third classes and therefore need 
not be excluded for these cases. 

We will first consider densities which are in the 
third class. In this case Eq. (4. 4) can be written 
as 

ea(t) =-T1a(l + T 1a)-2 s;1 e Sat 

x (d~ iii(s) I So sa) -1 + O(e- II y) (A27) 

Via Eqs. (A20) and (A21), ea (t) becomes 

The only values of a for which the first term is 
not of the same order as the second term are 
those for which at is of order 1 or less. There­
fore, 

(Ja(t) = eat[l + O(y/t)] + O(e- tly
). (A29) 

We will now show that this result is also valid for 
densities in the first and second classes. For 
these cases Eq. (4. 4) can be written as 

(A30) 

where the phase shifts are 

exp[ i1](s a. j)] 

-Is d~(s) I dt(s) I 
= a,j ds soSa,/ S a,j ds SoSa,j (A3l) 

Equation (A30) differs from Eq. (A27) only in the 
second term of Eq. (A30): 

~a(t) == -2T 1a(l + T 1a)-2 L; eYaj 
j 

x I Sa,j dds ij;,(S) I 50 S .1-1 
COS[r ai + 11(Sa)]' 

aJ (A32) 
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For a density I/I(t) which is a superposition of 6 
functions, we obtain 

at 00 I::!.t 21::!.jt 
~a(t) = 2T 1a[1 + O(ya)]e E -2 -, - sin~t 

j=1 1fJT 1 ... 

= al::!.l[l + O(ya)] eat (~- ~I + UiJ)' (A33) 

where [II I::!.t] is the integer part of tl I::!.t. Since I::!.I 
is of order y or less, 

(A34) 

H I/I(t) is a superposition of peaks of nonzero width 
as given in Eq. (A18) or Eq. (A19), then the poles 
sa.j which lie within a distance« III' of the 
imaginary s axis lie within a distance « 1/y of a 
finite subset of the poles of the corresponding 
superposition of 6 functions. Then 

~a(t) = 2T
1
a[1 + O(ya)] eat E e(Ya.FSa)t 

j 

(A35) 

where the sum over j is over a finite number of 
poles and where nj is the number of the pole of the 
corresponding superposition of 6 functions. Since 
r a.j :::; S a and the sum is a finite sum, this case also 
yields Eq. (A34). Substitution of Eq. (A34) into 
(A30) again yields (A28) for () a(t). Therefore, for 
both classes of distributions, Eq. (A29) holds. 

Substitution of Eq. (A29) into (4.2) yields 

P(a, t) = Q(a, t) [1 + 0(1' It)] + O(e -tly) (A36) 

for T1 of order y, which proves theorem (4.7) for 
distributions I/I(t) with finite y. 

For densities with infinite y, the theorem is tri­
vially true and is essentially empty. If y is infinite, 
either Iii(s) has an essential singularity at s = 0, 
or s = 0 is an accumulation point of singularities of 
Iii(s). In both cases, the integrand of () a(t) will con­
tribute in every open neighborhood of s = O. There­
fore, () a(t) can never approach an exponential at 
any time. For such distributions, P(a, t) and 
Q(a, t) will never approach each other even after 
long times, and will only be equal at equilibrium. 

We will now prove the extended version of theorem 

• Supported in part by the National Science Foundation, under 
Grant No. GP10536 and by the Advanced Research Projects 
Agency of the Department of Defense, monitored by the U.S. 
Office of Naval Research, under Contract No. N00014-69- A-
0200-6018. 

1 E.g., W. Feller, An lntyoduction to Pyobabilily TheoYY and lis 
Applications (Wiley, New York,1966, 1968), 3rd ed., Vol. I, 
and 1st ed., Vol. ll; F. Spitzer, in PYinciples of Random Walks 
(Van Nostrand, Princeton, N.J., 1964); Selected PapeYs on 
Noise and Stochastic Processes. edited by N. Wax (Dover, 
New York,1954); I. Oppenheim, K. E. Shuler, and G. H. Weiss, 
Advan. Mol. Relaxation Process. 1, 13 (1967). 

2 E. W. Montroll and G. H. WeiSS, J. Math. Phys.6, 167 (1965). 
3 E. W. Montroll, Proc. Symp. Appl. Math. 16, 193 (1964). 
4 W. Feller, Ref. I., Vol. I, p. 447, and Vol. II, p. 58. 

(4.7). For this case the solution of the random 
walk equation can be written as 

pea; I) = E () bet) hb(a) P(b; 0). (A37) 
b 

A consequence of the conditions (4.15)-(4.17) is 
that Eq. (A37) can be written as 

P(o;t) =E'(}b(t) hb(a)P(b;O) +O(e-t1y ), (A38) 
a 

where the prime on the sum indicates that the 
sum is taken only over those values of a that obey 
condition (4.15), and a and b are related by the 
one-to-one correspondence between the eigenfunc­
tionsfa and hb' Eqs. (4.16) and (4.17). A conse­
quence of conditions (4.16) and (4.17) is that 

() b(t) hb(a) P(b; 0) = () aCt) fa(a) P(a; 0) [1 + O(ya)], 

(A39) 
which immediately yields the desired result. 

Note added in proof: A quantity that is often of 
physical interest is the mean time for a walker to 
reach state a for the first time. Let R(a, n 1 a', 0) 
be the probability that a walker starting at state 
a' reaches state a for the first time on the nth 
step. Then 

n 

P(a,nla',O) = ER(a,n'la',O)P(a,n-n'la,O). 
n'=1 

The generating function 
00 

Raa,(z) == EznR(a,nla',O) 
n=1 

is then related to Gaa,(z) by Raa,(z) = (Gaa,(z)-
6 (xar)/G aa(z). The mean first passage time to state 

a is 
00 00 

T aa' = 10 dl E tl/l.(t)R(a,nla',O) 
n=1 

=T 1: zR aa,(Z)/Z=1 =T 1 (n)aa, 

where (n)aa' = (d/dz)Raa,(z) IZ =1 is the mean num­
ber of steps to reach state a for the first time. 
The mean first passage time is thus the same for 
all random walks for which T 1 is the same, inclu­
ding the master equation. Higher moments of the 
first passage time can be similarly calculated. 
The nth moment will, in general, be a function of 
T1 , 72 , ••• ,Tm' 

5 For a discussion of such solutions and the associated eigen­
value spectrum see, e.g., J. G. Kemeny and J. L. Snell, Finite 
Markov Chains (Van Nostrand, Princeton, N.J., 1960) Chap. 5; 
E. W. Montroll, Energetics in Metallurgical Phenomena 
(Gordon and Breach, New York, 1967), Vol. 3, p. 139 et seq. 

6 A.Kolmogoroff, Math. Ann. 104, 451 (11131); 108,149 (1933). 
7 K. Lakatos-Lindenberg, R. P. Hemenger, and R. M. Pearlstein 

(unpublished) . 
8 L. V. Ahlfors, Complex Analysis (McGraw-Hill New York, 

1953), p.14I. 
9 D. V. Widder, The Laplace Transform (Princeton U.P., 

Princeton, N.J., 1946), p. 36. 
10 R. V. Churchill, Complex Variables and Applications (McGraw­

Hill, New York, 1960), p. 265. 
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A general form of the nonlinear wave equation with dispersive and dissipative terms involving small 
coefficients has been treated for the transition period when the time is around the breakdown time. In 
the first part of this paper, some relations have been established in order to see how the classical over­
taking phenomenon is eventually prevented when the curve has steepened sufficiently, In the second part 
of this paper, the growth and damping of solitary waves due to the effects of dispersion and dissipation 
have been analyzed, 

1. INTRODUCTION 

Study of various physical problems (such as mag­
netosonic waves, ion-acoustic waves in plasmas, 
turbulence, shallow water waves, and long waves 
in anharmonic crystals) lead to a nonlinear partial 
differential equation of the general form 

U t + P(u) U x = Q[u], 

subject to the initial condition 

u(x,O) = I(x), 

(1. 1) 

where x and t are normalized space and time co­
ordinates, respectively. Here, P(u) is a real func­
tion of u; Q[ u] is a linear operator which may con­
sist of dissillative and dispersive terms with small 
coeffiCients, say 

2 
Q[u] = jJL[u] - 6 uxxx' (1. 2) 

where the first term stands for diSSipation and the 
second term for dispersion. 

In many cases, the function P(u) is simply u itself. 
When /L = 0, (1. 1) reduces to Korteweg-de Vries 
equation,l where only the effect of dispersion is 
considered. On the other hand, if 6 :::: 0 and L[ u] = 
uxx, (1.1) reduces to Burgers' equation,2 where 
only the effect of dissipation is considered. 

In general, the dissipative operator has different 
forms for various physical systems. For example, 
Ott and Sudan3 provided the expressions for four 
cases: 

(a) magneto sonic waves damped by electron­
ion colliSions, 

(b) ion-acoustic waves damped by ion-neutral 
collisions, 

(c) ion-acoustic waves with electron Laudau 
damping, and 

(d) shallow water waves damped by viscosity. 

According to the numerical computation of Kor­
teweg-de Vries equation, 4 it was observed that the 
time variation of the solution u(x, t) can be divided 
into three stages, namely, initial, transition, and 
final. In the initial stage when the time is compara­
tively smaller than the breakdown time t lJ1 defined 
as the time when the solution of the equation u t + 
P(u) U x = 0 starts to yield an infinite slope, the 
effects of dispersion and dissipation are negli­
gible and the classical overtaking phenomenon 
occurs; that is to say, u(x, t) steepens in regions 
where PI(U)U

X 
< O. 

After u(x, t) has steepened sufficiently (at t ~ t~, 
the Q term becomes Significant and serves to 
prevent the formation of discontinuities. In addi­
tion, due to the effect of dispersion, oscillations of 
small wavelength (of order 6) develop on the nega­
tive side of the front. This stage is called the 
transition period. The amplitudes of the oscilla­
tions grow and finally each oscillation achieves a 
quasi steady amplitude (which varies linearly with 
respect to x) and has a shape almost identical to 
that of an individual soliton solution. On the other 
hand, the dissipative term has an effect to damp 
these oscillatiorts. 

Existence and uniqueness of solution of Korteweg­
de Vries equation have been proved by Sjoberg. 5 

Equations of conservation form were treated by 
Miura, Gardner, Kruskal, and Su in a series of 
papers. 6 - S 

In the present paper, a generalized nonlinear dis­
persive wave equation with dissipation is treated 
from the gometrical point of view. Efforts are 
concentrated on t he transition period when solitary 
waves tend to emerge. 

2. ABSENCE OF DISCONTINUITY 

The curve representing the solution of (1. 1) in the 
(u,x) diagram may be conceived as a vibrating 
string, any point of which possesses a longitudinal 
velocity Vii = P(u) and a transverse velocity VJ. :::: 
Ql u J, where u is equivalent to the transverse dis­
placement of the string. For the simplest equation 

(2.1) 

V.l :::: 0, and the points move longitudinally. 

Let a denote the angle of velocity and e the angle of 
the curve, both measured from the longitudinal 
axis. We have 

tana Q[u] Ut --= =1+ tane P(u)ux P(u)ux ' (2.2) 

If P(u)Q[u]ux < 0, the velocity vectors Vii and V 
lie on the same side of the curve u(x, t). If .1 

P(u)Q[u]ux > 0, the velocity vectors Vii and V.l lie 
on different Sides of the curve. 

Differentiating (1.1) with respect to x, we get 

2124 
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where the prime designates differentiation. It may 
be written as (2.10) 

D and 
Dt (~e2) == - p'(u)e sin2e + Q[ux]e cos

2
e, (2.4) 

where-~7T< e< h. 

For moderate values of ux ' the Q[u x ] term as 
assumed is comparatively small. Equation (2.4) 
indicates that the curve steepens in regions where 
p'(u)e is negative. As lu) exceeds a sufficiently 
large value, the Q[u x] term becomes Significant 
and counteracts the formation of discontinuities, 
provided that the following condition is satisfied. 

Necessary condition 1: There exists a large 
but finite number K, such that for luxl > K, 

(2.5) 

Equation (1.1) may also be expressed in such a 
way that x is a function of u and t. Since ut :::: 

-x/xu, Ux == l/x u, and 

1 a 
ax Xu au ' 

we have 

x t - P(u) == 6
2 

(~) - I-'(l..) 
2 Xu uu Xu u 

(2.6) 

for L[u]:::: uxx ' Differentiating (2.6) with respect 
to u, we get 

(oe) 2 [ (6 2
X!tu Jl) at =:::: - sin e P'(u) - --3 - + -

u c Xu Xu uu 

(2.7) 

along constant u lines. A similar condition should 
be satisfied. 

Necessary condition 2: There exists a small 
number k> 0, such that for IXul < k, 

It can easily be verified that for curves with shapes 
similar to those shown in Fig. 1, conditions (2.5) 
and (2.8) are true. 

The velocity components which affect the shape of 
curve are those tangent and normal to the curve. 
They may be defined as 

Sine] [P(lI)J . 
cose Q[u] 

Since 

sinO == u x /(1 + u;)l/2 
and 

cose :::: (1 + u;rl/2, 

we may write 

(2.9) 

(2.11) 

Differentiating (2.9) with respect to s, where s de­
notes the distance along the curve, we obtain 

De (OVN) , 
Dt = as t=c + KVT , 

(2.12) 

1 DE (aVT) 
1 + E fit = as t=c -KVN , 

(2.13) 

where K denotes the curvature and E the relative 
stretching of the curve. The rate of change of 
normal velocity along the curve represents the 
angular speed with which the curve turns locally. 
Equation (2.12) indicates that the curvature 
associated with the tangential velocity also plays 
an important role on the change of slope. 

3. WAVE PROPAGATION 

During the evolution of solitons, it may be assumed 
that disturbances propagating along the curve are 
small, thus the solution u(x, t) can be approxi­
mately expressed as combination of a translation 
and a wave motion; i.e., 

u(x, t) == Ul(X, t) + A(x, t) exp[i(kx - wt)], (3.1) 

where ul (X, t) satisfies 

and 
A(x, t) <: ul (x, t). 

Substituting (3. 1) into (1. 1), we obtain 

(3.2) 

In order to shed light on the phenomena of waves 
propagating along the curve, we deal with two 
simple cases. For Korteweg-de Vries equation, 

u u 

-x - - -- -x 

la) p'CU) > 0 Ib, p',u, < 0 

FIG, 1 Typical profiles 
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(3.2) and (3.3) reduce to 

w/k = P(u) _6
2

k
2 + 36 2 

Au/A, 

2 2 2 
At + [P(u) - 36 k ]A" + 6 A""" == O. 

(3.4) 

(3.5) 

If A (x, t) is a slowly varying function of x, we may 
assume that 

Thus, from (3.4) and (3.5) we have 

w/k ~ P(u) - 41T2(1i/~)2 
and 2 2 

A/A" ~ 121T (1i/~) - P(u). 

It indicates that the wave with wavelengths of order 
6 propagates in the negative direction; the wave 
grows if the amplitude is an increasing function of 
x.4 

1 D.J. Korteweg and G. de Vries, Phil. Mag. 39, 422 (1895). 
2 J. M. Burgers, Proc. Acad. Sci. Amsterdam 43,2 (1940). 
3 E. Ott and R. N. Sudan, Phys. Fluids 13,1432 (1970). 
4 N. J. Zabusky'and M. D. Kruskal, Phys. Rev. Letters 15,240 

(1965). 
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Next, we consider Burgers' equation. For this case, 
(3.2) and (3.3) reduce to 

w/k = P(u) - 2j.lA,,/A, 

2 
At + P(u)A" + ,...(k A - Au) = o. 

(3.6) 

(3.7) 

Assuming that A(x, t) can be expressed in the form 
of exp(at + /3x), from (3.6) and (3.7) we obtain 

and 

Consider the wavelength ~ ~ O(j.l), a and P(u) ~ 0(1), 
then f3 = - 0(1/~). It indicates that the wave will 
be damped out within a distance of the order of a 
wavelength. This explains why Burgers' equation 
has no solitary wave as in the case of Korteweg-
de Vries equation. 

5 A.Sjooerg, J. Math. Anal. Appl. 29,569 (1970). 
6 R. M. Miura, J. Math. Phys. 9, 1202 (1968). 
7 R. M. Miura, C. S. Gardner, and M. D. Kruskal, J. Math. Phys. 9, 

1204 (1968). 
8 C. H. Su and C. S. Gardner, J. Math. Phys.10, 536 (1969). 
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This paper is concerned with the exact calculation of moments of solutions of the stochastic, ordinary 
differential equation 

d2u - + .Ba [1 + J)f(M(z))]u == 0, 
dz 2 

where M(z) is an arbitrary, finite state space Markov process andf(') is an arbitrary, real, single-valued 
function of its argument. The process f(M(z» is in general not a Markov process. The calculation of the 
moments is reduced to the solution of a system of ordinary, first-order differential equations. In the 
special case where the process M(z) has a stationary transition mechanism, these systems of equations 
have constant coefficients, so that the moments must consist of sums of exponentials. A specific example 
of such an equation with M(z) stationary is analyzed in some detail. The results obtained provide an 
important. nontrivial check of some useful approximate techniques. 

1. INTRODUCTION 

The subject of this paper is the stochastic, ordinary 
differential equation 

Throughout this paper we use the notation 

dum(z) 
vm(z) = u~(z) =~, m:: 1,2. (1. 3) 

d2u - + i3~ [1 + 1)N(z»)u == 0, 
dz 2 

(1.1) 

where f30 and 1) are positive constants and N(z) is a 
stochastic process. Each sample function N(z) de­
fines on 0 ~ z < 00 two new functions um(z), m = 
1,2, which are the linearly independent solutions 
of (1. 1) satisfying the nonstochastic initial con­
ditions 

Thus the ensemble of functions N(z) defines, via 
Eq. (1. 1) and initial conditions (1. 2), four new 
"solution" stochastic processes or ensembles of 
functions, {um(z)} and {vm(z)} , m == 1,2. Typically 
equations of this type can arise in the propagation 
of electromagnetic or acoustic waves through 
randomly stratified media and in the study of di­
electric waveguides with randomly stratified 
dielectriC constants. 

In most such problems, 1jN(2) represents a small 
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(3.2) and (3.3) reduce to 

w/k = P(u) _6
2

k
2 + 36 2 

Au/A, 

2 2 2 
At + [P(u) - 36 k ]A" + 6 A""" == O. 

(3.4) 

(3.5) 

If A (x, t) is a slowly varying function of x, we may 
assume that 

Thus, from (3.4) and (3.5) we have 

w/k ~ P(u) - 41T2(1i/~)2 
and 2 2 

A/A" ~ 121T (1i/~) - P(u). 

It indicates that the wave with wavelengths of order 
6 propagates in the negative direction; the wave 
grows if the amplitude is an increasing function of 
x.4 

1 D.J. Korteweg and G. de Vries, Phil. Mag. 39, 422 (1895). 
2 J. M. Burgers, Proc. Acad. Sci. Amsterdam 43,2 (1940). 
3 E. Ott and R. N. Sudan, Phys. Fluids 13,1432 (1970). 
4 N. J. Zabusky'and M. D. Kruskal, Phys. Rev. Letters 15,240 

(1965). 
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Next, we consider Burgers' equation. For this case, 
(3.2) and (3.3) reduce to 

w/k = P(u) - 2j.lA,,/A, 

2 
At + P(u)A" + ,...(k A - Au) = o. 

(3.6) 

(3.7) 

Assuming that A(x, t) can be expressed in the form 
of exp(at + /3x), from (3.6) and (3.7) we obtain 

and 

Consider the wavelength ~ ~ O(j.l), a and P(u) ~ 0(1), 
then f3 = - 0(1/~). It indicates that the wave will 
be damped out within a distance of the order of a 
wavelength. This explains why Burgers' equation 
has no solitary wave as in the case of Korteweg-
de Vries equation. 
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6 R. M. Miura, J. Math. Phys. 9, 1202 (1968). 
7 R. M. Miura, C. S. Gardner, and M. D. Kruskal, J. Math. Phys. 9, 

1204 (1968). 
8 C. H. Su and C. S. Gardner, J. Math. Phys.10, 536 (1969). 

VOLUME 12, NUMBER 10 OC TOBER 1971 
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This paper is concerned with the exact calculation of moments of solutions of the stochastic, ordinary 
differential equation 

d2u - + .Ba [1 + J)f(M(z))]u == 0, 
dz 2 

where M(z) is an arbitrary, finite state space Markov process andf(') is an arbitrary, real, single-valued 
function of its argument. The process f(M(z» is in general not a Markov process. The calculation of the 
moments is reduced to the solution of a system of ordinary, first-order differential equations. In the 
special case where the process M(z) has a stationary transition mechanism, these systems of equations 
have constant coefficients, so that the moments must consist of sums of exponentials. A specific example 
of such an equation with M(z) stationary is analyzed in some detail. The results obtained provide an 
important. nontrivial check of some useful approximate techniques. 

1. INTRODUCTION 

The subject of this paper is the stochastic, ordinary 
differential equation 

Throughout this paper we use the notation 

dum(z) 
vm(z) = u~(z) =~, m:: 1,2. (1. 3) 

d2u - + i3~ [1 + 1)N(z»)u == 0, 
dz 2 

(1.1) 

where f30 and 1) are positive constants and N(z) is a 
stochastic process. Each sample function N(z) de­
fines on 0 ~ z < 00 two new functions um(z), m = 
1,2, which are the linearly independent solutions 
of (1. 1) satisfying the nonstochastic initial con­
ditions 

Thus the ensemble of functions N(z) defines, via 
Eq. (1. 1) and initial conditions (1. 2), four new 
"solution" stochastic processes or ensembles of 
functions, {um(z)} and {vm(z)} , m == 1,2. Typically 
equations of this type can arise in the propagation 
of electromagnetic or acoustic waves through 
randomly stratified media and in the study of di­
electric waveguides with randomly stratified 
dielectriC constants. 

In most such problems, 1jN(2) represents a small 
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random perturbation, which suggests the use of 
perturbation techniques. However, the regions of 
validity of most of the perturbation techniques in 
current use are unknown, so that exactly soluble 
examples, in addition to their intrinsic physical 
interest, provide extremely valuable checks. This 
paper is devoted to showing that for an interesting 
class of processes N(z), to be described below, the 
exact calculation of the various stochastic mo­
ments of um(z) and vm(z) can be reduced to the 
solution of a system of nonstochastic, ordinary, 
linear differential equations. 

In a recent paperl we showed that if N(z) is the 
"random telegraph" process T(z), then a phase 
space method can be used to calculate exactly the 
various moments of the solution processes of (1.1). 
This random telegraph process is a zero-mean, 
wide sense stationary Markov process. Specifi­
cally{ it is an ensemble of square wavefunctions 
{T(z}j such that each sample function of the en­
semble, T(z), can assume only the values ±1. For 
fixed z, a sample function chosen at random will 
equal 1 with probability 1 or -1 with probability ~. 
The probability p(n,z) of a given sample function 
changing sign n times in an interval of length z is 
given by the Poisson process 

f' -bz 
p(n,z) = [(bz /n!Je , n = 0,1,2, ... , (1. 4) 

where b is the average number of changes per unit 
length. In addition, 

(T(Z» = 0, (T(X)T(Y» = exp( - 2b Ix - y I), (1. 5) 

where, here and in all that follows, ( ) denotes 
the stochastic average. 

In this paper, we show that the phase space method 
can be generalized to calculate various moments 
of the solution processes for any N(z) of the form 

N(z) = J(M(z», (1. 6) 

where M(z) is any continuous parameter, finite 
state space Markov chain2 andf is any single 
valued function mapping the state space into the 
real numbers. The random telegraph process is 
perhaps the simplest example of a continuous para­
meter, finite state space Markov chain. The most 
general such process M(z) is in general not station­
ary or wide-sense stationary, and, as is well known, 
for arbitrary f(· ),f(M(z» is in general not a Mar­
kov process. 3 

As will become clear later, the whole technique 
can be extended to more general systems of linear, 
stochastic differential equations, but we will not 
pursue these generalizations here. However, the 
damped harmonic oscillator equation of the form 

d
2
w + 2a ddW + y2 [1 + e:N(z)] W = 0, (1. 7) 

dz2 z 

can be reduced by the transformation 

W(z) = e -azu(z) (1. 8) 

to an equation of the form (1.1). 

Ideally, one would like to determine all the possible 
distribution functions of the four solution pro­
cesses. So far, however, this has been an unobtain­
able goal, and most research has centered on the 
problem of calculating the stochastic averages of 
various functions of the solution processes. There 
are very few exact solutions of even this limited 
problem, but a number of perturbation techniques 
for obtaining approximate solutions have been 
developed. In fact, while Eq. (1. 1) is of consider­
able interest in itself, it is also an important exam­
ple on which these perturbation techniques can be 
tested. 

Most of the approximate techniques developed so 
far are either strictly formal or else the known 
extent of their validity is quite restricted. Thus 
Khas'minskii4 has recently established a limit 
theorem, valid for TJ --) 0, which can be applied 5 to 
(1. 1) to calculate averages of the form 
(g(u v v 1> u 2 , v 2 » for a suitable class of functions 
g in the case where N(z) is a bounded stochastic 
process. 
Another important perturbation technique for cal­
culating moments and correlation functions of solu­
tions of stochastic equations, the so-called smooth­
ing method,6 has recently been developed by 
Bourret7 and Keller8 and applied to a number of 
problems by various authors.9 No error estimates 
are available yet for this method. 

We might mention a third perturbation scheme 
recently developed by Papanicolaou and Keller,lO 
which is essentially an application of two variable 
perturbation procedures. At this time no error 
estimates are available for this scheme either. It 
has been shown,5 however, that the smoothing tech­
nique, the Khas'minskii method, and the two vari­
able procedure yield the same expressions to 
order O(TJ2) for the first- and second-order mo­
ments and correlation functions of the solutions 
of (1.1). 

The preceeding remarks suggest the importance 
of having exactly soluble equations on which the 
various approximation techniques can be tested. 
Bourretll has shown that if N(z} in (1.1) is a 
single random telegraph process, the smoothing 
method yields the exact expressions for the first­
order moments. McKenna and Morrison! have 
calculated exactly the second-order moments and 
correlation functions in this case by the phase 
space method and have shown that the smoothing 
method, when properly applied, again yields the 
exact answer both for the moments l2 and correla­
tion functions. l3 

In Sec. 2 of this paper we outline those properties 
of continuous parameter, finite state space Mar­
kov chains which we need. 

In Sec. 3 we define the phase space density func­
tions, and discuss their properties and the system 
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of partial differential equations they satisfy. In 
addition, the equations from which the first- and 
second-order moments can be derived are dis­
cussed. 

In Sec. 4 we consider in some detail an application 

(2) The Tit.(Z) are continuous, and there is a con-
stant <..: such that I Tij(Z) I :s C. (2.6b) 

N 

(3) z:; Ti .(z) = O. 
j=l J 

(2.6c) 

of the general theory to the case, where N(z) is a 14 '" 
linear combination of two independent random tele- Feller h~s shown that glven a matrIx T(Z) wlth 
graph processes. The results of this example pro- the pr~p~rbes (2: 6a)-(2. 6c), the N x N conditional 
vide a nontrivial check of the validity of the smooth- probabIlity matriX 
ing method. The example where N(z) is the sum of 
n identical, stochastically independent random tele­
graph processes is also discussed briefly. 

There are also two appendices in which some of 
the details of the derivations and calculations are 
presented. 

2. FINITE STATE MARKOV CHAINS 

In this section we present a brief discussion of 
those parts of the theory of continuous parameter, 
finite state space Markov chains (finite state Mar­
kov chains or FSMC for short) which we will need 
in the sequel. 2 For more detailed information we 
refer the reader to the references listed. In all 
that follows subscripts can take on integer values 
only. 

In such a Markov chain the sample functions M(z) 
are defined on the half line 0 :s z < co and can take 
on only a finite number N of distinct values ty, 
1 :s j :s N, where the aj are points in some abstract 
space E. The collection of points aj' denoted by 
EN' is called the state space. An initial probability 
distribution vector is given, 

(2.1) 

where 

1 :s j :s N, (2.2) 

with O'j > 0, and 

N 

L; 0'. = 1. (2.3) 
j::l 1 

The definition is completed by specifying the 
transition probabilities 

Ptj(X,y) = Prob{M(y) = ajlM(x) = aJ, 
Y2:X, l:Si,j:sN. (2.4) 

We are going to consider only those processes 
which can be defined by means of continuous, 
bounded infinitesimal generators. Specifically, we 
assume, given an N x N matrix function, 

(2.5) 

with the following properties holding for 0 :s z < co 
and 1 :s i,j :s N: 

(2.6a) 

p(x,y) = (Pij(x,y» (2.7) 

satisfying the initial condition 

p(x,x) = IN' (2.8) 

where IN is the N x N unit matrix, is the unique 
solution of the backward and forward Kolmogorov 
equations 

a~:,y) = _ T(X)P(X,y), 

aPa~ ,y) = P(x, Y)T(y). 

(2.9a) 

(2.9b) 

The random telegraph process described in the 
Introduction is perhaps the simplest example of an 
FSMC. In this case N = 2, a 1 = 1, a2 = -1, and 

a = (i, i), T =(1J) , 
P(x x + z) == P(z) = e-bll(C?ShbZ sinhbZ) (2 10) 

, smhbz coshbz . . 

Since T is a constant and aT = 0, the process is 
stationary. More complicated realizations of 
FSMC's will be considered in later sections. 

3. THE PHASE SPACE AND MOMENT 
EQUATIONS 

We return now to (1. 1) and the solution stochastic 
processes um(z) and vm(z), m = 1, 2, defined by 
(1. 1)-(1. 3), where we assume that N(z) is an 
arbitrary function of an FSMC M(z) as defined by 
(1. 6). Clearly these four processes can be thought 
of as the components of the vector solution 

(where t denotes transpose) of the first-order vec­
tor differential equation 

~~Z) = B(z)w(z), (3.2) 

where 
B(z) = 0 1 0 0 

-(3~[1 + 1)N(z) J 0 0 0 

,(3.3) 

0 0 0 1 

0 0 -(3U1 + 1)N(z)] 0 
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and 

w(O) = (1,0,0, 1( (3.4) 

We remark that the combined process (w(z), M(z» 
is a Markov process since a knowledge of w(z 0) and 
M(zo) determines the process for all z ~ Zo via 
the differential equation and the fact that M(z) is a 
Markov process. It is, however, also of interest to 
note that N(z) = f(M(z)} mayor may not be a Mar­
kov process, depending on the functionf. Iff maps 
the N points of EN onto N distinct points of the real 
line,/(M(z» is also a Markov process. However, if 
f(EN) consists of less than N distinct points, 
f(M(z» is in general not a Markov process. In 
general the problem of determining whether or not 
f(M(z» is an FSMC is difficult. However, in the 
important special case where M(z) has a stationary 
transition mechanism, a theorem due to Burke and 
Rosenblatt15 provides a straightforward solution 
to the problem. 

We now consider the phase space density func­
tions. In all that follows we denote by w any vector 
in R 4 with components 

(3.5) 

The Euclidean norm is denoted by Ilwll, w ~ v 
means the inequality is satisfied component by 
component, Iwl = (lull, Iv 11, IUzl, IVzl)t, 

e=(I,I,I,I)t, (3.6) 

and IN will denote the N x N unit matrix. 

The phase space density functions a/w, z) are de­
fined, 1::s j ::s N, by the relations 

OJ(w, z)d4w = Prob{w ::s w(z) ::s w + dw, M(z) = ~}. 
(3.7) 

Since 

N 

I; a/w, z)d4w = Prob{w ::s w(z) < w + dw}, 
j=l 

(3.8) 

it follows that if we knew the a/w, z), we could cal­
culate the stochastic average of any appropriately 
smooth function of the solution process g(w(z), z) 
from the formula 

An easy consequence of this is that, for fixed z, the 
support of a,(w, z) is contained in Iwl ::s .f2 exp(Cz)e. 
For fixed z this implies in particular that all the 
moments of the solution process exist. 

The a,(w, z) are determined as the weak solutions 
of the system of N, linear, first-order partial 
differential equations 

oa. N 0; + 11a, - ~ aiTij(z) = 0, 1 ::s j ::s N 
.=1 

satisfying the initial conditions 

a/w,O) = Qlj o(u 1 - l)o(v 1 )o(u Z )o(v 2 - 1), 
1 ::Sj ::s N, 

where 

2 (a 0 ) 11 = 6 Vi .,,- - (3?U. -a ' 
i=l uUi J' Vi 

and 

l::sj ::s N, 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

and the aj are the N possible values which M(z) can 
assume. 

The derivation of these "forward" equations is 
very similar to the derivation of the equations in 
the special case where N(z) = T(z), given in (1), 
and so we do not give a derivation here. We should 
remark that Wonham 16 gives the infinitesimal 
generator of the joint process {w(z), 1\{(z)}, which 
was derived earlier by Krasovskii and Lidskii,17,18 
The corresponding "backward" equation may be 
derived by means of this generator. 

In Ref. 1 we considered instead of OJ(w, z) the con­
ditional phase space distribution functions %(w, z) 
related to the a/w, z) by 

(3.15) 

where 

Rj(Z) = Prob{M(z) = ~}. (3.16) 

It follows from (2.4) and (2. 9b) that 

(3.17) 

(3.9) Hence, from (3.11) and (3.17), it follows that the 
qj are the weak solutions of 

In general, the OJ(w, z) are generalized functions. 

Since N(z) can assume only a finite number of 
values, it follows that IIB(z)1I in (3.3) is bounded 
by some constant C for all z and all sample func­
tions M(z). Consequently, it is easy to show that 
every sample function satisfying (3.2) and initial 
conditions (3.4) has the bound 

Iw(z) I ::s .f2 exp(Cz)e. (3.10) 

(3.18) 

which satisfy the initial conditions, from (2. 2) and 
(3.12), 

q/w,O) = 6 (u 1 - 1)6(v1)6(u 2 )6(v2 - 1), 1 ::s j ::s N. 

(3.19) 
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As we will show by examples in Sec. 4 sometimes 
symmetries in the problem reduce the number of 
distinct o/w, z). Unfortunately, in no case have we 
been able to solve the systems of equations (3.11) 
or (3.18). The use of Eqs. (3.11) seems prefer­
able for the applications we have in mind, for they 
do not require a knowledge of R(z). 

Although we have been unable to solve Eqs. (3.11), 
because they are homogeneous in U and v we de­
rive systems of ordinary differential equations 
for moments of the solution processes. Define the 
N partial moments, 1 ::::; j ::::; N, 

<U 1 (z)Pv1 (Z)~2(Z(V2(Z)?j = ~ ufviu;v~o/w, z)d4w, 
4 (3.20) 

wherep,q,r,s are nonnegative integers. The 
expressions on the right of (3.20) are well defined 
since the <y(w, z) have compact support in R4 for 
fixed z. Then from (3. 19) 

<u 1 (z)Pv 1 (z)~ 2(Z)YV 2(Z)S) 

where a is the vector of initial probabilities de­
fined in (2.11). Notice that the equations for 
m = 1 and 2 are uncoupled. From (3.21) and (3.22) 

where EN = (Ej), 1::::; j ::::; N, is the row vector with 
components 

Ej=1. (3.27) 

Similarly, we define the nine column vectors 

x",.(z) = (Xm(z)j), Ym(z) = (Y m(z)j), 

Zm(z) == (Zm(z~), m == 0,1,2, 1 ::::;j ::::; N, 

by 

Xo(z)j = (u 1(z)u2(z»j' Xm(z~ == (u;,(z)6' (3.28) 

m = 1,2, 

y o(z)j = i {(u 1(z)V 2(Z/lj + (u2(z)vl(Z)~}, 
Ym(z~ = (um(z)vm(z)~, m = 1,2, 

(3.29) 

(3.21) Zo(z)j = (v I (z)v 2(z»j' Zm{z)j = (v,;(z»j' (3.30) 

If we multiply each of Eqs. (3. 11) by all (M;3) pro­
ducts of the form uiviu;v~ withp + q + r + s :::: M 
and then integrate over R4 with respect to d 4w, on 
performing several integrations by parts, we obtain 
a system of N(M;3) ordinary, linear differential 
equations involving only the N(M;3) Mth-order con­
ditional moments. Unless T is constant, it is gene­
rally impossible to solve the moment equations 
analytically. However, even in the general case 
the moment equations are in a form suitable for 
numerical solution. 

We conclude this section by writing down the equa­
tions for the first- and second-order moments. 
They can be written most compactly in matrix 
form. Define the four column vectors 

Um(Z) = «um(z»j)' 

l::::;j::::; N, 

m = 1,2, 
(3. 22) 

where (um(z»j and (vm(z»j are defined in (3.20). 
Let 

m = 1,2. 

Then Xm> Ym and Zm are the solutions of 

(z) = 0, 
(Z~ 
(z) 

(3. 31) 

which satisfy the initial conditions 

Xo(O) :::: X2(0) = Y1(0) = Y2 (0) = Zo(O) = Zl(O) = 0, 

Xl (0) = 2Yo(O) = Z2(0) = at. (3.32) 

Notice again that the equations for m = 0,1, and 2 
are uncoupled. Since for each sample function N(z) 
it is a direct consequence of (1.1) that u 1 (z)v 2 (z) 
-u2 (z)v 1(z) == l,it follows that 

(3.33) 

(3.23) Consequently, from (3.21), (3. 27), and (3.33) we 
have 

from (3.14). Then the partial first-order moments 
are the solutions of the equations 

!!.fUm (Z)J + [_T t 
-I~l [Um (Z)J:::: 0, m = 1,2, 

dz LVm (z) B -T J Vm (z) 

(3.24) 

which, from (3.12), satisfy the initial conditions 

(u,;(z» = ENXm(z), 

(v,;(z» = ENz",(z), 

and 

(u 1 (z)u 2 (z» = ENXO' (V 1(Z)V
2
(Z» = ENZO(z), 

(3.35) 
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4. APPLICATIONS OF THE GENERAL THEORY 

In this section we illustrate the general theory by 
some relatively simple but interesting examples. 

A. A Linear Combination of Two Random Tele-
graph Processes 

Let T 1 (z) and T 2(z) be two stochastically indepen­
dent random telegraph processes with rates b 1 
and b 2 , respectively. If c 1 and c 2 are real num­
bers satisfying c~ + c~ = 1, define 

(4.1) 

This process is clearly stationary, but, as we will 
show, whether or not it is Markov depends on the 
relationship between the parameters b l' b 2' C 1> 

and c 2 • 

In order to fit N(z) defined in (4.1) into the frame­
work of Sec. 2, define the functionf(x), which maps 
the space R 2 of real two vectors onto the real line 
by 

f«~1>X2» = C 1x 1 + cr2 • 

Then, if M(z) is the vector-valued process 

M(z) = (T 1 (z), T 2(z», 

clearly N(z) =f(M(z». 

(4.2) 

(4.3) 

The process M(z) has the state space E4 consisting 
of the four vectors 

a1 = (1,1), a2 = (1, -1), 

a3 = (-1,1), a4 = (-1, -1), 

and has the initial probability vector [(2.1)] 

a = (t,t,t,t). 

(4.4) 

(4.5) 

Since T 1 (z) and T 2(z) are stochastically indepen­
dent and Markovian, it is easy to see that M(z) is 
an FSMC and that, for y ~ x, 

Prob{M(y) = «_I)i-l, (_I)i- 1
) IM(x) 

= «-lt1, (_1)1-1)) 

= Prob{T1(y) = (-I)i- 1 IT 1(x) = (_1)k-1} 

x Prob{T
2
(y) = (-k)i- 1 IT2(x) = (-1) I-I}. (4.6) 

From (4.4) and (4.6) it follows that if ~(x,y) 
= P.(y - x), j = 1,2, are the 2 x 2 conditional 
probability matrices of T 1 (z) and T 2(z), given by 
(2.1Q) with b = b 1 and b 2 , respectively, then 
p(x, y), the 4 x 4 conditional probability matrix of 
M(z), is 

p(x,:V) = P1(y - x) x P2(y - x). (4.7) 

The product on the right-hand side of (4.7) is the 
Kronecker product of the two matrices. 19 From 

(2.7)-(2.9) it easily follows that then 

p(oz) = 14 + TOZ + o(oz). (4.8) 

Combining (2.10), (4. 7), apd (4.8), we conclude that 

:' ], 
-{b 1 : b 2 ) 

b 2 b 1 

-{b 1 + b 2 ) 0 

o -{b 1 + b2 ) 

(4.9) 

where T 1 and T ~ are the infinitesimal generators 
of T 1 (z) and T 2~z), respectively. Since from (4.7) 
M(z) clearly has a stationary transition mechanism 
and from (4.5) and (4.9) aT = 0, M(z) is stationary. 

It is a straightforward matter to apply the theorem 
of Burke and Rosenblatt1 5 to determine whether 
or not N(z) is Markovian. We merely state the 
results. If c 1 ;" ± c 2 , then N(z) is Markovian for 
any choice of b 1 and b 2 • However, if c 1 = ± c 2 , then 
N(z) is Markovian if and only if b 1 = b 2 . 

In general for this problem, there are four distinct 
phase space denSity functions ~(w, z), 1:5: j :5: 4. 
However, 0"2(w, z) == 0" 3(w, z) in the special case 
c 1 = C 2 and b 1 = b 2' while 0"1 (w, z) == a 4(w, z) if 
C 1 =-C2 andb 1 =b 2 • 

Excluding for the moment these two special cases, 
Eqs. (3. 24) for the partial first-order moments 
consist of two sets of eight, first-order, constant­
coefficient, ordinary differential equations. From 
the solutions of these we can calculate the first­
order moments from (3.26). These calculations 
are outlined in Appendix A; we merely discuss the 
results here. 

All the first-order moments can be obtained from 
(u 2(z» by the relations 

d 
(u1(z» = (v 2(z» = dz (u 2(z», 

Furthermore, 

8 

(u 2(z» = ~ ~ (7]) exp[zA/7])], 
)=1 

(4.11) 

where the 1(7]) are constants and the A .(7]) are the 
roots of thJ eighth-order polynomial i3(~; 7]) given 
in (AI3). If 7]« 1, D(s,7]) has four pairs of com­
plex conjugate roots whose leading terms are 
shown in (AI4), and all of them have negative real 
parts. In this case,from (A14) and (AI5), 

(u2(z» = i3~1 exp(-7]2 KZ) sin[i3o(I-7]2p)z] + 0(7]2), 

(4.12) 

(4.13) 
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J3H c¥ c~ ] 
p = 8Lb~ + 135 + b~ + 135 . 

(4.14) 

In the special cases where c¥ = c~ = i and 
b 1 = b 2 = b, Eqs. (4.10) still hold and (u2 (z» is 
still given by an expression of the form (4.11), 
but the sum now contains only six terms. The 
Airy), 1::s j ::s 6, are the roots of a sixth-order 
polynomial which is a factor of D(s; 1/) when 
c~ =c~ = i,b 1 =b 2 =b. Furthermore,(4.12) 
which expresses (u 2 (z» correctly to order 1/2 still 
holds. 

Again excluding the above special case, Eqs;(3. 32) 
for second-order partial moments consist of three 
sets of 12, first-order, constant-coefficient, ordi­
nary differential equations. Their solution is out­
lined in Appendix B. 

The relations 

(4.15) 

(4.16) 

II = J35rC~(b~ + 2135) + c~(b~ + 2135)1 
4lb1(b~ + (35) b2(b~ + J35)j' 

(4.26) 

and p is given in (4.14). 

Inthecasewherec¥=c~=iandb =b =b, 
Eqs. (4.15)-(4.18) still hold and (v¥Y, (u~f, and 
(v~) are still given by expressions of the form 
(4.19)-(4.21), but the sums now contain only nine 
terms. The Sk(1/), 1::s k ::s 9, are the roots of a 
ninth-order polynomial which is a factor of tl(s; 1/) 
when c¥ = c~ = i and b 1 = b 2 = b. Furthermore, 
(4. 22)-(4. 24} are still valid. 

It is of some interest to compare our expressions 
for the first- and second-order moments of the 
solutions of Example 1 with the approximate 
expressions for the same quantities obtained by 
using the smoothing technique. Morrison13 has 
calculated the first- and second-order moments 
of solutions of (1. 1) by the smoothing method for 
1/ « 1 for quite general N(z). His results are 
expressed in terms of the Laplace transform of 
the correlation function of N(z). From (4.1) and 
(1. 5) 

( ) _.! d ( 2) 
u 1u 2 - 2 dz u 2 ' (V 1V 2 ) = i d~ (v~), (4.17) r(z) = (N(z)N(O» = c¥ exp (1-2b 1 Izl) 

+ c ~ exp (-2b 21 z 1 ) , 
(U 1V 2),;, i(d~ (u 2v 2) + ~, 

(v 1u 2) = i(d~ (u 2V 2) -1) 

(4.27) 

(4.18) 

show that all the second-order moments can be 
obtained from (vV, (u~) and (v~). But, 

12 
(v¥) = I; mk(1/) exp[zsk(1/)], 

k=1 
(4.19) 

12 
(u~) = I; nk(1/) exp[zsk(1/)], 

k=1 
(4.20) 

12 
(v~) = I; Pk(1/) exp[zsk(1/)], 

k=1 
'(4.21) 

where the Sk(1/) are the roots of the twelfth-order 
polynomial ~(s; 1/) given in (BI9) and the mk(1/), 
nk(1/),andPk(1/) are constants. If 1'/« 1, ~(s;1/) has 
one root with a positive real part and eleven roots 
with negative real parts. In this case, from 
(B22)-(B25), 

(vv = !J3~ {exp(1/2JJZ) -exp(_1/2 I1Z ) 

x cos[2J3o(1 - 1/2p)z]} + 0(1/2), (4.22) 

(4.23) 

(v~) = Hexp(1/2 JJZ) + exp(-1/2 I1Z ) cos[2J3o(I-1/2p)z J} 
+ 0(1/2), (4.24) 

where 

(4.25) 

100 -sz.-, c~ c~ 
y(s) = 0 e 1 (z)dz = s + 2b

1 
+ S + 2b

2 
• 

(4.28) 

When y(s) given in (4.28) is substituted into Eqs. 
(4.8)-(4.17) of Ref. 13, it can be seen that the 
small 1/ approximations to the moments given by 
the smoothing method agree with the expressions 
in this paper given in (4.12)-(4.14) and (4.22)­
(4.26). 

It has been pointed out previouslyll,12 that the 
smoothing method yields the exact expressions 
for the moments of the solutions of (1. 1) when 
N(z) is a single random telegraph wave. However, 
the smoothing method does not yield the exact 
results for the moments in the example considered 
in this paper. It can be shown, for example, that in 
the special case b 1 = b 2 = b the smoothing method 
yields the first-order moments as the sum of four 
exponentials and the second-order moments as 
the sum of seven exponentials. The exponents of 
the terms with coefficients which are 0(1) are 
given correctly through order 1/2, but none of the 
remaining exponents are given correctly through 
order 1/2. We can conclude that Example A of this 
paper provides an important, nontrivial check on 
the accuracy of the smoothing method. 

B. The Sum of n Identical, Stochastically Indepen-
dent, Random Telegraph Processes 

Let T/z), 1::s j ::s n, be n identical, stochastically 
independent random telegraph processes with rate 
b, and define 
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n 

N(z) = 61j(Z). 
j=l 

(4.29) available symmetries greatly reduces the difficulty 
of the problem for large n. 

We will only set up the equations for the O"i(W, z) to 
demonstrate the importance of making use of avail­
able symmetries. As in Example A, define the vec­
tor-valued process 

M(z) == (T 1 (z), T 2(z), .•. ,Tn{z». (4.30) 

This process has the state space E2n conSisting of 
the 2n vectors of the form (±1, ±1, ... ,±1), and 
has the initial probability vector a == (ai ), 

(4.31) 

Since the 1j(z) are stochastically independent, it 
is easy to see that M(z) is an FSMC. It is not hard 
to see that if the elements of the state space are 
labeled properly, thenP2n(x,y), the 2n x 2n condi­
tional probability matrix of M(z), is 

(4.32) 

where p(n)(x, y) is the n -fold Kronecker product 
with itself of the 2 x 2 conditional probability 
matrix of the random telegraph process p(x, y) 
given in (2.10). Then it follows just as in Example 
A that the infinitesimal generator of M(z) is 

T 2 n == T X Iin- 1) + ~: (Iii> x T X I~n-j-1~ + I~n-l) x T, 

J (4.33) 

where T is the infinitesimal generator of the !)an­
dom telegraph process given in (2.10) and I~k is 
the k-fold Kronecker product of the 2 x 2 unit 
matrix with itself. Thus, on substituting the mat­
rix elements of T 2n , from (4.33) into (3.14), 2n 

equations for the 2n quantities O)(w, z) result. 

However, with the aid of P2n(x,y) given in (4.32), 
the theorem of Burke and Rosenblatt15 can be 
applied to show that N(z) == f{M(z» is also a Mar­
kov process. The state space of N(z) consists of 
the n + 1 pOints on the real line, n - 2r + 2, 
r == 1,2, ... ,n + 1, and 

(4.34) 

It can be shown that the infinitesimal generator of 
N(z) is a tridiagonal matrix whose nonzero ele­
ments are 

Tjj==-nb, l~j~n+1, (4. 35a) 

Tj -1.j = (n -j + 2)b, 2!Sj ~ n + 1, (4. 35b) 
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APPENDIX A: 

In this appendix we outline the calculation of the 
first order moments for Example A of Sec. 4. To 
do this, we must solve Eqs. (3.24) with initial con­
ditions (3.25), where 0. is given in (4. 5),T == i is 
given in (4.9),and,from (3.23), (4.2),and (4.4),B 
is 

B = 13514 + l1i35diag(C1 + c2' c 1 -c2 ,- c 1 + c2 , 

-c 1 -c2 ). (AI) 

We assume initially that c 1 '" ± C 2' 

If w(z) is a 4-vector function, its Laplace trans­
form is 

w(S) == £(w(z)) == fooo e-s<w(z )dz. (A2) 

Taking the Laplace transform of Eqs. (3. 24) and 
making use of (3.25), we obtain 

~ ~ 

BU2 + SV2 == at, 

where 

(A3) 

(A4) 

(A5) 

These pairs of matrix equations are solved rea­
dily: 

U1 (s) == (B + S2)-1Sat, 

(A6) 

U2 (s) = (B + 82)-10.t, V2 (s) = S(B + S2)-10.t. 
(A7) 

From (3. 26) we see that 

£(um(z») = E 4Um(S), £«v",(z») = E4Vm(S), 

m = 1,2. (AS) 

Since in this case E4T = Tat == 0, it follows from 
(A5) that 

(A9) 

Tj + 1 ,j =jb, 1 ~j ~ n. (4. 35c) and consequently from (A6)-(AS) that 

Thus, of the original 2n quantities OJ(w, z), only 
n + 1 are distinct from each other, and, substituting 
expression (4.35) for T into (3.14), we obtain the 
system of n + 1 equations from which they can be 
determined. Thus, in this case, making use of the 

£«U 1» = £«v 2» = s£«u 2», 
£«v 1 » = s£«u 1» - 1. 

(AlO) 

Equations (AlO) and the initial conditions imply 
Eqs. (4.10). 
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To determine (u 2 (z»,from which the remaining 
first moments can be obtained by dif(..erentiation, 
the inverse LaplaceJransform of E 4U2 (s) must be 
found. However,E 4U2 (s) is a rational function of 
s with the denominator 

D(s; 71) = det(B + S2), (All) 

which is an eighth-order polynomial in s. If 
1.-/71), 1 :s j :s 8, are the eight roots of D(s; 71) = 0, 
tnen 

8 
(u 2 (z» = r; Ij(Tf) exp[,\)Tf)Z], 

j=1 
(Al2) 

where Ij(Tf) is the residue of E 4U2 (S) at s = ~j(71). 
Mter some algebra it can be shown that 

D(s;71) = (s2 + 85)[(s + 2b 1 )2 + i35][(s + 2b 2)2 +i3~] 

x [(s + 2b 1 + 2b 2)2 + ,8n] - 271283«c~ + c~) 

x {[(s + b1 + b2 )2 + 85 + b~ + b~J2 - 4b~b~} 

- 4(c~ - c~)(b~ - b~)(s + b1 + b2 )2) 

+ Tf4t3~(c~ - c~)2. (A13) 

If 71 « 1, the roots of D(s; 71) can be shown to con­
sist of four complex conjugate pairs: 

[ 
82712 ( c2 

~1 = ~~ = i80 1-+ b
1

(b
1

\ i(
0

) 

+ b2(b:~+ ji3o»)] + 0(71
4

), 

~3 = ~: = - 2b 1 - 2b 2 + iSo + 0(712 ). 

~5 = ~~ = - 2b 1 + if3 0 + 0('1]2), 

~7 = ~; = - 2b 2 + if3 0 + 0(712). 

(A14) 

The corresponding coefficients Ij(71) in (A12) can 
be shown to have the form 

11 (71) = 1~(71) = 1/(2i80) + 0(712 ), (A15) 
I j (71) = 1;+1 (71) = 0(712), j = 3, 5, 7. 

In the special cases c 1 = ± c2 and b 1 = b2 = b, 
it is easily seen that D(s; 71) has the factor 
(s + 2b)2 + f3ij. It can be shown most simply 
in this case by making use from the start of the 
symmetry relation u2 (w,z) == u3 (w,z) or ul(W,z) = 
u 4 (W, z) that the roots corresponding to the factor 
(s + 2b)2 + 85 do not appear. The expression for 
(u 2 (z» is then of the form (A12) but with only six 
terms appearing. The quantities ~/Tf) and 1/71) are 
still given for 1 ::; j ::; 6 by (A14) and (A15) with 
cf = c~ = ~ and b 1 = b 2 = b. Equations (A10) are 
independent of the specific form of D(s; 71) and are 
still valid in this special case. 

APPENDIX B: 

with a, T, and B as in Appendix A. Again assume 
initially that c 1 "" ± c2 . 

Taking Laplace transforms of (3.31) and making 
use of (3.32), we obtain the three systems of equa­
tions,m = 0,1,2, 

(B1) 

(B2) 

(B3) 

where~ {jj~ is the Krollecker delta, S is_defined in 
(A5),Xm = oC(Xm)' Ym = .c(Ym)' and Z", = .c(Zm)' 
These equations have the formal solutions 

~ =Ja t , 

where 

J = (BS + SB + ~S3)-I. (B7) 

A number of relations between the second-order 
moments can be deduced directly from (B4)-(B7) 
and (A9), which states that E4 and at are, respec­
tivelY,left- and right-hand eigenvectors of S with 
eigenvalue s. From (B6) and (3. 34) 

( > 
- 1 - 1-

.c( U2 V2 ) = E4Y.2 = 2E4SX2 = 2sE4X2 

= ~s.c«u~», (B8) 

which implies (4.15) since U2 (0) = O. In this 
example,a = iE4 ,and S,B,and hence J are sym­
metric matrices; hence, from (B5) and (.I}6), we can 
transpose the matrices in the scalar E 4X 1 to get 

E 4X1 = tE4J(B + ~S2)E~ = iE4(B + ~S2)JE~ 

= E 4 Z2 • (B9) 

From (3.34), this implies 

.c«uV) = .c«v~», (BIO) 

which in turn implies the first of relations (4.16). 
Similarly, we have from (3.34), (B5), (B9), and (BIO) 

.c({u1v1 » = E 4Yl = ~(SE4Xl - 1) = ~(sE4Z2 -1) 

1 d' = z.c(dz (v~», (Bll) 

which implies the second of relations (4.16). Next 
from (B4), (B6), (3. 34),and (3.35), 

In this appendix we outline the calculation of the «) - 1 1-

second-order moments for Example A of Sec. 4. We .c u 1u 2 ) = E4Xo = 2 sE 4Ja
t = 2 sE 4X2 

must solve (3.31) with initial conditions (3.32), and = ~s.c«u~», (B12) 
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(B13) 

(B14) 

Relations (B12)-(B14), together with (3.35) and 
initial conditions, imply relations (4.17) and (4.18). 

We have shown that all ten second-order moments 
can be obtained by at most simple differentiation 
from the three moments <vI>, <u~), and <v~). To 
obtain thes~ momen1J>, the invers~ Laplace trans­
form of E 4X2 (s),E 4Z 2 (s),and E 4 Z 1 (s) must be 
found. However, each of these quantities is a 
rational function of s with the same denominator 

6.(s; TJ} == det(2SB + 2B8 + 83}, (B15) 

which is a twelfth-order polynomial in s. If Sk(1/), 
1 :s k :s 12, are the twelve roots of 6.(s; TJ) == 0, then 

12 
(V~(Z» = '6 mk(TJ} exp[zs/TJ}] , 

k=1 
(B16) 

12 
(u~(z» = B nk (1) exp[zsk(1)], 

k=1 
(B17) 

and b2, 6.(s; TJ) can be shown to have one root with 
a positive real part, while the remaining roots have 
negative real parts: 

s = -- c2 1 + C 2 + 0 4) 1)2f3~ [ (b ) (b )] 
1 2 1 b~ + {:!~ ~ b~ + f3~ (TJ , 

S7 = s~ = - 2b 1 + 2if3o + 0(TJ2), 

S9 = - 2b 1 + 0(1)2), 

s10 = sil = - 2b 2 + 2i f3 o + 0(TJ2), 

S12 = - 2b 2 + 0(1)2). 

(B22a) 

(B22b) 

(B22c) 

(B22e) 

(B22f) 

(B22g) 

(B22h) 

12 
(V~(Z» = B Pk(1) exp[zsk(1)], 

The corresponding coefficients m k(TJ) , n k(TJ) , and 
(B18) Pk (1) can be shown to have the form 

k=1 

where m k(1), nk(!J.) , and Pki1) are the rel'idues, res­
pectively, of E 4 Z 1 (s), E4X2 (s), and E 4 Z2 (s) at s = 
Sk(TJ). Mter considerable algebra, it can be shown 
that 

6.(s; 1) 

={s(s + 2b 1)(s + 2b 2)(s + 2b 1 + 2b
2
)(s2 + 4j.?~) 

x [(s + 2b 1)2 + 4)30][ (s + 2b 2)2 + 4130] 

x [(s + 2b 1 + 2b 2)2 + 4J3B]) + 25 f3aTJ2 

x [ClF 1 (s) + c~F 2(S)] + 28f3S1)4[(c~ - c~) 

X (s + b 1 + 02)2 + b~c~ - b~cI]2, (B19) 

where 

F 1 (s) = [(s + 01 + 02)1+ -b 2g+] 

x [- (s + 01 + b 2)1- + 02 gJ 
+ [- (s + b 1 + b 2) g + + b 21 +] 

x [(s + b 1 + b 2)g- - b21J (B20) 

1± = (8 + 01 + b 2)(8 + b 1 + 02)2 + 3(01 ± 02)2 

+ 4136], (B21a) 

g. = (±b 1 + b2)[3(s + b1 + b2)2 + (b 1 ± b2)2 

+ 4f3crJ, (B21b) 

and F 2 (s) is obtained from F 1 (s) by interchanging 
b1 and 02' 

For 1) « 1 and sufficiently small compared to b 1 

m 1 (1]) = tf3~ + 0(1)2), 

m 2(TJ) = m 3 (1) = - t.a3 + 0(1]2), 

mk(TJ) = 0(1)2), 4 :s k :s 12, 

n 1 (1) = 1/(2133) + 0(1]2), 

n 2 (1]) = n3(1]) = -1/(4136) + 0(1'/2), 

nk(1) = 0(1)2), 4 :s k :s 12, 

PI (1]) = t + 0(1)2), 

P2(TJ) = P3 (TJ) = t + 0(TJ2), 

Pk(1]) = 0(TJ2), 4 :s k :s 12. 

(B23a) 

(B23b) 

(B23c) 

(B24a) 

(B24b) 

(B24c) 

(B25a) 

(B25b) 

(B25c) 

In the special cases c 1 = ± c 2 and b 1 = b2 = b, it 
can again be easily seen that 6(S; 1) has the factors 
(s + 2b)2 and [(s + 2b)2 + 4130]' Again by making 
use from the start of the symmetry relations 
O'l(W,z) == 0'4(W,z) or 0'2(W,Z) 0= 0'3(w,z),it can be 
shown that one of the roots s = - 2b and both of 
the roots s = - 2b ± 2if3o do not appear in the ex­
pressions for (vf), <u~), or (v~). The expressions 
for (vf), (u~), and (v~) are still given by (B16}-(B18) 
although now only nine terms appear in each sum. 
The expressions (B22) are still valid for s k(1) , 
1 :s k :s 8, when c ~ = C ~ = t and b 1 = b 2 = b, but 
s9(1]) = - 2b. The expressions (B2a)-(B25) are 
also still valid for 1 :s k :s 9 when cf = c~ = t. 
Relations (B8)-(B14) do not depend on the specific 
form of 6.(s; TJ) and are still valid. 
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We analyze the various classes of local irreduCible representations (both finite and infinite-dimen­
sional) of 0(3) realized on a linear complex vector space. The well-known finite-dimensional unitary 
representations are obtained when the scalar product is positive definite. The infinite-dimensional 
representations are realized on an indefinite metric space. The possible applications of these new 
classes of representations are briefly discussed. 

1. INTRODUCTION 

In recent years, various models have been develop­
ed to describe the evergrowing high-spin particles 
in a coherent fashion. The construction of a field 
theory over the homogeneous space of the Poin­
care group P which contains the Minkowski space 
and which have continuous stabilizer groups is 
worth mentioning in this regard. 1 Another attempt 
was made to build up "Majorana-like" field equa­
tions based on the well-known notions of the hydro­
gen atom. 2 To us, it seems there are still a lot to 
be understood about this quantum mechanical sys­
tem (namely, the hydrogen atom). It has long been 
well known that the symmetry of the bound-states 
of the two-dimensional hydrogen atom is 0(3) and 
0(2,1) describes the symmetry of the scattering 
states. 3 The postulation of two different groups and 
two different representations for describing the 
different states of the same physical system is 
rather puzzling. One, in principle could invoke a 
bigger dynamical group as the symmetry group of 
this system describing both bound and scattering 
states.4 However, this gives rise to additional dif­
ficulty of suitable interpretation of the various 
generators and the corresponding representation 
space. 

Further, in conventional Regge theory, one is con­
fined to a very restricted type of transformation 
associated with the continuous non exceptional 
series representation of 0(2,1). It is possible to 
construct scattering amplitudes where the spin 
is continued simultaneously with the mass, so that 
the particles lie on the same Regge trajectory. 
So, one has to consider a more general class of 
transformations (generalized Sommerfeld-Watson 

transformation) to construct scattering amplitudes 
possessing momentum transfer as parameter as 
well. Some of these properties were investigated 
earlier in connection with the "local representa­
tion" of the rotation group 0(3). However, the 
analysis makes use of the continuous series re­
presentation of 0(3) [analogous to that of 0(2, 1)] 
and is far from complete.5 It is the purpose of 
this paper to present a systematic analysis of the 
various classes of representations of 0(3) in addi­
tion to the well-known finite, unitary, irredUCible 
representations and the continuous series repre­
sentation which is infinite-dimensional. To fur­
nish this, we follow the method outlined by Miller6 

and consider 0(3) as a group of transformations, 
the various representations of it being realized 
over a linear vector space. The linear vector space 
(in general) is a metric space, spanned by a set of 
eigenvectors of the Casimir operator Q and J3. 
The dimensionality of the vector space furnishes 
the dimensionality of the underlying representa­
tions of 0(3). We have considered the following 
classes of representations. 

Let q = cp(cp + 1) and E =Eo + m (m, an integer) 
be the eigenvalues of Q and J3, respectively. In 
general cp and E will be complex. 

Class I: In this case, Q and J3 are self-adjoint 
and Q takes integer values on the real axis and 
E =- cp, ••• , + cpo Thus, we obtain the well-known 
finite dimensional unitary irreducible represen­
tations of 0(3), namely D(2cp). 

Class II: The Class II representation is infinite 
dimensional and the Nelson operator Q is not self­
adjoint, and the spectrum of J3 is given by Eo = 
- c/J +n,n =0,1,2,3,'" and Eo - cp '" an integer. 
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We analyze the various classes of local irreduCible representations (both finite and infinite-dimen­
sional) of 0(3) realized on a linear complex vector space. The well-known finite-dimensional unitary 
representations are obtained when the scalar product is positive definite. The infinite-dimensional 
representations are realized on an indefinite metric space. The possible applications of these new 
classes of representations are briefly discussed. 

1. INTRODUCTION 

In recent years, various models have been develop­
ed to describe the evergrowing high-spin particles 
in a coherent fashion. The construction of a field 
theory over the homogeneous space of the Poin­
care group P which contains the Minkowski space 
and which have continuous stabilizer groups is 
worth mentioning in this regard. 1 Another attempt 
was made to build up "Majorana-like" field equa­
tions based on the well-known notions of the hydro­
gen atom. 2 To us, it seems there are still a lot to 
be understood about this quantum mechanical sys­
tem (namely, the hydrogen atom). It has long been 
well known that the symmetry of the bound-states 
of the two-dimensional hydrogen atom is 0(3) and 
0(2,1) describes the symmetry of the scattering 
states. 3 The postulation of two different groups and 
two different representations for describing the 
different states of the same physical system is 
rather puzzling. One, in principle could invoke a 
bigger dynamical group as the symmetry group of 
this system describing both bound and scattering 
states.4 However, this gives rise to additional dif­
ficulty of suitable interpretation of the various 
generators and the corresponding representation 
space. 

Further, in conventional Regge theory, one is con­
fined to a very restricted type of transformation 
associated with the continuous non exceptional 
series representation of 0(2,1). It is possible to 
construct scattering amplitudes where the spin 
is continued simultaneously with the mass, so that 
the particles lie on the same Regge trajectory. 
So, one has to consider a more general class of 
transformations (generalized Sommerfeld-Watson 

transformation) to construct scattering amplitudes 
possessing momentum transfer as parameter as 
well. Some of these properties were investigated 
earlier in connection with the "local representa­
tion" of the rotation group 0(3). However, the 
analysis makes use of the continuous series re­
presentation of 0(3) [analogous to that of 0(2, 1)] 
and is far from complete.5 It is the purpose of 
this paper to present a systematic analysis of the 
various classes of representations of 0(3) in addi­
tion to the well-known finite, unitary, irredUCible 
representations and the continuous series repre­
sentation which is infinite-dimensional. To fur­
nish this, we follow the method outlined by Miller6 

and consider 0(3) as a group of transformations, 
the various representations of it being realized 
over a linear vector space. The linear vector space 
(in general) is a metric space, spanned by a set of 
eigenvectors of the Casimir operator Q and J3. 
The dimensionality of the vector space furnishes 
the dimensionality of the underlying representa­
tions of 0(3). We have considered the following 
classes of representations. 

Let q = cp(cp + 1) and E =Eo + m (m, an integer) 
be the eigenvalues of Q and J3, respectively. In 
general cp and E will be complex. 

Class I: In this case, Q and J3 are self-adjoint 
and Q takes integer values on the real axis and 
E =- cp, ••• , + cpo Thus, we obtain the well-known 
finite dimensional unitary irreducible represen­
tations of 0(3), namely D(2cp). 

Class II: The Class II representation is infinite 
dimensional and the Nelson operator Q is not self­
adjoint, and the spectrum of J3 is given by Eo = 
- c/J +n,n =0,1,2,3,'" and Eo - cp '" an integer. 
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This furnishes the D+( cP, Eo) class of O( 3) (we 
are retaining the same nomenclature for these 
various classes of representations in the spirit of 
Barut and FronsdaF). 

Class III: D-(CP,E o): Like Class II,in this case, 
we obtain an infinite-dimensional representation 
of 0(3). The spectrum of J3 is given by Eo = cP -
n, n = a nonnegative integer, and Eo + cP ~ an inte­
ger. 

In Class II and Class III representations, the under­
lying space is equipped with an indefinite metric. 
The convergence properties in this space can be 
examined by introducing Hilbert or Frechet topo­
logies.8 

Class N: D(cp, Eo): This class of representa­
tion is obtained for all complex values of cP and 
.t.:(CP + Eo) and (cp - Eo) being nonintegers. 

It is our contention that the class I representation 
can be used as usual to construct the bound-state 
energy spectrum and Class N for the scattering 
states of the two-dimensional hydrogen atom. We 
also suggest that the infinite-dimensional repre­
sentations of the compact groups could as well 
be used to build up infinite-multiplet schemes for 
the hadrons. We have arranged our material as 
follows. 

In Sec. 2, we describe the method and obtain the 
usual finite-dimensional unitary representations. 
Explicit expression for the infinitesimal genera­
tors, eigenfunctions, and matrix elements have 
been obtained. Following the method outlined in 
Sec. 2, we study the properties of the vector space 
when both cP and E take complex values. We obtain 
the infinite-dimensional representations for 
D+(cp, Eo), D-(CP, .t. o)' and D(CP, Eo). This consti­
tutes Sec. 3. Finally, we outline the application 
of our new class of representations for studying 
the symmetry of the two-dimensional hydrogen 
atom in Sec. 4. We conclude our discussion with 
a few remarks on the special features of the metric 
space. 

2. THE METHOD AND CONSTRUCTION OF 
FINITE DIMENSIONAL REPRESENTATIONS 

A. The Method 

Let G be an n-dimensional local Lie-group and 
U an open set in em (complex fields). Let U x 
G ~ em, I.e., the mapping F(z, g) = zg for z E U 
andg EG. 

G is said to be a local Lie transformation group, 
if F satisfies the following conditions. 

(1) zg is analytic in the coordinates of z and g; 

(2) ze= z; 

(3) zg E U =:> (zg)g' = z(gg') , Vg,g' E G. 

Let G act on an open neighborhood of U of em, 0 E 

U and let JC be the set of all complex valued func­
tions on U analytiC in the neighborhood of O. The 
local multiplier representation T P of G on H with 

multiplier p constitutes a mapping TPig) of H 
onto H, 

lTP(g)fj(z) =p(z, G)f(z, g), 

Z E U, g E G and f E H. (2.1) 

The multiplier p(z, g) satisfies the following pro­
perties, namely: 

(i) p(z, e) = 1, Vz E U, (2.2) 

(ii) p(z,gg') =p(z,g)p(z,g'), g,g' E G. (2.3) 

Property (ii) implies the following. We define 
the generalized Lie derivatives cPf(z) of the analy­
tic function f(z) under the one-parameter group 
(expat) as 

d 
Daf(z) = dt [TP(expat)fl(z)!t=o' (2.4) 

where a = (dj dtl!;(t) II 0 is the tangent vector at 

e =g(O) on the curve g(t). For p = 1, we obtain the 
ordinary Lie derivative. From (2.4), we obtain 

_ n", af 
Daf(z) -~ a JPj i (z) d~ (z) + :6aj lj(z)f(z), 

} =1 z. 
where 

~Qllj(z) = :t p(z, expat) I t=o 

and 

aF. 
~i(Z) =ag'(z,g) I _ . 

} g-e 
(2.5) 

The D as form a Lie algebra under the operation of 
addition of derivatives and Lie product 

and is the homomorphic image of the Lie algebra 
of G, I.e., ¢; 

Let us define 

Tn., d 
~(z) =2.; lji(Z) -a . + ~ (z), j = 1, 2, 3, ... , n 

.=1 z. 
(2.6) 

{D/Z}} are a set of linearly independent differen­
tial operators analytic in the open set U E em and 
s~i~y . 

n 

l~, Dkl =DPk - DkDj = 2.; C/kDI' 
1=1 

(2.7) 

where C/k are the structure constants. A complex 
linear combination of 0s spans the Lie algebra of 
the generalized Lie derivatives. The action of the 
group is obtained by integrating the following equa­
tions; 
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d n 

(i) dt Zi(t) =~ a/ii(z(t», Zi(O) =zp, 
J=1 

i = 1, 2, 3, ... 

(ii) d~ p(zO, eat) = p(zO ,eat) ..0a/j (z(t)), 
J 

p(ZO, e) = 1, 

where 

B. Construction of Class I representations of 0(3) . 
Let us consider the differential operators 6 

d d J3 = -,+. +z- J+ = - 2'+'z +z2-
'f' dz' 'f' dz' 

_ d 
J =-­

dz' 
(2.9) 

z is a complex variable defined in the neighbor­
hood of 0 E C', and 2cp is a nonnegative integer. 
{J±, J3} satisfy the following commutation rela­
tions [compare Eq. (2. 7)]: 

lJ3,J±]=±J±, 

and span the Lie algebra of generalized Lie deri­
vatives of a local multiplier representation TI'(g) 
of 0(3). 

To obtain the action of the one-parameter group 
eYo\y E C', a3 being the Lie algebra element cor­
responding to J 3, we solve the following equations 
analogous to (2.8), namely 

d d 3 ' 
dy (z) = z, dyp(zO,e YO ) = - cpp(zO,e Y oJ), (2.10) 

with the initial conditions 

z(O) = zO, p(zO,e) = 1. 

Thus, we obtain from (2. 10) 

z(y) = zOe Y , p(zO,e Y03
) = e-"'y. 

(2.11) 

for Iy I sufficiently small. Similarly, we obtain 

lTP(esO"'")f](zO) = (_ szo + 1)2"'/ zO ) 
,-- szo + 1 

(2. 12) 
and 

(2. 13) 

a3 , a± are the usual Pauli matrices forming the 
two-dimensional representation of 0(3) and are 
given by 

+ (0 - 1\ 
a = 0 aj' 

_ ( 0 0) 
a=-10' 

3 (1 0) a = 0 -1' 

It follows then, 

Y<T3_(eY/2 0 ) 
e - 0 e -y/2 , 

tcr- _ ( 1 0) 
e - -t 1 ' y, s,t EC (2. 14) 

Any arbitrary element g E 0(3) can be written as 

g = ( ~ ~), det Ilgll = 1. 
- b a 

(2.15) 

Further, in a small neighborhood of the identity we 
can write IS as 

g = exp(sa+)' exp(ta-)' exp(ya3 ). 

Making use of (2. 14) in (2.16), we obtain 

g=(e Y
/
2

(1 +st) 
_ te y/2 

Thus 

e-
y
/
2

=a, s=-b/a, t=b·a. 

Then, 

[TP(g)f](z) 

(2. 16) 

(2. 17) 

(2. 18) 

= {TPlexp(sa+)-exp(ta-)·exp(ya3)]f}(z). (2.19) 

Making use of (2.11)-(2.13) in (2. 19) we finally 
obtain 

Thus, 

and 

- 2<1> 
p(z, g) = (bz + a) 

az - b z' = zg = ---_ . 
bz + a 

(2. 20) 

(2.21) 

It can now be easily checked that (2.20) and (2.21) 
indeed furnish the local multiplier representation 
of 0(3) and the differential operators J±, J3 are 
generalized Lie derivatives of TP. Alternatively, 
given (2.20) and (2.21), we can obtain the genera­
lized Lie derivatives of a local multiplier repre­
sentation TP of 0(3) from (2.4). 

Writing [f(z)] == If:(z) j, the action of the operators 
J±, J3 on this basis is given by 

J3ft)(z) = Eft)(z), 

J±fi<l»(z) = [(cp 'f .l!-)(cp ± .l!- + l)P/2fi~~ (z). (2.22) 

Note that 

J+j(</J)( ) - O' .(<I»() - 0 
<I> z = ,1.e")<1>+1 z -
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and 
J-l:>(z) ;: 0, Le.,.t.<,tlt(z) = O. 

Thus, an invariant linear-vector space is spanned 
by (2<1> + 1) vectors (f-q" .•. '/H) . We now compute 
the scalar product and show that the vector space 
is Hilbertian. 

Using 

1+laz- bI2

= 
a +bz 

1 +zz 
Iii +bz 12 

[since, I a 12 + Ib 12 = 1], we obtain from (2.21) 

~~' = \(a + bz)i -2 (1 + Iz 12). (2.23) 

Thus, we define the inner product w.r.t. the invari­
ant measure 

as 

(f1'/2)q, = jft{z)fz{z)dj.L(z) 

=2P/l jf1(z)f2(z)(1 + IzI2f24>-2dzdz, 

(2.24) 

where the integration is carried over the complex 
plane andft,/2 EH. Settingf1(z) = zll'/2(z) = Zl, 

k, l = 0,1,2, ... , 2<1>, we obtain from (2.24) 

(2.25) 

In (2.25) we have used (z~ i) = I5 kl • Thus, writing 

2</> 
j(z) = L; c kZR, 

11=0 

we obtain 

IIfll2 = Lt(- 2<1> ~k - It111c,.112 < co. (2.26) 

We now construct a complete set of orthonormal 
vectors [hll(z)] as 

IIhl1 2 = 1, and h(z) = i k [r(k(! n;t2 2<1»J 1/2 Zll. 

(2.27) 

In this basis, the matrix elements of TP(g) [which 
also furnishes the representations of 0(3)] are 
given by 

or 

24> 
lTP(g)hll](z) = EDu,(g)hl(z), 0 ~ k ~ 2<1>, 

1=0 

N,.{ii + bz)24>-Il(az - b) II = ,£NPI,,(g)i, (2.28) 
1 

where N ~ and N, are the normalization constants 
given in \2.27). Thus, 

D (g) - Nil C)2¢-k. 1(_ b)Il-1 r(k + 1)_ 1 
lk - Nl a a t(l - 1) r(k + 1) 

-F(-l,- 2<1> +k,k-l +1;-bb/aa), 

if 2<1> ;;. k ;;. l ;;. 0, 

= :l ak(a)2<1>-I(b)l-k 
II 

r(- 2p - k + 1) 
-r(-2<1>-l +1) 

1 

-F(-k,- 2<1> +l,l- k +1;- bb/aa), 

if 2<1> ;;. l ;;. k ;;. O. 

Substituting for N k' Nl and using 

g = (_ 5 ~), a = e-i (a+y)/2. cos(j3/2), 

b = ie -t(a- y)/2 sin(/3/2) 

(2.29) 

(where a, 13, yare the Eulerian angles), and making 
use of the properties of the hypergeometric func­
tion F(p, q,y; z), namely 

F(p, q,y;z) = (1-- z)-PF(P, y-q,y;z/(z - 1» 
( ) y-q-p ( • ) (2) = 1 - z F y - p, y - q, y, z , • 30 

we obtain 
1 [r(k - 2<1»r(k + I)J 1/2 i(¢-k)a 

Dlk(g) = (k - Z)! r(l- 2<1»r(l + 1) e 

oei (<1>-I)y (cosj3/2)2 <1>-11-1 0 (sinj3/2)1I-1 

of(-l, -l +2<1> +1,k-l +1;sin2J3/2). 
(2.31) 

(2.31) is exactly the expression given by Edmond 
for the matrix elements of the rotation group 
0(3).9 

3. CONSTRUCTION OF THE DISCRETE CLASSES 
nAND m AND THE CONTINUOUS SERIES 
REPRESENTATIONS 

A. Class n Representations (D+(<1>. Eo» 

Let the spectrum of J3 be E = (- <1> + m, m = a 
nonnegative integer). Using the differential form 
for the operators J3, J± as given by (2.9) and sub­
stituting E = - <1> + m in (2.22), we obtain 

J-f14»(z) = - ilm(m - 1 - 2<1» 11/2fl~~(z), 
m = 0,1,2, .... 

Then, 

J-f~:)(z) = 0 =;> f-<t!l (z) = O. 

However, J+l:? m(z) = 0 has no solution unless 
m = 2<1> (compare finite-dimensional representa­
tio~s). Thus the infinitf system of functions 
lf~m(z)] = [.t.S:)(z)'/~?l(Z),··.] span the infinite­
dimensional vector space for 0(3). 



                                                                                                                                    

2140 K ISH 0 R C. T RIP AT H Y 

We further analyze the properties of this infinite­
dimensional vector space by explicitly computing 
the scalar product. Then we obtain the multiplier 
representations lwhich also furnish the represen­
tations gf 0(3)] w.r .t. this basis. As usual, we de­
fine lf~ )(z)]: 

fiCP)(z) = N~cp)zm. 

N!CP) is formally given by (2.27) except cj> is now 
complex. 

Now, 

or 

(fiCP)(z),Ji'j'>(z» = J!lCP)(z)ofl)(z)djJ.(z) 

2cj> +1 oN(CP)oN(CP)jimozno(1 + IzI2)-2CP-2 
11 E E 

'dz ·di.. (3.1) 

Substituting z = .f.;eiB,z =X + iy,dz 'dz = dx'dy 
= My 'dO, we have 

Jz m. zn(1 + IzI2)-2CP-2 dz ' dz 

= ~ j 21r dee -i(m-n)fI J~ 00 y m+nl2 • (1 + y) -2 CP-2 dy 
. 0 

= 11BmnB(m + 1, 2cj> - m + 1), Recj> > m >- 1, 

(3.2) 

where B(p, q) is the beta function. 

Thus, using f1 = j, f2 = /, we have from (3.1) 

(f,J)", = (2cj> + 1) .Ni"?»·NiCP)·B(m + 1, 2cj> - m + 1). 

(3.3) 

Substituting for N~q,) and Nt) and using 

B(m +1,2cj>-m +1) 

= rem + 1)r(2cj> + 1 - m)jr(2cj> + 2) 

and (_ 1)% 
r(- z) = r(z + 1)' 

we obtain from (3.3) 

_ 1 m[r(m - 2¢)]1/2. [rem - 2P)J-1/2 

(f,J)", - (- ) l r(- 2cp) r(- 2cp) 

== (_ l)m~. (3.4) 

Some properties of the metric ~ 

(1) m = 2cj> = 2($, (cj> real), then ~ == 1. 

This precisely produces the finite-dimensional 
unitary representations. 

(2) ~ = + 1, if 2 Recp, = even, m > Recp 

= - 1, if 2 Re¢ = odd, m > Re¢. 

(3) ~ == (- l)m, if Re¢ > 0 and m < 2 Re¢. 

We now compute the multiplier representations 
T P (g) on the basis 

(CP) _ .nf r(n - 2(} 11/2. zn 
In (z) - Z [r(n + l)r --- 2cj>~ , 

n == 0, 1,2, ... , 
Le., 

lTP{g)f(CP)](z) 

= (ii + bz)2 <l>f(az - ~) for z E C and g E 0(3) 
bz +a 

00 

= I; D }:.EJ{g)f?,EJ, k = 0, 1,2, ... , (3.5) 
1=0 

or 

(az - 5)k(iirCP-k • (1 + b_Z)2CP-k. N k 
a 

Ib:l< 1, I~zl< 1. 
a b 

Comparing the coefficients of i on either side of 
the above equation, we get 

D('i>.EO){g) = Nk . I. (-)2 <I>-k(_ b)k-I. r(k + 1)' 
Ik Nz a a r(l+I)r(k-Z+l) 

. F(-l,- 2cj> + k,k -l + 1;- bb/aa), 

if k ? 1 ? 0, 

NI k 2<1>-1 I-k r(2p - k + 1) 
= Nk a (a) (b) r(2cj> -1 + I)r(l-k + 1) 

. F(- k,- 2cj> + 1,1- k + 1;- bb/aii), 

if I ? k ? O. (3.6) 

We have to note here that the matrix elements 
(3.6) have the same form as (2. 29); however k, 
1, = 0, 1,2,3,' .. ,00. 

B. Class ill Representations[D-(</>,EJ] 

Let the spectrum of J3 be= [cj> - n; n = a non­
negative integer). We assume further the following 
form for the operators J±, J3: 

d 
J3 == cj> - z dz' 

J+--~ - dz' 

J- = - 2cpz + Z2 fz ' 
and Q = i [J+,J-J + J~ = cp(cp + 1). 

(3.7) 

With respect to the expressions ~3. 7), we obtain 
the multiplier representations T (g) as 

P 2<1> (iiz +b) [T (g)f](z) = (a - QZ) of -_- • 
a-bz 

(3.8) 

(3.8) could be formally obtained from (2. 18) by 
replaCing a -7 a and b -) b. As usual, we consider 
the basis lfi<l»(z)J and compute the matrix ele­
ments of J± and J3. For E = cp - m, we have 
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J+f~</J)(z) = i[m(m - 2cf> - 1)P/2fi~~(z), 

J-f1<1»(z) = i[(m + 1)(- 2cf> + m)]1/2 

x f1-1(z). 

Following an identical procedure as for discrete 
(3.9) series representations, we obtain 

Now,J+f.£~~(z) = ° =>f<l>0!l(z) = O,andJ- f<l><!2(z) = ° has no solution unless m = 2cf> (compare finite­
dimensional representation case). We thus obtain 
an infinite set of vectors 

spanning the linear complex vector space. 

As usual, 

(fp(<I>,EO)(Z) Jq(<I>,E.)(Z» <I> 

= 15 Y'(<P,Eu). N(<I>,Eo). B(E + q + 1 2m 
pq'>q q 0 ' 't' 

+ 1 - Eo - q), 

where 

(<I>,EO) = [ r(q + Eo - ¢) J 1/2 

q r(q + Eo + (fi + 1). r( - 2~) 

. [ r(q + Eo - cp) J- 1/2 

r(q + Eo + ¢ + 1) ·r( - 2¢) . 

(3.14) 

(3. 15) 

We then evaluate the multiplier representations 
TP(g) in the basis (3,11): 

_.m r m - 2p . m [ ( ) 
J 

1/2 

- Z r(m + l)r(- 2¢) z , 2 +~ 

m = 0,1, ,'" [TP(gVJ¢,EC)] (z) = L D fd>,Eo)(g)fpfd>, Eo) (z) 

On this basis, the multiplier representations (3.8) 
are given by 

00 

[TP(g}f;</J,Eo>] (z) = '6 D1k(g)J;(<I>,Eo) (z), 
1=0 

k ~ O,g E 0(3), 
or 

(-5z + a)2<I>-k.(az + b)k' Nk 

= '6 D1k(g)ZI'N1, Ib/ a'z 1< 1, 
1=0 

or 

DA</>,Eo)(g) = :k '(a)I'(a)2<1>-k'(b)k-1 
1 

r(k + 1) 
• r(z + 1) r(k - 1 + 1) 

. F(-I,- 2¢ + k,k -I + 1;- IbI 2/laI 2), 

k ~ I ~ 0. (3. 10) 

C. Continuous Series RepresentationsD( cf>, Eo) 

As usual, we construct this representation in the 
space of complex analytic functions lfi</»(z)] form­
ally given by (2. 27) for arbitrary complex values 
of cf> and E. Thus, 

(</>,Eo) ( ) _ . m [ r(E - p) ll/2. Eo+m-<I> 
fm z - t r(E + cf> + l)r(- 2cf»J z 

and 

- N(<I>,Eo) Eo+m-¢ 
==: m ·z , 

[T P f~<P.Eu) ](z) 

(3.11) 

= N~¢,Eo). (5 + bz) </>-Eo-m. (az - b) </>+Eu+"', (3. 12) 

In (3.11) and (3. 12), we have considered E = 
E.'o + In, and m = 0, ±1, ±2, ±3, .... We now evaluate 
the inner product: 

p=- 00 pq 

'" NJ¢,EO)«(i + bz)<I>-Eo-q(az - 5)<I>+Eo+q 

q = 0, ± 1, ± 2, ... 

After a little simplification we obtain 

Dt/EO)(g) = Nq 
·as+P(ii)t-q( - b)q-P 

Np 

r(s + q + 1) 
r( s + p + 1)' =r("q---p-+-'---:-;l) 

(3.16) 

-F( - s - P,- t + q,q - P + 1;- bb!aa), q ~ p 

N = ias+q(ll)t-P(b)P-q 
Nq 

· r(t - q + 1) 
r(t - p + l)r(p - q + 1) "F( - s - q,- t + p, 

p-q+ 1;- /b/ 2 /laI 2 ), p~ q. (3. 17) 

Here, s = ¢ + Eo and t = ¢ - Eo' 
We have to note further that neither s nor t is an 
integer. The two expressions can be combined 
into one since 

F( - s - p,- t + q,q - P + 1;-/b/ 2 //a/ 2 )/ 

·r(q-p+l) 

is defined even when (q - p + 1) is a negative 
integer. Then using the properties of the hyper­
geometric functions, we obtain 

D(¢.EO)(g) 
Pq 

r(s + q + 1) 
· r(s + p + 1)· r( q - p + 1) 

· F(- s-p,-t+ q,q-p+ 1;- IbI 2/laI 2 ) 

(3. 18) 
for all integer s p, q. 
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Substituting for Np and Nq from (3.11), we finally 
obtain 

If.CP.EO) (g) = e (- 1)q- P(a)-( 2Eo+ p+q)( - b)q- p pq pq 

where 

• F( - s - p,- t + q ,q - p + 1; bb),q 2: p, 
== ePl(a)- (2EO+p+q)( - b)P- q 

·F( - q - s, - t + P,p - q + 1; bb), 

P 2: q, (3.19) 

: P 1 [reP + s + l)r(p - t ] 
e pq = (t)q- (q _ P)! r(q + s + 1) ·r(q - t) . 

(3.20) 

We now compute the Casimir operator Q: 

Substituting (4.2) and (4.4) in (4.6),we obtain, 
after a little algebraic manipulation, 

Q = (!~~) [1 + 1l!4 HJ~ + 21l1e4 • HJ + J~ 
/Je 4 

I 
=-2Jj-4' 

(4.5) 

(4.7) 

Solving for the eigenvalues, we obtain from (4.7) 

We have to note here that the matrices D;",.EO >(g) 
furnish an infinite-dimensional nonunitart re­
presentation for 0(3). In place of unitarity, we have or 

l1e 4 1 cp(cp + 1) = ----
2E 4 

- /Je 4 - J1.e 4 

E = 2[cp(cp + 1) + ~] = 2.[cp + f]2' (4.8) 

~[D(g)]+ ~- 1 = D(g- 1), (3.21) 

where ~ is the metric given by (3.15). Thus, 

LtDpy (g)Dyq(g-l) ~ Opq. (3.22) 
Y 

4. THE HYDROGEN ATOM 

We will briefly outline the consequences of our 
new classes of representations in the context of 
the symmetry of the two dimensional hydrogen 
atom. A more realistic case of this problem will 
be published elsewhere. 

The Hamiltonian H of the system is 

1 e2 e 2 
H = -2 (Pl + p~) - -, V(y) = - - . (4.1) 

J1. I' I' 

The constants of the motion are 

L3 = xP2 - YPl' 

Al = - 1/2/1132(L#2 + 1)2 L 3) + x/r, 

A2 = + (~lJ.e2)(L# 1 + P 1 L 3) + y/r, 
(4.2) 

satisfying the following commutation relations: 

[L 3 ,A 1 ] = iA2 , [L 3 ,A2 ] = - iAI 

[A 1 ,A2 ] = 1J.~4(- 2H)L 3 · 

(4.3) 

Since (4.2) do not close the algebra, we define a 
new set of operators as 

J - J1.1/2 e2 ·A 
1 - (_ 2H)1/2 l' 

J - /J
1

/
2

e
2 

·A 
2 - (_ 2H)1/2 2' 

(4.4) 

J 3 = L 3 • 

It is easy to check that 

Substituting n = cp + 1, we get (in natural units, 
11 "'- 1), 

(4.9) 

This is exactly the expression obtained by Jauch 
and HilP for the bound-state energy spectrum 
of the two-dimensional hydrogen problem, when 
n = 0,1,2,3, ... 

We have seen that for cp real, or, in other words 
for n = 0,1,2,3, ... ,E is aways negative and the 
symmetry of the system is 0(3). We make no 
secret of the fact that when cp is complex, namely 
for cp = - i + i a, 0 < a 2 ~ 00, (" continuous series 
representation"), we obtain, 

(4.10) 

(4.10) gives the energy expression for the scat­
tering state. We just want to emphasize here that, 
in case of (4.10), the underlying vector space is 
a metric space, whereas the bound-state spectrum 
(4.9) is obtained in Hilbert space. 

5. TOPOLOGY OF H 

We have demonstrated that for the discrete and 
continuous series representations of 0(3), the sca­
lar product of the vectors fez) is highly indefinite. 
To obtain a positive scalar product on the space 
H of functions!(z), let us define 

(5.1) 

where! =!+ +!_ and!±,f~ E H±. 

We have split up the vector! E H into components 
!± belonging to the subspaces H ± on which the 
metric ~ has a definite sign. The topology of this 
space satisfies the following properties (Hilbert 
topology): 
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(0 The norm II!II = (j,j) 1/2. 

(ii) The geometry is given by the distance 

d(j'!') = IIf - f' II. 
(iii) A sequence of vectors fv ---7 f if 

limll---7 oo llfu - fll = limd(fv,j) = O. 

Alternatively, we can introduce Frechet's topology 
on the vector space H having the following proper­
ties. 

For any pair of points f,j' , the distance dU,!') 
satisfies 

(i) d(f,!') =d(f-j',O); 

(ii) If fu ---7 0, then d(fu, 0) ---7 O. 

Indeed, we can set 

d ' _ £ II! - f' II p 

(fJ) - p=12P(1 +llf-f'lI p) , 

(5.2) 

(5.3) 

where /I x II p is a denumerable set of seminorms. 
We can easily check that (5.3) obviously satisfies 
(5.2). 

6. CONCLUSION 

To summarize our discussion, we analyzed the pos­
sible "local representations" of 0(3) and demon­
strated that in addition to the finite-dimensional 
unitary representations, there are infinite-dimen­
sional representations realized on a more general 
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The Heisenberg Hamiltonian of a ferromagnet with Zeeman term is treated by the method of algebraic 
realization of the spin algebra. The general features of this approach are first analyzed. A detailed 
calculation with a particular algebrai c realization is then carried out by use of two boson operators; 
one of the operators is interpreted as the observable spin waves and the other as "spurions~ which 
carry only spin quantum number without energy. The Bethe-Salpeter integral equation is solved in the 
long-wavelength region for the bound states of spin waves. A perturbation calculation yields a leading 
T4 correction to the usual T3/2 behavior of the magnetization. 

1. INTRODUCTION 

In the traditional way of handling many-body prob­
lems, the given Hamiltonians are usually the start­
ing pOint of an ab initio calculation in the sense 
that the original Hamiltonians are directly res­
ponsible for the final results. However, it is our 
opinion that this is sometimes too restrictive 
since most Hamiltonians of physical models for 
many-body problems are not simple enough to yield 
solutions without some rather drastic approxi­
mations or mathematically doubtful operations. 
Therefore, it is physically intere!;>ting while 
mathematically not necessarily worse, to consider 
the initial Hamiltonians as abstract operator 
expressions capable of being realized by certain 
operators satisfying simple algebraic relations. 
These operators used for carrying out the alge­
braic realizations can be given a "particle" inter­
pretation and, for convenience, can be called 
"semiparticles" here, when the operators satisfy 
simple commutation or anticommutation relations. 
More precisely, the criterion of establishing a 
"semiparticle" interpretation can be formulated 
in the following way. If the operators used for a 
particular realization enable us either to solve 
the eigenvalue problem of the given Hamiltonian 
or to derive an effective Hamiltonian of a simple 
form such that the problem becomes more 
manageable, then these operators are called "semi­
particles· if they satisfy commutation or anti­
commutation relations, or even parastatistics. 
Such a criterion does not require a perfect 
diagonalization of the original Hamiltonian by the 
semiparticle operators, i.e., the semiparticles in 
our definition may have interactions. A perfect 
diagonalization which makes semiparticles free is 
therefore only a fortunate situation; in this case 
semiparticles are just quasiparticles in the usual 
language. The other feature of our approach is the 
commitment to identify the original operators as 
simple combinations of finite products of the new 
operators (Le., the semiparticle operators), or 
possibly in closed forms. This differs from the 
usual methodology of expanding Heisenberp- opera­
tors in terms of an irreducible ring of asymptotic 
operators. The latter expansion is, in general, an 
infinite series whose convergence may often be 
questionable. Besides, the most important prob­
lem lies in the truncation of such infinite series 
in order to make the calculation manageable. Any 
truncation, in fact, imposes conditions that must 
be satisfied by the original operators. The intro­
duction of such new auxiliary conditions can, in 

general, be either inconsistent or bad enough to 
allow only trivial solutions. This point is tradi­
tionally ignored in the expansion of a Heisenberg 
operator into an infinite series. Therefore, the in­
consistency may be hidden and thus completely 
overlooked. The method of algebraic realization 
usually has the advantage of having rather simple 
subsidiary conditions whose consistency can be 
readily verified. 

Finally, one must ask the question of how to choose 
the right realization among many possible alge­
braic realizations. This question may be answered 
in the following tentative way. It is our opinion 
that an adequate realization is most probably a 
simple one since otherwise the advantage of an 
algebraic realization may be lost. Next, the 
auxiliary condition resulting from the particular 
realization should be both mathematically and 
physically consistent. In other words, a realization 
should be discarded if the auxiliary conditions 
resulting from the realization are inconsistent 
either on mathematical or on physical grounds. 
Furthermore, the realization should yield either a 
simple form of Hamiltonian or a Hamiltonian that 
has a simple effecliue form. The new operators 
introduced for algebraic realization should satisfy 
commutation or anticommutation relations or 
parastatistics. However, this last point is not 
absolutely necessary, if one does not insist on 
interpretations of semiparticles in terms of bosons, 
fermions, or paraparticles. Last but not least is 
the expectation that an adequate realization would 
lead to some physically reasonable results from 
the computation. In our study of the spin-wave 
theory with Heisenberg-type Hamiltonian we find 
the above set of criteria leaves very little freedom 
in chOOSing a realization. We succeeded in finding 
only one, the one that is discussed in this paper. 
This particular realization indeed gives a satis­
factory re suIt. 

We first analyze the two most important papers in 
spin-wave theory, the work of Holstein-Primakoffl 
and that of Dyson,2 from the viewpoint of algebraic 
realizations. By considering a different realization 
we rewrite the Hamiltonian in terms of two new 
operators. These new operators are boson fields. 
It is shown that one of them is, in fact, a "Goldstone 
particle," which carries no energy and can be in­
terpreted as the existence of "condensation." The 
other boson operator can be interpreted as the 
existence of "spin waves" or "magnons." In other 
wordS, we have two kinds of semiparticles: One 
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takes care of the bookkeeping of the spin-projection 
quantum number and the other takes care of the 
spin-wave dynamics. The resulting Hamiltonian 
actually does not have a simple form. However, by 
means of the energy eigenvalues, we can write 
down an effective Hamiltonian which is of a much 
simpler form. 

For long wavelengths, we show that there exist 
bound states of spin waves. Further, the Bethe­
Salpeter integral equation leads to a relation be­
tween the spin-wave energy and the bound-state 
bihding energy of two spin waves. 

2. ON THE HOLSTEIN-PRIMAKOFF AND DYSON 
APPROACHES 

In this section we consider the classic papers of 
Holstein-Primakoff and Dyson from the viewpoint 
of algebraic realizations. The Hamiltonian to be 
considered here is the Heisenberg model of ferro­
magnetism: 

JC = - 2; JlmS l • Sm - H'I;SI(z) , 
I.m I 

(2.1) 

where Sl is the spin operator of the atom at the 
lth site, "zm is the exchange integral between atoms 
at the lth and mth sites, and H is the externally 
applied magnetic field. The spin operators satisfy 
the algebraic relation 

[s (; J S(-)] = 20 S(z) 
I'm 1m I ' [ S(Z) S(±)] = ± 0 S(±) 

I'm 1m I ' 
(2.2) 

where S(+) = S(x) + is(y)· S(-) = S(x) - is(Y)' and 
I - I I' I - I I' 

sr), S~Y), S~z) are x, y, z components of the spin 
at the site l. 

Holstein-Primakoff actually started from a more 
complicated Hamiltonian than Eq. (2. 1); their 
Hamiltonian includes the dipolar and pseudodipolar 
terms. However, their approach is equivalent to 
the following choice of the realization of the alge­
bra, Eq. (2. 2): 

S(-) = (2s)1/2a+(1- (1/2s)a+a )1/2 
I - 1 I 1 ' 

s}+) == (2s)1/2(1 - (1/2s)aja l)1/2al , (2.3) 

S(z) = s - a+a 
I - I I' 

where al and at form the commutator algebra: 

(2.4) 

Under the realization, Eq. (2.3), the Heisenberg 
Hamiltonian of Eq. (2. 1) splits into two parts: a 
quadratic part and a nonquadratic part containing 
an essentially infinite formal series in aja l [due to 
the square roots appearing in Eq. (2. 3)]. The 
quadratic part gives a result identical to Bloch's 
linear approximation. The other nonquadratic 
part is then interpreted by Holstein-Primakoff as 
scatterings of spin waves. Thus, if the nonquad­
ratic part could be neglected, then the leading term 

of the Holstein- Primakoff result would agree with 
the experimental situation just as Bloch's3 does. 
There was virtually no significant theoretical pro­
gress in this direction from then on until the 
appearance of Dyson's two papers in 1956. Dyson 
criticized the work of Holstein-Primakoff by 
pointing out that their nonquadratic term was 
actually too large to be neglected, so that the cal­
culation was not really too useful. He attributed 
this to their improper choice of state vectors in 
the calculation and he proposed to use a different 
set of state vectors, though nonorthogonal among 
other things, to span the Hilbert space. His pro­
cedure consists of constructing, by means of his 
state vectors, an equivalent Hamiltonian from 
which his calculation proceeded. His result leads 
to a T4 modification of the magnetization. Besides, 
he argued that there could not be any bound states 
in either two- or three-dimensional cases while 
Bethe4 has shown the existence of bound states in 
the one-dimensional chain. This aspect of Dyson's 
paper was however shown to be false by Wortis.5 
Our results show that not only bound states do 
exist, but, in fact, two-particle scattering states 
can be ignored in the long-wavelength range. This 
is rather different from the conclusion reached by 
Wortis, who showed the presence of a threshold 
below which the bound states appear. Dyson's cal­
culation can be considered as a result of the alge­
braic realization of the algebra:6 

S(-) =" (2s) 1/2a+ 
I l! 

Sf+! == (25)1/2[1 - (l/2s)atal]al' (2.5) 

S;zJ= 5 - aial' 

At this point, we note the interesting fact that the 
realizations corresponding to the Holstein­
Primakoff and Dyson solutions both satisfy the 
relation 

Sf = s(s + 1), (2.6) 

which is the usual eigenvalue equation if Eq. (2. 6) 
is applied to an eigenstate of S2. Thus Eq. (2. 6) 
should be considered as an "auxiliary condition" 
resulting from the particular realization. In other 
words, Eq. (2.6) is valid when applied to an eigen­
state of S2. This is not at all a drawback; because 
the eigenvalue s is fixed for a given problem and 
because the Hamiltonian is expected to commute 
with S2 on physical grounds, it is natural to use 
simultaneous eigenstates of:JC and 82. Under these 
circumstances Eq. (2.6) is consistent if one keeps 
the preceding choice of eigenstates in mind. Since 
every realization will result in some sort of con­
dition (or conditions) like Eq. (2. 6), it therefore 
provides a useful guide in the selection of realiza­
tions (Le., the realization should be discarded if 
the condition is inconsistent on physical or mathe­
matical grounds) and it also tells what kind of 
eigenstate one must employ in the particular cal­
culation. From the purely algebraic viewpoint, a 
drawback of the realization corresponding to the 
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Hoistein-Primakoff solution is the appearance of 
square roots of operators which have to be interp­
reted mathematically as formal infinite series of 
operators. On the other hand, the realization 
corresponding to the Dyson's solution forces sf+) 
and Sf-) is not to be related by Hermitian conjuga­
tion; this is also an uncomfortable situation since 
the resulting Hamiltonian is no longer Hermitian. 
Therefore, the question is whether one can find a 
simple enough realization, in terms of commutator 
or anticommutator algebras, if possible, of Eq. (2. 2) 
without the drawbacks (either mathematically or 
physically) of the Holstein-Primakoff and Dyson 
approaches. 

3. AN ALGEBRAIC REALIZATION AND SEMI­
PARTICLE INTERPRETATION 

Our calculation in the rest of the paper is based 
upon the following realization in terms of two 
boson operators: 

S (~ - (3+b 
Z - Z l' 

S H - b+1l 
Z - ZI-1' 

s~z) = ~ (/3tf3 z - ZJtbz), 
with 

[{3z, (3;!;] = 0 Zm' [{3z, (3m] = 0, 

[bZ' b;!;] = DZm' 
[{3z, b;!;] = 0, 

[bZ' b"J = 0, 

[(3z, bml = O. 

(3.1) 

(3.2) 

It is important to note that if the operators {3 and 
b are subjected to the transformation of a c-number 
addition, 

{3z~ (31 + c, (3.3) 

the algebraic relations Eq. (2. 2), are still satisfied. 
We shall make use of this property in what follows. 

It is also easy to verify that the realization of Eq. 
(3.1) yields the following auxiliary condition: 

(3z+(3z + bibz = 28, 

by which we can write sr) into 

s~z) =:: 8 - ZJtbl = - S + f3tf3z. 

(3.4) 

(3.5) 

In virtue of Eq. (3. 3), we consider the following 
transformation: 

(3.6) 

and define the Fourier transform for f3z and bz by 

(3k = ....!....)]e ik •1f3z, 
,fFiz 

(3.7) 

b - 1 '" ik'lb k - -Lie I' 
IN I 

(3.8) 

The Hamiltonian of Eq. (2. 1) now becomes 

:JC = Eo + )]{H + 2s[J(0) - J(k)l}b.tbk 
k 

1 
- N B J(kl)~+k f3t-k bk (31t 

kl'k2,k3 2 1 3 1 ;, 2 

- ~ B J(k l )l1t;-k l1t -k bk bit, (3.9) 
kl,k2,k3 2 1 3 1 2 3 

where 

Eo = - NSH - NS2J(0). (3.10) 

At this point, it is reasonable to expect particle 
interpretations for both operators {3 and b since 
they satisfy commutation relations. They are 
called semiparticles, whose phYSical properties 
are now to be analyzed. First, from the fact that 
there is no quadratic term for (3 particle in!lC it is 
obvious that 

(3. 11) 

for arbitrary n. In other words, the semiparticle (3 
actually carries no energy. Hence the (3 particle 
can simply be considered as a "spurion" which 
does nothing besides shuffling the spin-quantum 
numbers. It is clear that 

bt '" lft 10 >, m = 1, 2., ... 
1 m 

(3.12) 

are not eigenvectors of 3C. Since the number opera­
tors of the b particles 

(3.13) 

commute with3C, the eigenvalues of 3C and m,(b) can 
be used as simultaneous labels for state vectors. 
Let us denote by I Pv ... ,Pm) a simultaneous 
eigenvector of 3C and m,(b) with b particles of 
momenta Pv ... , Pm' Next, let us evaluate the ex­
pansion: 

_ 2SN (n) 
Ipl""'Pm) = ~ )] C (Pl ···Pm;ql···qm) 

n~v ql' . ·qm 

x [1/(m!n!)1/2](J3't)nl1 "'11 10), 
1 m 

(3.14) 

where the amplitude C(">(Pl ... Pm; ql ... Q.,,), to be 
determined, is the probability of finding m b par­
ticles of momenta ql ... qm together with n (3 
particles of zero momentum. By orthonormality, 
Eq. (3.14) yields 

C (n)(Pl ... Pm; ql ... qm) 

= [1/(m !n!)1/2](01 ({3otb</, •.. bq IP1"'" p,,). 
1 m (3. 15) 
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Now, if I PI"" ,Pm) is an eigenvector of3C with 
eigenvalue Jm(PI . " Pm)' i.e., 

then C (I~(PI .. , Pm; q 1 ... qm) has to satisfy the 
following difference equation: 

3C I PI'" .,Pm ) :: ~(PI ... Pm)1 pv·· .,Pm ), (3.16) 

J (p ... P )C<'~(p ... p'q ... q ):: (E + ~{H + 2s[J(0) - J(q.)]})c(n)(P '" p'q ... q ) m I m 1 m' 1 m 0 i=1 • I m' I m 

- (2sn\1/2 I; J(q.)C(n-l)(PI ... P ;ql ... q ) _ (2 s (n + 1»)1/2f;J(qi)C(,,+l)(P1 ... P 'ql ... q ) 
N j i=l.· m m N i=l. m' III 

n m (,,) 2 m H (n) 
-N~J(qi)C (PI ···Pm;ql···q"')-N~Rl~J(k)C (Pl···P",;ql···qj-l'qj-k, 

The I) function in Eq. (3. 18) corresponds to momentum conservation. 

If one chooses F(n) so that 

(3. 17) 

(3. 18) 

F(n + 2) ~ (n + I)F(n + 1) + 2SN(n + I)F(n) = 0, (3.19) 

then Eq. (3.17) becomes 

J",(PI ... Pm)W(Pl ... Pm;ql .. , qm) = (Eo + faH + 2s[J(0) - J(qi)}}) W(PI'" Pm;ql ... qm) 
i=l. 

2 m i-I 

- N ~ E.E J(k)W(Pl ••• Pm; qi .•• qj-l' qj - It, qj+lI "', qi-l' q, + k, qi+l .•. qm)' 
.=1 J=1 k 

(3.20) 

Since Eq. (3. 20) is entirely equivalent to the eigenvalue problem of the following Hamiltonian 

1 
Jeeff = Eo + E{H + 2s[J(0) - J (p) ]}btbp - N- E J (PI)l{ +P, It_p bp' b.., (3.21) 

P PI P:! P3 ']I 1 '3 1 3-'!1 

we shall use the above Jeeff as our "effective Hamiltonian" for carrying out the rest of the computation. 
We now define the eigenvector Ipv" .,Pm)' by the following expansion 

Ipv ... ,p",)' == ~ _1-.W(PI'" Pm;ql ... q",)c5(3)[.~(Pi - q)~ . "a: 10)', (3.22) 
Ql' .. rt", Jmf i=1 'J 1 m 

where 

10)' ==v'RE(- 1 )n.!.F(n)«(3+)"IO). 
,,=0 (2SN)1/2 n! 0 

(3.23) 

By the normalization condition (010)' = 1, we have 

(3.24) 

It is an important feature of the effective Hamil­
tonianJe e that the (3 particles are no longer 
present; tiiey "dressed up" the b particles. Con­
sequently, the dynamic properties of spin waves 
are entirely due to the b particles which are the 
only semiparticles in the Hamiltonian~ff' Thus, 
from now on we shall call b particles "spin waves" 
or "magnons." 

Since the operators (3 and b both satisfy the same 
algebraic relation, namely the commutation rela­
tion, they can be considered as a doublet like the 
proton and neutron in nuclear physics. 7 In this 
case, one can interpret the operator (3 as the con­
densed particle while b is the actual spin wave 
observed physically. 8 The doublet feature can be 
made more elegant by introducing the notation 

then Eq. (3. 1) becomes 

Sl(+) = ~t~l' 

~(-) :: ~ta3)/I 

s/Z> :: ~taz~l' 

(3.25) 

(3.26) 
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with 

u+ = (~~), U_ = (~~), Uz = ~G _~). (3.27) 

Thus, the doublet formalism yields a symmetric 
form which is very appealing. 

4. THE BOUND STATES AND THE BETHE­
SALPETER EQUATION 

By Eq. (4. 5) we obtain the equation for the Green's 
function: 

(H - 2~ v~ + -} a~JSp(Xl - x 2) 

= - i15(tl - t2 )15 (3)(X l - x2 )· 

Equations (4.7) and (4.9) lead to the Bethe­
Salpeter integral equation: 

(4.9) 

In the long-wavelength region, i.e., ka« 1 (a = the "J 
lattice constant), the effective Hamiltonian becomes XkEa(Xl' X2) = X~Ea(Xl> X2) - i2J(0)u dtySp(Xl - Y) 

y 

(4.1) 

where 

11m := 4SJa 2 • (4.2) 

(For simplicity we consider only the simple cubic 
case.) Defining the Fourier transform: 

where the inhomogeneous term satisfies 

For xl = x 2 , Eq. (4.10) becomes 

XkEa(X,X) = X~Ea(x,x)-L;JdtyQ(x-y) 
y 

X XkEa(Y' Y), 

(4. 10) 

(4.11) 

( 4.12) 

(4.3) where 

therefore, 

and 
[lJI(x, t), 1JI+ (x', t)] = 15(x - x'), 

[lJI(x, t),lJI(x', t)] == o. 

The equation of motion, in terms of lJI(x, t), is 

(4.4) 

(H"- 2~ V 2 + ~ ;t}lJI(X) = 2J(O)lJI+(x)lJI(x)lJI(x). 

(4.5) 

Define now the Bethe-Salpeter wavefunction:9 

where T(1JI(Xl)1JI(X2)) is the time-ordered product of 
lJI(Xl) and 1JI(X2)' From the equation of motion am 
the commutation relations of 1JI, it is straight­
forward to obtain the Bethe-Salpeter equation: 

( H - -irn V~ + ~ a~J 

x (H-i,nvi ++ a~1)XkEa(Xl>X2) 
= i2J(0)O(tl - t2)O(3) (xl -x2h kEa (Xl'X2)' 

(4.7) 

In order to write Eq. (4. 7) as an integral equation, 
let us introduce the propagator function 

(4.8) 

Q(X) := i2J(O)Sp(x)Sp(x). (4. 13) 

It is useful to write the propagator function in the 
integral representation: 

i JdE 1 i(kox-Et) 
~(x) = N~ 21T E - E" + iE e , (4. 14) 

where 

Ek := H + (1/2m)k2 • (4.15) 

By use of Eq. (4.14), the kernel Q(x) takes the form 

Q(x) = ~~ J~~ Q(k, E)ei(kox-Et), (4.16) 

where 

(4. 17) 

Introduce now the two-particle state 

(X x) := (p q)ei[(p+q)OX-(Ep+EpJtJ. 
XkEa' Xc<' (4. 18) 

Substitution of Eq. (4. 18) into the Bethe-Salpeter 
equation yields 

1 
Xu (p, q) = 1 + Q(l} + q, Ep + Eq) • (4. 19) 

Using Eq. (4.17) and replacing the summation by 
integration, 

(4.20) 
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we have 

Q(p + q,Ep + Eq) = -~(27T - a\p- ql 
47T 2SJ 

x tanh-1 a I p ~ q I) . (4.21) 

Since the left-hand side of Eq. (4. 21) depends on 
(p + q), while the right-hand side depends on 
(p - q), there are only two possibilities: 

(i) i> = q, 

(ii) poq = O. 
(4.22) 

Case (i) implies Xa(p, q) = cons. Consequently, 
the particles are free in this case. On the other 
hand, case (ii) leads to an inconsistency. The 
argument is given in Appendix B. Consequently, 
two-particle scattering states may be ignored in 
the long-wavelength region. 

The bound states may be written in the form 

() (k) i()g.x- wk t ) 
XB.kEa X, X = XBa e . (4.23) 

Substitution of Eq. (4. 23) into the homogeneous 
Bethe-Salpeter integral equation leads to 

(4.24) 

Hence Eq. (4.17) is reduced to 

4J(0)6 t = _ 1, 

N q M+lq2 
m 

(4.25) 

with 
w,. = 2H + (1/4m)k2 - M. (4.26) 

By changing the summation of Eq. (4. 25) into an 
integration, according to Eq. (4.20), it yields a 
relation between the cutoff A of the integral in 
terms of M: 

A -.fM tan-1 ~ = if;) (SJ)3/2. 
{M 

In the case of S = ~,Eq. (4. 26) leads to 

w" = 211 + ~ a2Jk2 - M, 

(4.27) 

(4. 28) 

which is exactly the leading term found by Bethe. 4 
The M defined by Eq. (4.26) is just the binding 
energy of the bound state. 

By restricting ourselves only to two-particle 
states the Hamiltonian now takes the simple form 

From the Hamiltonian of Eq. (4. 29) we can write 
down the thermodynamic free energy of the system: 

F = Eo - N{3-1[Z5/2 (H{3) + 23/2Z 5/2(2H{3)]8 3/2 , 

(4.30) 
with 

) ~~ 1 -rx 
Z .. (x = L.J II e , 

7'=1 r 

8 == [h{3SJ(O)]-l. 

(4.31) 

(4.32) 

The spontaneous magnetization is therefore given 
by 

M = N [S - (1 + 25/2)~@e3/2], (4.33) 

5. DISCUSSION 

In the long-wavelength region, the bound states 
should appear from the preceding analysis. This 
conclusion is different from those of Dyson and 
Wortis. Dyson ruled out the existence of the bound 
states, while Wortis derived a bound-state condition 
(in three dimensions) which requires that the total 
momentum of the pair of particles be larger than 
a certain threshold value. 

The existence of the bound state makes the Born 
approximation ineffective. Hence, we cannot 
simply take the interaction part of the Hamiltonian 
X of Eq. (3.21) as the perturbed part. However, 
this difficulty can be easily resolved by arranging 
the Hamiltonian of Eq. (3. 21) in the following way: 

where 

Xo = 6{H + 2s[J(0) - J(k)]}btbk' 
k 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

By so doing we can take ~o +:J<;.) as the unper­
turbed part and XII as the perturbation. A per­
turbation calculation in this way gives the spon­
taneous magnetization (detailS of the perturbation 
calculation will be published in another paper by 
C.J. L.): 

(4.29) M = N(S - ao83/2 - a195/2 - a 2e7l2 

where B,. and Bk+ are the annihilation and creation 
operators of the bound states. 

- a 84 '+ ... ) 3 , 

where 8 is defined by Eq. (4. 32). 

(5.5) 
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APPENDIX A: ON THE VALUE OF R 

The R defined by Eq. (3. 24) is given in terms of 
F(n) which satisfies the equation 

F(n + 1) _ 2SN + _l_F(n + 2) 
F(n) - n + 1 F(n) • (AI) 

Defining 

_ SSN( 1 \n 1 
D = Eo 2SN) n! F2(n), (A2) 

we have 

R-l < D. (A3) 

To find whether D is convergent, it suffices to find 
the asymptotic solution of Eq. (AI) for F(n) at 
n = SSN. Using the ansatz 

F(n) ,..., (2SNt/2- 1 .Jnf for n» 1 

we have, therefore, 

F(n + 1)/F(n) = 4SN, 

2S'N + 1 F(n + 2) 4SN nn F(n) = , 

(A4) 

(A5) 

(A6) 

when n = SSN. Thus it verifies that the asymptotic 
solution of Eq. (A4) does satisfy Eq. (AI). By Eq. 
(A4) we obtain 

( 1 \1I~F2(n)"'" 1 
2SN) n! 64S2N2' 

(A7) 

which implies the convergence of D, i.e., R :f O. 
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APPENDIX B: THE INCONSISTENCY OF THE 
CASE p-q = 0 

Equations (4.19) and (4.21), under the condition 
p-q = 0, lead to 

Xcx(p + q) = Xcx(p - q) 

= [1 - J(O) (21T _ alp _ qltanh-1 a Ip - ql\]-l. 
~2~ L 7 

On the other hand, a two-particle state can be 
written as 

or 

Xcx(x, t) = 2; xcx(p + q)ei[(p+q).z-Ep.qtl, 
p.q 

Xcx (x, t) = E Xcx (p - q)ei[(p+q).X-Ep+qtl. 
p.q 

Write I = p + q; then we have 

or 

i.e., 

(X t) = '" (l)el[l.x-Eltl Xcx ' D Xcx , 
l,q 

Xcx (x, t) = 2; Xcx (1 - 2q)e i [lox-Hl tl , 
l,q 

Xcx (1) = Xcx (1 - 2q); 

(Bl) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

hence x" (1) is a periodic function. Comparison of 
Eq. (B6) with Eq. (Bl) leads to the inconsistency. 

7 See e.g., S. Gasiorowicz, Elementary Particle Physics (Wiley, 
New York, 1967). 

S The doublet feature of a Heisenberg ferromagnet Hamiltonian 
was discussed, from a different approach by L. Leplae, R. N. 
Sen, and H. Umezawa, Nuovo Cimento 49,1 (1967). 

9 See, e.g., D. Lur1!!, Particle and Field (Interscience, New 
York, 196B). 
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We show that a field which transforms irreducibly under the homogeneous Lorentz group admits four 
kinds of covariant derivatives-gradient, divergence, and two species of curl. We construct these deriva­
tives explicitly for both finite- and infinite-dimensional representations. Physical applications are 
discussed, 

I. INTRODUCTION 

Although the linear representations of the homo­
geneous Lorentz group have been exhaustively 
catalogued by mathematicians,1 most physicists 
are reluctant to stray beyond the finite-dimen­
sional (tensor and spinor) representations~xcept, 
perhaps, for an occasional look at an infinite­
dimensional unitary representation. There is good 
reason for this wariness. A glance at the standard 
references 2 reveals that, while the theory is ele­
gant, the notational complexity can be formidable. 
For finite-dimensional representations, Lorentz 
transformation behavior is absorbed into the ten­
sor (or spinor) notation itself; and well-known 
tools and tricks (involving the use of g j1V' E jJ U A a ' 

Y jJ ,aI" contra<;tion of indices, symmetrizing, re­
moving the trace, etc.) are available, which reduce 
most group theoretical problems (Clebsch-Gordan 
decompositions, formulation of covariant field 
equations, construction of scalar Lagrangians, 
etc.) to triviality. Unfortunately, there is no easy 
way to extend or generalize tensor notation to 
describe infinite-dimensional representations. 
Hence, these same group theoretical problems 
become extremely difficult calculations. 

Our purpose in this article is to present a simple 
and general treatment of one such calculation one 
faces when attempting to, formulate covariant field 
equations3 : How does one covariantly differentiate 
an infinite-dimensional field? 

II. COVARIANT DERlVATIVES OF FINITE­
DIMENSIONAL FIELDS 

We tentatively define a covariant derivative as 
follows: Given a field which transforms irreducibly 
under a group, a covariant derivative of this field 
is a new field which also transforms irreducibly. 
This new field is obtained by differentiating the 
original field in a way to be described later. We 
shall generalize this definition somewhat in Sec. IV. 

A. The Rotation Group S0(3) 

All irreducible representations of SO(3) are finite­
dimenSional, and can be labeled (l) where I = 0,1, 
2, . .. . A field which transform~ like (I) may be 
represented in tensor form as Qa

1 
••• a (x). (From 

here on, we suppress the space coordidate x.) 
ci. .. . a

z 
is traceless and symmetric in its 3-space 

indices ai' has (21 + 1) independent components, 
and is said to carry spin I. 

There are precisely three covariant derivatives 
of Q;j' . . at" These are the divergence 

div(QZ) == VkQ!a •• • az ' 
1 -1 

(la) 

which carries spin 1 - 1, the curl 

I 
I "\' I curl(Q) == L..J E 'k V.Q -, a iJ J a 1" • a· ... al k 

1=1 I 
(Ib) 

which carries spin I, and the gradient 

/+1 

grad(Ql) == 6 va., Q~1' .. "." .. a 1+] 
i=1 

/+1 

X 2:; 
i,j=l.i'1 J 

(Ic) 

which carries spin 1 + 1. In Eq. (1) the overbar 
iii indicates that this index is absent from the 
sequence. The derivatives in Eq. (1) are covariant 
(transform irreducibly) because they were con­
structed to be explicitly totally symmetric and 
traceless. 

The derivative operator Vi is a vector (carries 
spin 1). We can interpret Eq. (1) group theoreti­
cally as the Clebsch-Gordan decomposition 

(1) (9 (I) = (l - 1) EB (l) EB (I + 1). 

There is one exceptional case. A scalar, I = 0, 
allows only one kind of derivative, the gradient, 
because (1) (9 (0) = (1). 

B. THE HOMOOENEOUS LORENTZ GROUP 
0(3,1) 

(2) 

Irreducible representations of the Lorentz group 
are characterized by a pair of numbers, (lo, 11).2 
1o is the lowest spin (that is, the smallest repre­
sentation of the rotation subgroup) contained in 
(lo, l1)' Thus, lo must be an integer or half -integer. 
Each higher spin, (lo + 1), (10 + 2), (lo + 3), ... , 
is contained exactly once. If either l1 or - l1 
occurs in this sequence, then it and all higher 
spins are absent from the representation. The 
representation is then finite-dimenSional, with 
dimension 112 - lo 2. For all othe r values of '1' 
real or complex, the representation is infinite­
dimensional. 

Following subsection II A, we observe that the 
derivative operator ajJ is a vector [transforms 

2151 
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as the representation (0,2)]. Thus, to identify the 
covariant derivatives of the representation (lo' II)' 
we must examine the Clebsch-Gordan decompOSi­
tion of (0,2) 0 (lo' ll)' For finite-dimensional rep­
resentations,4 we obtain four covariant derivatives: 

(0,2) 0 (lo' l1) = (lO' II - 1), the "divergence", 

EB (lO,ll + 1),the "gradient", 

EB (lo -1,l1),the "curl-", 

EB (lo + 1, l1)' the "curl+". 

There are three exceptional cases5 : (i) If lo = ° 
and l1 = 1, then only the gradient (0,2) occurs. 

(3 ) 

(ii) If lo > ° and II = Io + 1, then only the gradient 
and curl- occur. (iii) If Io = ° and II '" 1, then 
curl- is (1, -ll); if Io = L then curl- is (i, - II)' 

Examples of covariant derivatives of finite­
dimensional representations (including some ex­
ceptional cases) are given in Table I. 

Observe that exceptional cases (i) and (ii) ensure 
that differentiating a finite-dimensional represen­
tation will never yield an infinite-dimensional one. 
The converse, as will be seen, is not merely 
possible, but essential to many physical applica­
tions. Exception (iii) explains how to avoid an 
(unacceptable) negative value for lo' 

m. COVARIANT DERIVATIVES OF INFINITE­
DIMENSIONAL FIELDS 

We describe infinite-dimensional representations 
by the following notation: Let 

belong to the irreducible representation (lo' 11 ), 

The spin-N entry,Q!/ .. . aN,is traceless and 
symmetric in the 3-§pace indices a i • An infinitesi­
mal Lorentz boost generated by .r" gives 

_ i[QN JOk] _ (xkao _ x0'V )QN 
a 1• • • a N , - k a j ••• a N 

(N+l)2-15 N+1 
- (N + 1 -I ) Q 

1 (N + 1)2 a l •• .aN k 

loll ~ N + L..JEkQ-iN(N+ 1) i=l a i q aj ... ai .. ·aNq 

N + II ~ ~ N-1 1 +-- L..J 6 Q - ---
2N+1 i=l aik aj ... ai· .. aN 2N-1 

The choice of basis is,of course,arbitrary. We 
prefer a tensorial basis, because it treats all three 
directions symmetrically, and it permits easy 
connection with 4-tensors. For example, the nor-
malization of Eq. (4) is such that if T" " "is 

"1'"2' • '''n a traceless symmetric tensor, then 

Q
o _ T 1 

- 0 0 ••• 0 , Q i == Too •. • oi , 

and so on. For another choice of basis, one could 
use the eigenstates of the z-component of the 
angular momentum, ~ I, m • 6 



                                                                                                                                    

COVARIANT DERIVATIVES 2153 

TABLE II. Explicit formulas for the curl+, curl-, diY, and grad of an irreducible representation. The values of 01, f3, y, Ii are to be 
inserted into Eq. (5). 

Derivative (la, II) OI(N) f3(N) YIN) o(N) 

div (/0,1 1 -1) (N + 1)2 - 10 2 -10 

grad (10' II + 1) (N-II)(N+I+II) (N -II)(N + 1 -ld[(N + 1)2_ 102] (N -11)(N + 1 + 11)1 0 (N + II)(N + 1 + III 

curl+ (10 + 1, II) N -10 (N - 10)(N + 1 - 10)(N + 1 - II) (N -10)11 N + II 

curl- (10 - 1, II) N + 10 (N + 10)(N + 1 + 10)(N + 1 -II) - (N + lolll N + II 

We now proceed to construct the covariant deriva­
tives of Q. Let R = {RN} be a covariant deriva­
tive of Q. The most general spin-N 3-tensor that 
one can construct by combining one derivative 
with the tensors {QN} is 

RN _ O'(N)a QN + (3(N) V QN+1 
a l · • • aN - 0 a l ·•• aN (N + 1)2 k al···aN k 

N 

+ N(~N)I) L; iEaipqVpQ~I···ai.··aNq + i=l 

~ ~ N N-1 1 
+ 2N + 1 L; Va. Q a •• • a .... aN - 2N- 1 

;=1 I I I 

!!, N-1 ( 
D 0a.a.VkQa ••• ai ... Q .••• aNk\. 

i.j =1 i 7'- j I J I J 
x (5) 

O'(N), (3(N), y(N), and 0(N) are as yet unspecified 
coefficients. (In defining the last three, we have 
extracted various functions of N to simplify later 
results.) 

That R = {RN} is a covariant derivative (trans­
forms irreducibly) means that 

R = {Rio _ RIO+1 _ R1o+2 _ } 
al .. ·al~ al· .. al o+ I ' a l • .. a'o+2'·" 

belongs to the representation (io, [I) for some 
new parameters [0 and 11 or equivalently that 
- i[R~I" .aN,JO

k
] is compatible with Eq.(4). 

This compatibility condition gives simultaneous 
difference equations satisfied by 0', {3, y, and 0, 
which we have solved. We find that for both in­
finite- and finite-dimensional representations. 
there are just foul' allowed values of (10 , [1) 
and hence just four kinds of covariant derivatives. 
The explicit derivatives, that is, formulas for 
O'(N), f3(N), y(N), and 0(N), are given in Table IT. 

Fig. 1. Schematic diagram of 
irreducible representations 
(lo, II) having integers 10 and 
[I' Each dot corresponds to 

. . . . . 

On Fig. 1, we exhibit these four covariant deriva­
ti ves by graphically illustrating their effect upon 
the subclass of irreducible representations having 
integer t1 • We also illustrate the three exceptional 
cases for finite-dimensional representations. 

On Fig. 1, we expect to = II = 1 to be a special 
case because (I, l) stands at the threshold of the 
finite-dimensional region. At this threshold, we 
can hope to produce finite-dimensional represen­
tations by differentiating infinite-dimensional 
representations. However, a glance at Table IT 
reveals that the four derivatives of (l, i) are not 
linearly independent. In fact,in a self-explanatory 
notation, 

curl- (I, 1) = (N + I) div (l, I), 

grad(l, l) = (N + 1 + l)curl+(l, i). (6) 

This is a startling result because div and curl­
(and grad and curl+) are supposed to transform as 
different representations of the Lorentz group. 
How can (l - 1, i) be the same representation as 
(i,l-I)? 

To answer these questions we must introduce the 
concept of indecomposable representations. 

Restated, this question is even more perplexing. 
We may think of RN as a four-dimensional "vector," 
with "components" O'(N), f3(N), y(N), 0(N). Then 
Table II gives a convenient choice of basis in the 
four-dimensional space of derivatives. By resolv­
ing an arbitrary vector R along the four "direc­
tions," div, grad, curl+, and curl-, we have identi­
fied the representations of the Lorentz group it 
contains. However, when 10 = II = l, Table IT no 
longer provides us with a complete basis-it gives 
only two linearly independent vectors-leaving two 

10 

· . . · . .. .. 
FINITE -DIMENSIONAL 

REPRESENTATIONS 
a representation. The arrows 
show the results of taking a 
covariant deri vative: curl +, 
curl-, grad, or div. Exceptional 
cases (i), (ii), and (iii) are shown. 
The line 110 I = III I is the 
threshold between finite- and 
infinite-dimensional represen­
tations. 

I N FINITE-DIMENSION AL . . . . . . • __ .grad. • 

+ E'(cepllon(li) . . . . . . 
CUf)-

curl+ 

t _._ grad 

. . REPRESENTATIONS 

• • •• • div 

~ curl-

\, . curl+ . i . curl-
/, 
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basis vectors unspecified. There must be two 
other kinds of derivatives belonging to represen­
tations of the Lorentz group which are not com­
patible with Eq. (4), and are thus not irreducible. 
How, then, do these two extraordinary derivatives 
of (l, 1) transform? 

IV. EXTENSION TO INDECOMPOSABLE 
REPRESENTATIONS 

A. DeSCription of Indecomposable Representations 

In .Sec. III we treated injinite-dimensional irredu­
cible representations of the Lorentz group. How­
ever, the fundamental transformation law in Eq. 
(4), and hence also the derivatives in Table U, 
actually apply to a somewhat broader class of 
representations. Since the Lorentz group is not 
compact, it possesses representations which are 
indecomposable (cannot be decomposed into direct 
sums of irreducible representations). These in­
decomposable representations consist, in the 
colorful terminology of Gel 'fand and Ponomarev, 1 

of various compatible irreducible representations 
"glued" together. For example, when 11 is an 
integer, one can "glue" a finite-dimensional rep­
resentation (lo' 11 ) onto its infinite-dimensional 
"tail" (11' 10). 7 Moreover, this gluing can be done 
in two ways: One way contains (lo' 11 ) as an invariant 
subrepresentation; the other way leaves the tail 
invariant. 8 Both speCies are described by Eq. (4). 

If 11 is a positive integer greater than 10 , then the 
first term on the right side of Eq. (4) exhibits a 
cutoff at N:::: (11 - 1). This gives, as expected, a 
jinite- dimensional representation, and no compo­
nents with spin 11 or higher can be generated from 
the lower-spin components. However, if we start 
with a component carrying spin 2: 11 , then we 
generate all spins including those below 11 • Thus 
Eq. (4) describes not only the finite -dimensional 
irreducible representation (lo' 11 ), but also the 
indecomposable representation consisting of 
(10' 11) glued onto its tail and containing (lo' 11 ) 

as an invariant subrepresentation. 

If l1 is a negative integer and - II > lo. then the 
last term on the right of Eq. (4) has a cutoff at 
N :::: -II. If we start with some component carry­
ing spin> - 11 and work our way down, we never 
generate spins smaller than - 11: This is the 
infinite-dimensional representation (- l1' - lo). 
On the other hand, if we begin with a lower-spin 
component and work up, we recover all spins. 
Evidently, in this case, Eq. (4) describes the in­
decomposable representation conSisting of (lo' ll) 
glued onto its tail (- ll' - 10) and containing the 
tail as an invariant subrepresentation. 

Observe that, as it stands, Eq. (4) cannot handle 
the jinit e- dimensional irreduCible representation 
(lo' llL when II is a negative integer and -ll > lo 
(nor the indecomposable representation which 
invariantly contains it). But this defect is easily 
remedied by noting that (lo'- ll) is the represen­
tation conjugate to (lo' ll). Thus, to get the trans-

formation rule for (1, - 3), say, we merely write 
Eq. (4) for (1,3), and then change the sign of i in 
the middle term (formally, we switch the sign of 
10 ). 

B. The Special Case 10 :::: 11 :::: Integer 

We can now answer the first question that we posed 
in Sec.UI: How can (1,1 -1) be the same represen­
tation as (I - 1, I) ? In this one peculiar instance, 
the difference between these two is illusory. 
div(l, I) =: (l, i- 1) is the tail part of curl- (i, I). 
The latter, as we have just found, normally con­
sists of (1 - 1, I) bound indecomposably to its tail 
(I, 1-1). Since,however,{3(l-l) happens to vanish 
in this case, only the tail remains. Apart from 
normalization, then, div(l, 1) and curl- (I, I) are 
identical, and both belong to the irreducible repre­
sentation (I, 1 - 1). Similarly, curl+ (I, I) and 
grad(l, 1) differ only in normalization, and both 
transform as (1 + 1,1). Group theoretically, there­
fore, 

div(l, I} ~ curl- (l, I) ,..., (1,1- 1), 

grad(l, I}"'" curl+(l, l)"'" (1 + 1,1). 

C. Extraordinary Derivatives of (1,1) 

(7) 

The examples of indecomposable representations 
we have described thus far are rather simple. 
More complicated indecomposable representations 
are constructed by "gluing" any number of replicas 
of a representation to any number of replicas of 
its tail. 1 The particular structure of subrepresen­
tations and subsubrepresentations is also somewhat 
arbitrary. 

We can now answer the second question posed in 
Sec.UI: What are the two extraordinary derivatives 
of (l, I)? Let 

D - {DI D I+l DI+2 ••. } 
- a 1· •• a I' a 1· •• a 1+1' a 1 ••• a 1+2' 

and 

represent the divergence and curl+ of (1,1). With 
each of these "ordinary" derivatives, we associate 
an "extraordinary" derivative 

v - {VI
- 1 VI vl+l ... } - al •• oal-1 ' QI"· .az, a l ,"" oal+1 ' 

and 
w- {Wi W l+l W I+2 ••• } 

- a l "· .az, a l " ... at"'l' al " ... a Z+2' , 

respectively. The coefficients which specify V 
are a(N) = 1, {3(N) = (N + l)(N + 1 + l),y(N) =: 0, 
and o(N) = N(N + l)-l,and the coefficients which 
specify Ware a(N) :::: 1, {3(N) :::: (2N + 1) (N + 1-1)2 
(N + 1 + 1)-1, yeN) =: N, and o(N) :::: O. 

We have found that D and V and G and Weach 
combine to form indecomposable representations. 
The infinitesimal Lorentz transformation laws for 
V and Ware 
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Equation (8) is somewhat complicated, but it is 
easy to s\l.mmarize schematically (see Fig. 2).9 
The arrows indicate a -commutation with J 0 k 

From Eq. (8) (or Fig. 2) we observe the following: 
The transformation law for V I- 1 gives Dl unly, and 
no Vi. Hence, VI-1 is indecomposably "glued" to 
D. The other components of V are indecomposably 
joined to this combination. In other words, the 
divergence [the irreducible representation (I, 
1 - 1)] is imbedded in an indecomposable repre­
sentation consisting of D joined to VI

-
1

; and this 
combination is, in turn, imbedded in a still larger 
indecomposable representation which includes 
{Vi, Vl+1, V I

+
2 , ••• }. G and W are indecomposably 

united in an analogous way. 

There are important instances in field theory 
(see Sec. V) when the divergence D vanishes. In 
such cases (only), V I

-
1 constitutes the irreducible 

finite-dimensional representation (1- 1, I). Simi­
larly, if cur I + vanishes, then Wi becomes the 
finite-dimensional representation (1, I + 1). It is 
precisely in these two ways that we can obtain 
finite-dimensional representations by differentiat­
ing infinite-dimensional representations. This 
mathematical curiosity is intimately connected 
with the construction of field-strength tensors in 
massless field theory. 

D. Analogy to a Multisheeted Riemann Surface 

There is a remarkable analogy between Fig. 1 and 
a Riemann surface. Let us think of the line 
lt~ I = 1111 (the threshold separating the finite­
and infinite-dimensional representations) as a 
"branch cut" and the operations of cul'l+, curl-, 
di v, and grad as "analytic continuation" from one 
point to another in the "complex plane." The 
"points" on Fig. 1 are all irreducible representa­
tions. We imagine an infinite stack of planes 
similar to Fig. 1, whose points are indecomposable 
representations of increasing complexity. When 
we analytically continue through the threshold, we 

jump to the next higher Riemann sheet. This jump 
always occurs except in the special instance des­
cribed at the end of subsection IV C. 

v. APPLICATIONS 

As Bender first demonstrated,10 free massless 
quantum fields in the radiation gauge belong to 
infinite-dimensional representations of the 
Lorentz group. In fact, the field C(L) associated 
with a free massless particle of spin L trans­
forms according to the representation (L, 1). 
These fields obey complicated field equations. 11 
In our present notation, these equations assume 
the delightfully simple form: 

div C = 0, 

curl+C = 0,. 
(9) 

curl-C = 0, 

grad C = 2(L2 - 1)(ooC). 

Eq. (9) is the infinite-dimensional analog of Max­
well's equations. 

D 

'(!Xlx!xlXlX~IX-IX-!X!X1~ 
(I-I) (I) (1+1) (1.2) (1+3) (1+-4) (1+5) (1+6) (1+7) (1+8) (1+9) 
'-------_____ -----y ______________ .........-1 

v 

G 
-----'--

'<Vi/i/l/l/171/1/1/1;'~"-
(1) (l:T)(i;2j(l:3)(I:4J(l:5J(I:6)(j:7l7i:BJT~9J7i:IOJ--
'------_ _ y-__________ --.J 

w 

Fig.2. Schematic view of the transformation law 
in Eq. (8). The invariant subspaces of the inde­
composable representations, V and D, and W and 
G, are shown. Each arrow represents a commu­
tation with J 0 \ the generator of pure Lorentz 
transformations. 
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From the last equation, it is clear that (a oC) 
belongs to the representation (L,2). Indeed, 
Bender found that the Pth time derivative of C 
[which we shall call (P) for short] belongs to the 
representation (L, 1 + P), and obeys field equations 
which read, in our notation: 

div(P) = 0, 

curl+(P) = 0, 

curl-(P) = 0, 

grad(P) = 2[L2 - (P + 1)2](P + 1). 

(10) 

When P = (L - 1), the gradient vanishes. This is 
expected because we are now computing grad(L, L) 
which, as shown in Sec. IV, is proportional to 
curl+(L, L). As curl+(P) is always zero, it is not 
surprising that the gradient also vanishes at this 
stage. However, what about the two anomalous 
derivatives of (L, L)? Explicit calculation gives 
V = ° and WN = 2(N + 1 - L)(N + 1 + L)-l (L)N. 
In particular, since curl+ (L, L) vanishes, WL = 
2/(2L + 1) (L)L belongs to the finite-dimensional 
irreducible representation (L, L + 1). Thus, the 
L th time derivative of C(L) belongs to a finite­
dimensional representation (this, also, was noted 
by Bender) called the "field-strength tensor." 
For spin 1 (electrodynamics) this is Fllv; for spin 
2 (linearized gravity), it is the free Riemann 
tensor. 
In a recent paper, 12 Bender and Griffiths demon­
strated that the energy density (and, in fact, all 
the local densities of the Poincare generators) 
for a massless field carrying spin >1 belongs 
to an infinite-dimensional representation of the 
Lorentz group. This result contrasts with the 
massive case (or massless spin 0, tor 1) where, 
of course, there is a second-rank stress tensor 
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With this translation, Eq. (3'), p. 189, of GMS reduces to our 
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(Ref. 2). 

Til V • The ordinary finite-dimensional stress 
tensor transforms as 

(0,3) Ef) (0,1), 

whereas the massless infinite-rank stress "tensor" 
transforms as 12 

(0.3)' Ef) (0, 1)'. 

The prime in (0, l)' indicates that this is the 
infinite-dimensional representation consisting of 
(0,1) glued indecomposably onto its tail (l, 0) in 
such a way that the tail is the invariant subrepre­
sentation. 

T Il
V satisfies a local conservation law 

or, in the terminology of this paper, 

div T(O,3)·a: grad T(O,l)' 

The divergence of the (0,3) part and the gradient 
of the (0,1) part both transform as (0,2); the local 
conservation law says that they are in fact pro­
portional. 13 The infinite-dimensional stress ten­
sor was also found to obey a pair of local conser­
vation laws which now read: 

div T (0,3)' a: grad T (0,1)' , 

div T (0,1)' = 0. 

(11) 

These equations as stated here are much Simpler 
than their original form, 12 and reveal in an elegant 
way the striking parallel between finite- and 
infinite-dimensional stress tensors. 14 

7 If 11 is negative, then the tail is (- 11' - 10 ), 
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14 The absence of a second local conservation law for the 
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Second sOWld in a weakly interacting Bose gas at low temperatures is described from a purely micro­
scopic viewpoint. The simplicity of the model, which is specified by a single scattering length, allows a 
precise field theoretic analysis within the framework of equilibrium statistical mechanics in the weak 
coupling limit. The dispersion formula /I = c2q - iTq2 + O(q3) for the frequency of the second sOWld /I 

in terms of its wavenumber q is established. The leading terms in the low-temperature limit of the 
constants c2 and T are evaluated exactly. 

1. INTRODUCTION 

A weakly interacting Bose system at low tempera­
tures may be viewed as a dilute gas of phonons. 
Analogous to the sound waves in ordinary gases, 
there is second sound in this gas of phonons. With 
this physical picture in mind, we present in this 
paper a purely microscopic description of second 
sound based on a simple model. 

The purpose of such a microscopic description is 
to gain qualitative understanding in a clear-cut 
manner as simply as possible. We do not expect 
the simple results obtained here to be applicable 
to observations on He II. Second sound in He II 
has been very extenSively investigated theoreti­
cally, especially by Khalantnikov.1 In the absence 
of any tractable microscopic theory of He II, these 
investigations are necessarily phenomenological. 
They are complicated since they must include 
many effects to have a realistic description of 
He II. When the parameters are many, one may 
easily lose track of the basic physical features. 
An idealized microscopiC model study can thus 
serve pedagogical purposes better and, being 
rigorous, it may offer clues for improving existing 
phenomenological theories, where ambiguities are 
still present. 

A purely microscopiC study of second sound is 
very important from a more theoretical viewpoint. 
Description of collective phenomena from first 
prinCiples has always been a challenging problem. 
The weakly interacting Bose gas model has been 
one of the few which exhibit interesting physical 
features and allow some clear-cut calculations. It 
is responsible for much of our understanding of 
general characteristics of Bose systems. Pre­
vious field theoretic investigations of this model 
have been mostly concerned with zero-tempera­
ture properties. 2,3 Only recently has there been 
more extensive study on low-temperature fea­
tures,4,5 but not on second sound. It is of great 
interest to accumulate information about this 
model. A study of second sound is a step toward 
a more complete Wlderstanding of not only the 
model but also the phenomenon of second sound 
itself and related phenomena. 

Second sound can also appear in a very different 
system, Le., a crystal lattice, and has received 
much investigation. At low temperatures, a crystal 
lattice also behaves like a dilute gas of phonons. 
Several authors, notably Krumhansl and Guyer, 6 

have studied the collective behavior, including the 

second sound, of these phonons via a kinetic equa­
tion. The first microscopic approach was due to 
Sham,7 who derived the kinetic equation assumed 
by previous authors, and elucidated many basic 
features. The Krumhansl-Guyer solution to the 
kinetic equation was a very important step toward 
a general understanding. 6 It however requires 
phenomenological relaxation times. This is inevit­
able owing to the complex nature of any lattice 
model. The phonons needed to be described pheno­
menologically to start with, in any case. 

A microscopic theory of second sound in a Bose 
gas must describe the phonons, which appear as a 
result of the interaction between bosons making up 
the system, from first principles and then describe 
the propagation of the second sound. The damping 
of the second sound must be also calculated in 
terms of microscopic parameters describing the 
bosons. In this respect, it is a more complicated 
problem than the one in solids mentioned above. 
On the other hand, the weakly interacting Bose gas 
model is probably the only one whieh is simple 
enough to allow a purely microscopic and tractable 
description of second sound. 

We give an outline of the paper and summarize the 
results. In Sec. 2, we define the model, identify the 
small parameters, and give a qualitative discussion 
of the problem, emphasizing the distinctive features 
of the second sound in contrast to the zero sound. 
The small parameters in the theory of a weakly 
interacting Bose gas at low temperatures are 

t = T/ms5, (1. 1) 

where m is the mass of a boson, a is the boson­
boson scattering length, So is the speed of a phonon 
in the zeroth (Bogoliubov) approximation: 

(1. 2) 

and n is the average denSity. 

Following the hints of the qualitative discussion, 
the small-g limit of the Bethe-Salpeter equation 
for certain vertex functions is obtained using the 
usual field theoretic finite-temperature perturba­
tion theory. This small-g limit turns out to re­
semble a Boltzmann equation when we take into 
account emission and absorption of phonons. It is 
an integral equation with free phonon energy and 
on-shell absorption-emission amplitudes as inputs. 

Some general features of the integral equation, as 
consequences of energy-momentum conservation, 
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space-time inversion, and rotation invariance, are 
discussed in Sec. 4. 

The eigenvalues and eigenfunctions of the kernel 
of the integral equation are investigated in Sec. 5. 
Singular solutions with poles near the real fre­
quency axis are identified as the second sound. We 
establiSh the dispersion formula for the second­
sound frequency v as a function of its wavenumber 
q: 

(1. 3) 

for small q, and, in the low-temperature limit, we 
evalua~e the leading terms of c2 and T exactly and 
find, in terms of the small parameters g and t 
defined in (1. 1), 

c2/S0 = 3-1/ 2 (1 + 10. 57t2 ) + 0(t4) + O(g), 

7m = O. 003314g-1t-9 + g-10(t-7) + 0(1). 

(1. 4) 

(1.5) 

The quantity c2 is the speed of second sound and 
7/ S~ may be regarded as an effective relaxation 
time. Equation (1.3) is valid at low temperatures 
provided q is very small, i.e., 

(1.6) 

The temperature dependence of the O(g) term in 
(1.4) and 0(1) in (1. 5) is not known. 

Physical interpretation in terms of oscillations in 
phonon distribution is sketched in Sec. 6. Further 
discussions and remarks are made. 

The results of this paper may be viewed as the 
leading terms in a systematic expansion in powers 
of g and t. There is neither an assumption nor any 
input other than g and t. As will be seen in the 
text, the picture of the second sound in this model 
is very simple indeed. A detailed analysis of the 
relationship between our description here and 
that of the two-fluid hydrodynamics has not been 
made. Such an analysis will undoubtedly be very 
fruitful. 

We want to emphasize that the purpose of this in­
vestigation, like most of model calculations, is not 
to obtain exact numbers such as (1. 4) and (1. 5), 
but to extract qualitative features in a rigorous 
way and demonstrate new approaches. 

The notation in this paper follows closely to that 
in Ref. 5, and the model is identical. For complete­
ness, we shall redefine the model and notation here. 
The reader is assumed to be familiar with the ele­
mentary features of a Bose gas and the Bogoliubov 
approximation. Detailed discussions on the formu­
lation of the perturbation theory and characteris­
tics of phonons can be found in Refs. 2-5. 

2. BASIC NOTION AND SIMPLE FEATURES 

A. '!be Model 

We are interested in a weakly interacting gas of 
spin-zero, mass-m bosons at temperature T and 

density n. The two-body force between a pair of 
bosons is assumed to be short-ranged and sum­
marized by the s-wave scattering length a. These 
four quantities, m, T, n, and a are the input para­
meters of the theory. As will be seen shortly, 
there are effectively only two parameters in the 
theory after properly choosing the units. 

We construct a grand canonical ensemble at tem­
perature T, chemical potential/L, with the Hamil­
tonian 

and the grand potential 

Q = - T In Tr exp[- (H - /LN)]!T, 

where 

Ek = k2 /2m, 

Pk= Ea:l),+k' 
p 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The volume of the system is taken to be unity. We 
have used a point potential as the model interaction 
so that v is a constant. This parameter v can be 
eliminated, to the orders of approximation of in­
terest, by using the perturbation expansion for the 
scattering length a in powers of v. 

To describe the condensate, we let 

ao = aJ = -rrlo, (2.5) 

where no, a c-number, is the condensate density. 
Substituting (2.5) in (2.1), we have a model inter­
action with terms shown in Fig.!. The condensate 
acts as a classical field. Bosons having nonzero 
momenta now have the Hamiltonian H - /LN' and 
the grand potential 

Q' = - T In Tr exp[- (H - /LH')]/T = Q + /Lno' 

where (2.6) 

N' = 6 aJak • (2.7) 
k=o 

The new parameters no and /L can be eliminated by 
requiring (JQ/ano = 0 at the correct no' i.e., 

and the condition 

n = no + n', 

\ f'r"HU\ fHH' H H ,", n'" ' 
" I \ \,' \ " , \ \ '.' \ , 

FIG. 1. Interaction terms. Dotted lines represent 
a factor ~ for the condensate particles. Solid lines 
represent particles of nonzero momenta. Wavy lines 
denote a factor v. 

(2.8) 

(2.9) 
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where 

n = (N), n' = (N'). 

We have thus defined our model completely. The 
standard diagrammatic perturbation theory will be 
our method of analysis. 

B. Bogoliubov Approximation and Small 
Parameters 

The well-known Bogoliubov approximation is 
obtained by ignoring the last three of the inter­
action terms shown in Fig. 1 and setting no = n. 
The excited states under this approximation are 
described by noninteracting particles, which we 
shall refer to as phonons, each having an energy 

(2. 10) 

where P is the phonon momentum, and 

S5 ;: 41Tan/ m2• (2. 11) 

For smaU momenta, we have wp = soP. When the 
last three terms in Fig. 1 are Kept, one effectively 
switches on the interaction between phonons in 
addition to modifying the characteristics of indivi­
dual phonons. At low temperatures, our model then 
describes a weakly interacting dilute gas of phonons. 

Precisely, by "low temperature" and "weakly inter­
acting" we mean that the dimensionless parameters 
t and g, defined by 

t=~= T 
mS8 41Tan/m' 

g = 41Tamso = (41Ta)3/2 n1/2, 

(2. 12) 

are small. Taking the Bogoliubov approximation as 
the zeroth approximation, we naturally define mso 
and m s8, as units of momentum and energy, respec­
tively. In these units, we have 

m = So = 1, 41Ta = n-1 = g, t = T. (2. 13) 

We shall work in these units from now on. The 
usual perturbation theory can then be written in 
powers of g by systematically expanding the para­
meters v, no, and fJ. in powers of g. In the zero g 
approximation the system is described by the 
Hamiltonian of free phonons: 

(2. 14) 

where ap is related to the boson annihilation opera­
tor via the linear combination 

(2. 15) 

and 

Ap = ~ ).;1/2(1 + ).p), B = -2
1 A -1/2 (1 - A ) 

p p " ' 

(2. 16) 

C. Zero Sound and Second Sound 

Before going into mathematical details, we briefly 
review some simple qualitative features. 

A phonon is a particle, Le., a discrete excited 
state of the system. (See Refs. 3-5.) The damping 
of a phonon at low temperatures is interpreted as 
due to absorption and scattering by other phonons. 
The very-low-frequency phonon is usually re­
ferred to as the "zero sound." It has little resem­
blance to the sound wave in ordinary gases. On the 
other hand, the second sound in a Bose system is 
analogous to the sound wave in ordinary gases. At 
low temperatures, we have a dilute gas of phonons. 
By virtue of the interaction between phonons, it is 
possible to propagate sound waves in this gas. 
This sound wave is the second sound, which is, as 
usually referred to, the "collision-dominated sound 
wave." The physical picture of a second sound is 
thus entirely different from that of a zero sound. 

From a more mathematical viewpoint, the second 
sound like the zero sound appears as a nearly dis­
crete singularity of certain response functions, 
which are functions of the complex frequency vari­
able v. The response functions are defined by the 
Fourier transform of retarded commutators: 

(2. 17) 

where ~,x~ are dynamical variables such as 
density and current, and q, the momentum, specifies 
the transformation property of the operators under 
translation. Writing F as a sum over matrix ele­
ments of X, X' between energy eigenstates, we have, 
in an obvious notation, 

F = z-l'6e-6Em (m I~ In) (n IX~ 1m) (1- e- aEn m) 
m,n 

1 
x ,Enm == En - Em' 

11- Enm . 
(2. 18) 

and Z is the partition function. As a special case, 
at zero temperature we have 

FT=o = '6(0 IXqln) (n IX'_qlO) 
n 

x( 1 _ 1 ) 
v - EnO v + EnO ' 

(2. 19) 

where 10) is the ground state, with zero energy. 
We see that FT=o has poles at the energies of ex­
cited states. The zero sound will appear 'as a pole 
in FT=o but the second sound will not. At a finite 
temperature F is Singular at energy differences 
En m (including E nO ' of course) owing to transitions 
among states. The zero-sound pole will stay. The 
second sound now appears as a singularity result­
ing from specially favored transitions between cer­
tain sets of excited states. One must keep in mind 
these qualitative differences even though both the 
zero sound and the second sound appear as singula­
rities of the response functions. 
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In determining the dispersion of zero sound, it is 
sufficient to use a straightforward perturbation 
expansion in powers of g.5 This is because the 
phonon is a particle and is only slightly disturbed 
when a small g is switched on. It becomes un­
stable but the decay rate is small. At low tempera­
tures, the phonon density is small and a phonon will 
feel only a small disturbance from other phonons. 

In determining the dispersion of the second sound, 
the situation is reversed. As was mentioned above, 
the second sound owes its existence to the inter­
action among the phonons. There would be no 
second sound if g = O. Also, there can be no s'econd 
sound if T = 0 because· there would be no phonon 
gas. In fact the temperature must be high enough 
to assure a high enough denSity of phonons for 
second-sound propagation. We thus expect the 
damping of the second sound to be a singular func­
tion of g and T. The mathematical approach will 
therefore be very different from a straightforward 
perturbation expansion in g and T. 

Finally, we note that the range of frequency of the 
zero sound is large, Le., anywhere from 0 up to 1 
[in our units (2.13)]. On the contrary, the frequency 
range of the second sound is restricted to be very 
low. It must be much less than the "mean collision 
frequency" by analogy to the situation of sound 
waves in ordinary gases. This mean collision fre­
quency may be estimated by the phonon damping 
rate, which is proportional to wgT4, where w is the 
phonon energy (see Ref. 5). Since w ~ T, we should 
have 

(2. 20) 

This estimate for the upper bound is wrong, how­
ever. We shall see later that, owing to the near 
proportionality of phonon energy and momentum, 
the condition turns out to be lJ« g'f'9. 

Thus, to describe the second sound in terms of 
interactions between phonons, it is necessary to 
describe multiple scattering events since the time 
interval of interest is very long. Mathematically, 
multiple scattering amplitudes as functions of ener­
gies and momenta of the particles involved have 
many singularities. The worst ones correspond to 
long-lasting intermediate states, or to the interme­
diate particles becoming on-energy shell. In the 
lOW-density limit, it is possible to sum the contri­
bution of these leading singularities to various 
physical quantities. In the intermediate stages of 
calculation, an integral equation, which is essen­
tially a Boltzmann equation, is often obtained and in 
it the on-shell amplitudes of simple events appear. 
What we shall accomplish in the next section is just 
the summation of leading singular terms USing the 
techniques of finite-temperature perturbation 
theory. We emphasize this fact at this stage be­
cause it will not be very conspicuous when we go 
through the mathematics. 

3. THE INTEGRAL EQUATION 

Guided by the above qualitative results, we proceed 
to the mathematical details. The program is to 
look for singularities of response functions which 
can be identified as the second sound. 

A. Definitions 

Instead of using the operators op and o~, we shall 
use apand a], [see (2.15)] to define the Green's 
functions. Let 

all ={ap if JJ. = +, 
p a! p if iJ. = -. 

(3. 1) 

Greek indices will always denote + or -. Repeated 
indices are summed over + and -. We define the 
Green's function as the 2 x 2 matrix 

S~(P) = - i J dte
iwt

([ a~(t), ll';t])8(t), (3.2) 

where p stands for (w, p) in the argument of g. Let 
us define 

g~ = f1t.~/!D, !D =-det g. (3.3) 

As expansions in powers of g, we have 

f1t. =~o +gf1t.1 + "',!D = !Do +g{Dl + .,. 

(3.4) 

The zeroth-order Green's function is diagonal: 

(
'w + w 0 ) 

f1t.o(P) = 0 p 
- w + wp , 

(3.5) 

(3.6)' 

The Green's function fully describes the propaga­
tion of a phonon. Next, we define the vertex func­
tion A~(p, q) by 

A~(P,q) = joB dTdT'eUT+WT'(T(Xq(T)Il'~(T') 

x a;'~» 

p=(w,p), 

The discrete energy variables w, lJ are integral 
multiples of 2rri/ (3 and xq is a dynamical variable 
such as the momentum denSity, which is explicitly 

iii 
P q = 6P ap<lJ>+q' i = 1,2,3, 

p 
(3.8) 

for very small q. From A ~ one can obtain various 
response functions, for example, 

(3.9) 

Transforming the sum over w into an integral 
along the real w axis and analytically continuing A 
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to real II above the real II axis, we have, ignoring 
the ++ indices, 

F(P~, p!q) = - i(27T)-4j d3pi: dwpi 

~< (A12 (P, q) + A23 (P, q») 
e Bw _ 1 e 8(w+v) - 1 ' 

(3. 10) 

The notation needs some explanation. The vertex 
function, defined by analytic continuation from dis­
crete w, II as a function of complex wand II, be­
comes singular whenever one of II, w, II + w be­
comes real. The cuts along 1m II = 0, Imw = 0, 
Im(w + II) = 0 divide the space of two complex 
variables into six regions, as shown in Fig. 2. Here 
we are only interested in Imll > 0, i.e., regions 1-3. 
The subscripts in (3.10) specify the region in which 
A is defined. Evidently, if we find the singularities 
of the vertex functions, we then will know the singu­
larities of the response functions. 

B. The Integral Equation 

The vertex function satisfies the Bethe-Salpeter­
type integral equation depicted in Fig. 3, where I 
contains no isolated two particle lines. We have 

A~(p, q) = S:(p)g ~(p +q) (X~v(P) + T 

~ 11(J"( , A ~ 
X LJ IVA P,p ,q)A(J"(p', q) , 

p'w' 
(3.11) 

~' - ~ = ~~ - ~o + g(~~ - ~1) + 

= 2g(WII' - q' ·vw p) + g(9)~ - ~1) + ... ,(3.16) 

(3.17) 

Now we observe that, by (3. 14) A is proportional to 
(~~')-1, which is 

1 (1 1 \ 1 
:00>' = ~- Ti) 'Ii - 9) 

+ 0(1). (3.18) 

Assuming Imll > 0, we notice that, in regions 1 and 3 
shown in Fig. 2, Imw and Im(w + II) have the same 
sign, so that :Do and 9)~ are simple poles on the 
same side of the real w axis, and therefore 

--.!... - --.!... = O(g), 
9)0 ~ 

:o~ - 9)1 = O(g), in regions 1 and 3, (3. 19) 

since (II, q) = O(g). On the other hand, Imw and 
Im(w + II) have opposite signs in region 2 so that 

--.L - -.!, = 27Ti [o(w - wp)- o(w + wp)] + O(g), 
~ ~ ~p ~~ 

where the source term X~v depends on the particu- :o~ -:01 = 2i Im:D' + o(g) 
lar form of the operator X q . For example, for the 
operator P~ given in (3.8), we have =' 2iw pr(p) + O(g) in region 2. (3.21) 

- i X_ = - p , + -
X_ = X+ = O. (3.12) 

The g' s in (3. 11) and the solid lines in Fig. 3 de­
note exact Green's functions defined by (3. 2). For 
simpliCity of notation, we write 

:0' =' :O(p + q), m,' =,m.(p + q), (3.13) 

and substitutem/oD [see (3. 3)] for the 9 t s in the in­
tegral equation (3. 11). In a symbolic form, it reads 

A (m,~ '/:D:O'){X + IA). (3.14) 

We now define the new variables (II', q') by 

q = gq', II = gil', (3.15) 

and thus regard (II, q) as quantities of O(g). This is 
appropriate in view of (2. 20). It will facilitate our 
discussion because, when we drop terms of higher 
orders in g, we automatically drop higher powers 
of (II, q). 

Now let us consider the quantity ~ -:0' [see (3.4), 
(3. 6), and (3. 13)]. We have 

The function gr(p) may be interpreted as the damp­
ing rate of a phonon. Therefore, by (3. 14) and 
(3.18)-(3.20), we see that 

A~ (P, q) ex: 1(27Ti) [o(w - wp) - o(w + wp)] 
g 2wp 

x m~l1m ~8 (X + IA)~ + 0(1) in region 2 

= 0(1) in regions 1 and 3, (3. 22) 

p'q 

1m w 

~ ~ ~ Imv 

FIG. 2. Regions of an­
alytic ity of the ve rtex 
function. 

p,q 

FIG. 3. Bethe-Salpeter equation satisfied by the 
vertex functions. 
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provided fA is of 0(1), which is obviously the case 
as will be seen shortly. From now on, we shall 
only keep the leading term, Le., the 0(1/g) term, 
in A. Since m.o has the form (3. 5), A:: and A:; are 
of 0(1). Let us define ¢ ± (p, q) by writing 

At(p, q) = (1/g)21Tio{w - w)¢+(p, q'), 

A:(p, q) = - (1/g)21Tio(w + w)¢-(p, q'), 
(3. 23) 

in region 2 and zero in regions 1 and 3. The func­
tions ¢± are clearly of 0(1). The leading term of 
the kernel f of the integral equation (3. 14) is of 
O(g) as given in Fig. 4. Each of the three line 
vertices is of 0(g172) and has a structure as shown 
in Fig. 5. Since A = o (1/g) , we see thatJA = 0(1). 
To this order, the Green's function line in f can be 
replaced by the zeroth-order approximation. The 

I 

term (a) in Fig. 4 generates a ladder series. The 
term (b) in Fig. 4 will be ignored because it, in 
fact, only gives an effect which is higher order in 
g. It generates diagrams like that shown in Fig. 6 
and is responsible for the O(g) correction to the 
zero sound-velocity and damping. 

Now the integral equation (3. 11) can be written as 
an integral equation for ¢±(p, q'). We first trans­
form the sum over w' to integrals along the real 
w' axis. After analytic continuation from discrete 
w and II to real variables in region 2, we substitute 
(3. 23) for A. The energy 0 functions in (3. 23) 
allow the energy integrals to be performed easily. 
It turns out that only the imaginary part of f, which 
again is proportional to energy 0 functions, contri­
butes. All these mathematical steps are straight­
forward but uninteresting. Let us write down the 
results: 

(II' - q' 'v)¢+(p) = X+{p) - ir(p}¢+(p) +i(21T}-6 J d3p'd3p"{a(pp'p"}(j' - f")[¢+(p") + ¢-(- p')] 

+ a(p'p"pH(1 + f' + f")[¢+(p'} + ¢+(p")]), (3.24) 

(II' + q' ·v}¢-(p) = - X-(p) - ir(p)¢-(p} + i(21T)-6 f d 3p'd3p"{a(pp'p "}(f' - f"}[ ¢-(p") + ¢+(- p')] 

+a(p'p"p)H1 + f' + j"}[¢-(p"} + ¢-(p')]), (3.25) 

where f' ,j" are the Bose distribution functions 

f ' 1 
- e Bw' - l' f " 1 

- e Bw" - l' 
(3. 26) 

and 

a(pp'p") = (21T)40(w + w' - w"}o(p + p' - p") IA(pp'p"} 12 (3.27) 

measures the rate of the process p + p' ~ p", 
which has the amplitude g1/2A with 

A(PP'p"} = ~(H'A"}1/2(,\ + A' - >." +3,\,\',\")(3.28) 

and'\ =' >'p = P2/2wp was given by (2.16). IT 
p,p',p" are small, we have, taking into account the 

121: ' X + >-< + Olg2) 

(0) 1 b) 

FIG.4. Leading terms in I. 

FIG. 5. Detail structure of a three-line vertex. 

FIG. 6. Effect of the 
term (b) in Fig. 4 is to 
generate the diagrams 
of this kind. Each re­
petition of the shaded 
bubble turns out to 
give a power of g. 

energy conservation w + w' = w", 

A{PP'p") = (~ww'w" }1/2. (3. 29) 

The dependence of ¢±(p) on (q, v') =' (g-lq,g-111) 
is understood. 

Equations (3. 24) and (3. 25) represent the content 
of the general equatlon (3. 11) in the small-g 
limit for small (q, II). The input to these equa­
tions are the free phonon energies, damping rate, 
and absorption-emission rates. These equations 
are exact for g --4 0, 

(q, II) ~ g, T ~ 1. (3.30) 

Qualitatively, the appearance of energy 0 functions 
reflects the fact that we are including in the inte­
gral equation only those scattering processes with 
very long-lasting intermediate states, so long­
lasting that the particles in the intermediate 
states are essentially on-energy shell, so that the 
scattering process may be described as indepen­
dent decay and absorption events put together. 
This point would be clearer if we formulated the 
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problem in terms of scattering amplitudes, but 
the mathematics would be much more complicated 
than what we have here. 

Before solvi ng these equations [(3. 24) and (3. 25») 
for small T, we shall first elucidate some general 
features of these equations reflecting various con­
servation laws in the theory and transforming 
them into more convenient forms. 

4. SOME CONSEQUENCES OF CONSERVATION 
LAWS 

A. Energy-Momentum Conservation 

Whenever one of the two operators in the response 
function (2. 17) is a constant of motion, i.e., 

(4. 1) 

the response function is proportional to a simple 
pole at v = 0, i.e., 

(4. 2) 

by simply performing the t integral. Analogous 
results can be derived for the vertex functions 
and thereby for cp ±. 

Let us replace the Xq in the definition of A [Eq. 
(3.7»), by P: 

(4.3) 

with q set to zero. Since P is a constant of motion, 
we have 

= - (T(G'p(r')[p, G'JD)o(r) 

- (T([p(T), G'p(T»)G'J»O(T - T'). (4.4) 

Since 

[p,G'pt)=pG'J, [p,G'p)=-cvp, (4.5) 

st(p) = - J: (T(G'p(T)G'J»eTWdr, (4.6) 

we obtain from (4. 4) and (3. 7) that 

vA:t(p, v) =p[S:t(p) - st(P + v». (4.7) 

Using (3.23), it follows from (4.7) that to the 
leading order in g, we have 

v't/J+(p, q = 0, v') = p. (4. 8) 

Similar arguments lead to 

v't/J -(p ,q = 0, v') = p. (4. 9) 

We can go through the above arguments USing the 
total energy H in place of P. Instead of (4.5), we 
now get 

[H, G'J] = wpG'J + O(g), 

[H, G'p] = - WpQ p + O(g). 
(4. 10) 

Keeping only the leading terms in g, we obtain 
identities similar to (4. 8) and (4. 9). 

v'cp+(p,q = 0, v') = wp ' 

v' </.>-(p,q = 0, v') = - wp. 
(4. 11) 

An immediate application of these identities is to 
get an expression for the damping rate rep) direct­
ly from the integral equations themselves. Let Xq 
be the total momentum P. Then we have in (3. 24) 
and (3.25) 

X+(p) = p, X-(p) = - p, (4. 12) 

and q = O. We see that the identities (4. 8) and (4. 9) 
are already exhausted by the source terms X+ and 
X-. Everything else on the right-hand side (rhs) 
must vanish. Both equations then imply, by virtue 
of the momentum 0 function in a, that 

rep) = (27r)-S J d3p'd3p"[a(pp'p"){f' - f") 

+ a(p'p"p)-! (1 + f' + f")]. (4. 13) 

The same conclusion is reached by setting Xq = H, 
q=O. 

B. Invariance Under Space and Time Inversions 

Except for the source terms X+ and X-, the rest 
of the terms on the rhs of the integral equations 
(3. 24) and (3. 25) may be regarded as an integral 
operator K operating on the pair (cp+, cr). We see 
that K mixes cp+ and </.>-. The appearance of 
cp±(- p') instead of </.>±(p') in the integrand is also 
unpleasant. Owing to the invariance of the theory 
under space and time inversions, these unpleasant 
features can be removed. We shall examine the 
explicit equations (3. 24) and (3. 25) directly instead 
of going back to A g. 
Let us define the inversion operators <P arid <P' by 

(4. 14) 

Evidently <P is the parity operator. <P' is effec­
tively <P x (time reversal) as far as the kernel of 
the integral equation is concerned. We can now 
construct eigenvectors of <P and <P' from cp±(p) and 
</.>±(- p). Let 

<p+(p) = t[ cp+(p) - cp-(p) + </.>+(- p) - </.>-(- p»), 

<p-(p) = t[cp+(p) + cp-(p) - t/J+(-p) - cp-(-p»), 

o/+(p) = t[cp+(p) - cp-(p) - cp+(-p) + <p-(-p»), 

o/-(p) = t[ cp+(p) + <p-(p) + cp+(- p) + cp-(- p»). 

(4. 15) 
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By construction, cp ~, cP ~ satisfy 

(pcp ~ = ±(j) ±, (p' cp ~ = ±cp ~ , 

(4. 16) 

Since K commutes with (P and (p', it will not mix 
these eigenvectors of (P and (P'. To obtain integral 
equations for cp ~ and cP ~ , we simply make linear 
combinations of Eqs. (3. 24) and (3. 25). Let us de­
fine 

(4. 17) 

and construct similarly eigenvectors of (P, (P' from 
the source term: 

4x == (x+(p) + X-(p) + X+(- p) + X-(- p») 

X+(p) - X-(p) - X+(- p) + X-(- p) 

4x == (X+(P) +X-(p) - X+(- p) - X-(- P») 

X+(p) - X-(p) + X+(- p) - X-(- p) 

Then we have, from (3.24) and (3.25), 

(v' - q' o/Jal)cp/s = xis - iX(cp/s), 

(v' - q'o/Jal)cp/s = xis - iX«jj/s), 

where 

(4. 18) 

(4. 19) 

(4. 20) 

(4. 21) 

(4. 22) 

and X,X are now real and symmetric integral 
operators: 

X(cp/S) = (27T)-6 Id3P'd3P"(s's")-1 

x {a(pp'p")[(j)(p) + cp(p') - cp(p")] 

+ a(p'p"pH[cp(p) - cp(p') - cp(p")]}, (4.23) 

X((jj/s) = (27T)-6 j"d3p'd3P"(s's")-1 

x [a(pp'p") + ~a(p'p"p)]fq)(p) - cp(p') - cp(p")]. 

(4. 24) 

Of course, s' and s" are defined by (4.22) withP 
replaced by p' and p", respectively. We have used 
(4. 13) for rep) and taken advantage of the identi­
ties 

I' - I" = s(s's")-1 if w" = w + w', 

1 + f' + I" = s(S's")-1 if w = w' + w". 
(4. 25) 

It will be seen later that only (4. 20) gives rise to 
second sound but not (4.21). However, we shall 
carry (4. 21) along until this becomes transparent. 

C. Invariance Under Rotation 

It is evident from (4. 23) and (4. 24) that X and X 
are both rotationally invariant. As a consequence, 
the solutions of the integral equations without the 
q' °/Jal term can be classified by (l, m), the angular 
momentum quantum numbers and X and X are dia­
gonal in the (l, m) representation. We shall leave 
the explicit construction to the next section. 

5. SOLUTION OF THE INTEGRAL EQUATION 

A. General Feature of the Kernel and the Second-
Sound Pole 

We are looking for Singular solutions to the inte­
gral equations (4.20) and (4.21) for small q' which 
behave like simple poles near the real v' axis. 
These poles may then be interpreted as reflecting 
the existence of the second sound. The precise 
location of the poles will tell us about the speed of 
propagation and the damping rate of the second 
sound. The location of poles is obtained by solving 
the homogeneous part of the integral equations 
(4. 20) and (4. 21), i. e., the eigenvalue equations 

:\.w = 4'IC + X')w, XW = ~ + X')"¥, (5.1) 

X' == iq'ova 1 == iq'v cosl:la1. (5.2) 

The poles on the v' plane are then located at 

v' = - i:\., - i);. (5.3) 

The z axis is taken along the direction of q'. Since 
we are interested in the small-q' limit, the operator 
X' can be treated as a perturbation after we solve 
the equations without it. Since X,!lC are real and 
symmetric, their eigenvalues are all real. Also, the 
eigenvalues must be all positive because the inte­
gral equations were derived with /J in the upper 
half-plane and therefore there can be no singularity 
for Imv > 0, i.e., all :\., ~. s must be positive. To see 
this expli~t!Y Llet us write down the bilinear forms 
(cp,Xcp), (cp,Xcp). Here the scalar product is de­
fined by 

(cp, cp') = J d 3p(27T)-3cp(p)cp'(p)S-2. (5.4) 

Writing w == cp/s, ~ == cp/s and utilizing the sym­
metry properties of the integrands, we obtain 
from (4. 23) and (4. 24) 

(cp,Xcp) = (27T)-9 J d 3Pd3p'd3p"(ss's")-1 

x h(p'p"p)[cp(p) - cp(p') - cp(p")]2, (5.5) 

«(ji,Jtcp) = (27T)-9 J d 3Pd3p'd3p" (sS's")-1 

X {a(pp'p"){[cp(p) - cp(p')]2 

+ [cp(p') - cp(p")]2 + [cp(p") - "(,O(p)]2}. (5.6) 
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Since cp, <P are arbitrary, and (J(pp'p") is positive, 
it is then obvious that:Ie and X are positive defi­
nite. 

It is also evident that the lowest eigenvalue of :Ie 
and X is zero. For X, we see that (5. 5) vanishes 
if cp(p) - cp(p') - cp(p ") vanishes identically. This 
happens if and only if 

or 
cp(p) a: wp , 

cp(p) a:p, (5. 7) 

in view of the ener~-momentum 6 function in 
a(pp'p") [see (3. 27)j. For X, we see that (5.6) 
vanishes if and only if 

<p(p) is independent of p. (5.8) 

As we shall point out later, when a(pp'p") takes 
certain special forms, there can be additional 
eigenfunctions with zero eigenvalue other than 
(5. 7) and (5. 8). In general, there is no more. 

Of course, positive eigenvalues will not give rise to 
any propagating wave because II' = - i (positive 
number) describes an exponentially damped ampli­
tude. Therefore, we are only interested in the 
ei?envalue zero. The perturbation term X' = 
iq • val, being imaginary, will supply an imaginary 
X and hence a real II' proportional to q' by a first­
order perturbation calculation. This eigenvalue 
can be identified as describing a propagating wave. 
The second-order perturbation term will then give 
a real positive correction to X, i.e., a damping 
term for the wave proportional to q'2. 

Since the eigenvalue i = 0 for X is non degenerate 
and the wavefunction is a constant, the first-order 
eigenvalue is zero since the perturbing term 
X'cc cosea I is purely nondiagonal and odd in parity. 
Thus, X will not give us any sound wave and we 
shall concentrate on:Ie alone from now on. 

To sum up, our procedure of locating the second­
sound frequency is to locate the nearly imaginary 
eigenvalues of:Ie + X': We start with the eigen­
value zero of X and calculate the correction due to 
X' by the perturbation theory. Since X' is purely 
imaginary and proportional to q', we have 

- i (eigenvalue of X + X') 

= c 2q' - iT'q'2 + O(q'3), (5.9) 

where c 2 and T' can be obtained using the elemen­
tary perturbation method in quantum mechanics. 

B. First-Order Eigenvalue and the Speed of the 
Second Sound 

No further information concerning X is needed to 
calculate the first-order correction to ~ due to 
the perturbation X'. 

The eigenvalue zero of :Ie is fourfold 'degenerate 
as (5. 7) shows. The two relevant eigenfunctions 

are (not yet normalized), 

~o(p) = (~) ~ , 
( ) = (O)P cose 

~1 PIs . (5. 10) 

The other two eigenfunctions, being proportional to 
p x and P y, give rise to zero matrix elements. The 
matrix representation of X' in this two-dimen­
sional space spanned by .po and .p1 is 

(5. 11) 

which clearly has the eigenvalues X = ± iq' c 2' 
where 

c 2 = .. ,A (~~ dPP3WVS-2) (~~ dPP2W2S-2) -1/2 

(1 "" ) -1/2 
X 0 dpp 4S-2 

= (1/.[3)[1 + Hrr2T2 + O(T4)]. (5. 12) 

Recall that s = 2 sinh1f?w [see (4. 23)], and P can be 
expanded in powers of W: 

P = w(l- :'W2 + ...!...w4 _ ... ) 8 U8 , (5. 13) 

and v = dw/dp. The integrals in (5. 12) are easily 
performed using this expansion. We have therefore 
found poles on II' plane located at 

II' = - iX = ± C 2q'. (5. 14) 

Since II' /q' = II/q = C 2' the speed of propagation is 
thus given by (5. 12). The zeroth-order eigen­
functions are given by 

(5. 15) 

where ~ 0' ~ 1 must be normalized to unity. 

The first-order result is valid only if higher­
order corrections are small. We must at least 
calculate the second-order term to see over what 
range of q' (5.14) makes sense. The second-order 
correction to X is given by the formula 

"2:/ (cp ±, X' cp n)2 

n - "-n 

in an obvious notation. Evidently, we must know 
qlore about the other eigenfunctions and eigen­
values of X in order to evaluate (5. 16). We now 
proceed to study X in more detail. 

C. Angular Momentum Decomposition 

We have mentioned before that X is rotationally 
invariant and therefore its eigenfunctions can be 
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classified by (l, m), the angular momentum indices. 
Since X' cc cosO, only 1 == 2, m == 0 enters in (5. 16). 
It turns out that, for the leading term in the low­
temperature limit, only the lowest 1 == 2 level is 
needed to evaluate (5. 16). Nevertheless, in order 
to exhibit some qualitative features of X, we shall 
discuss an arbitrary l. We now classify the eigen­
functions by 1 and write 

for I even, 

(1) (2l + 1) 1/2 Xz(w) 
\}iz(p) = 0 pz(cosO) -2- --s-' 

for lodd, 

(0) (2l + 1)1/2 x1(w) 
\}iz(p):::: 1 Pz(cosO) -2- s' (5. 17) 

Recall that the two-component notation comes 
from the separation of even- and odd-parity 
functions [see (4. 16) and (4. 17)]. 

Substituting (5. 17) in (4. 23), we can perform the 
angular integral with the aid of the 6 functions 
contained in a(pp'p") [see (3.27)]. We obtain the 
radial part of X\}iz after a little algebra: 

Xxz == (27TP)-1 ~oodP'dPIIP'P"(S'SIl)-l 

X {o(w" - w' - w)lA(pp'p")/ 2[X z(w) 

+ PZ(x')x,(w') - Pz(x")Xz(w")] 

+ 6(w - w' - wIt) IA(p'p"p) 12Hxz(w) 

- Pz(x')Xz(w') - PI (x")XI(w")]), 

where 

x' =p. p', x" ="p. P". 

(5. 18) 

(5. 19) 

are fixed by the triangles determined by the three 
energy variables w, w', and w" (see Fig. 7). Clearly, 
for 1== 0, Xl == w, and for 1 = 1, Xl = p, the square 
brackets in (5. 18) vanish as we have seen before. 

This is as far as we can go without looking at the 
detail form of the amplitude A or the dependence 
of P on w. Equation (5. 18), as it is, appears to be 
very complicated, but it becomes tractable under 
the assumption of low temperature. 

D. Low-Temperature ExpanSion of the Lowest 
Eigenvalues 

Leaving higher eigenvalues to later discussion, let 
us determine the lowest eigenvalue of X for a defi­
nite t. We have the eigenvalue equation, leaving the 
subscript t understood: 

FIG. 7. Geometry of the 
three phonon momenta 
in the terms of the 
integral equation. 

J\' 
P"Vp 

(01 

(5. 20) 

P~" 

r' 
(bl 

with the left-hand side (lhs) given by (5. 18). Be­
fore doing systematic expansion in powers of the 
temperature, we note the following fact: At low 
temperatures, only phonons of very small momenta 
can appear. In the small-momentum limit, we have 

P == w. (5. 21) 

It then follows from energy-momentum conserva­
tion that 

x' == x" :::: 1, PI(X') = Pz(x") = 1, (5.22) 

i.e.,p,p', andp" are all parallel. In this case it is 
obvious that if 

X(w) cc w, (5. 23) 

then the square brackets in (5.18) vanish, i.e., 
Xx = 0 for alil. In other words, the zero eigen­
value appears in more than 1 == 0,1 noted before 
and the first-order calculation for the second­
sound pole given in Sec. 5B is not meaningful in 
this limit. This is a general result. Whenever the 
phonon energy is strictly proportional to its 
momentum, emission and absorption processes 
cannot give rise to second-sound propagation. 
Physically this situation is clear. If gas particles 
always move along straight lines without ever 
changing .directions, there cannot be any sound wave. 

Here P is not strictly proportional to w when 
higher-order terms [see (5.13)] are included. How­
ever, the deviation from p == w is very small and 
delicate. 

To expand in powers of T, it is convenient to 
change the variables w, w'w" to y,y',y" defined by 

y == (3w, y' == f3w', y" =: f3w". (5.24) 

Then the functions s, s', s" become 

s == 2 sinh!y, etc., (5.25) 

and the expansion (5. 13) for P in terms of w be­
comes 

(5. 26) 

Expanding all the P variables in (5.18) by (5.26), 
we see that X is an expansion of the form 

T-SX = X(o) + T2X.(1) + T4X(2) + .. '. (5.27) 

The fact that the leading term of X is of O(T5) can 
be seen easily from (5. 18). One simply counts the 
power of p and takes into account the fact that 
IA12 0:: ww'w", as shown in (3.29). 

We can also expand the eigenfunction and the eigen­
value in powers of T2: 

x== x(O) + X(l)T2 + x(2)T4 + ... , 

T-5?t, == ?t,(O) + .\(1)T2 + .\(2)T4 + ... . 

(5. 28) 

(5.29) 

The eigenvalue equation Xx = AX is then expanded. 
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We have 

3C(0)X(0) = X(O)X(O), 

X(O)X (1) + X(1)X (0) = X(1)X (0) + x(O)X (1), 

X(O)X (2) + X(1)X (1) + X(2)X (0) 

= X(1)X (1) + X(2)X (0) + X(O)X (2), etc. (5.30) 

Before proceeding, let us define the scalar product 
for the radial wavefunctions: 

00 

(x, cp) == ~ dyy 2s-2X(y)cp(y)· (5. 31) 

From what we just pointed out above, the lowest 
eigenvalue of X(O) is zero since keeping the lead­
ing term in (5.26) implies p = w. Also X (0) is 
known via (5. 23): 

;\(0) = 0, X (O)(y) = y, (5. 32) 

apart from a normalization factor. 

Let us now expand X in T2. It is sufficient for the 
moment to concentrate on the square brackets in 
(5. 18) which are the delicate parts. Everything 
outside the brackets are multiplicative factors and 
can be expanded separately later if necessary. 
Consider the first square bracket in (5. 18). From 
Fig. 7a, we have 

x' = p . p' = (p"2 - p2 - P'2)/2PP', 

x" = P . p" = (p2 + p"2 - P'2)/2PP". 
(5. 33) 

Using the expansion (5. 26) for the P variables, one 
finds 

PI(X') = l-lsZ(Z +1)y"T2 + 2;6Z(l + l)y"2 

x {3yy' - ~y"2[1 - H(l + 1)] 

- 35(y"2 - yy')} T4 + O(T6), (5.34) 

PI(X") = 1- -&l(l + l)y'2T2 - 2~6l(Z + 1)y'2 

x {3yy" + ~y'2[1- ~l(Z + 1)] 

+ 35(y"2 - yy')} T4 + O(T6). (5.35) 

Let us write X (1) = a (1)y3, where a (1) is a con­
stant Then the first square bracket of (5. 18) be­
comes 

(- isl(l + 1) - 3a(1)]yy'y"T2 + O(T4). (5.36) 

Therefore, if we set 

x(l)(y) = -Isl(l + l)y3, (5. 37) 

then the first square bracket vanishes to O(T2). A 
similar calculation shows that the second square 
bracket of (5. 18) also vanishes if we apply (5.37). 
Let us summarize what we have so far: 

X(O) = 0, x(1) =0, 

x(O)=y, x(U=-isl(l+1)y3. 
(5.38) 

With this information we get a formula for A (2) 
from (5. 30): 

X(2) = (x (0) ,X(1)X (1) + X(2)X (O»/(x (0), X (0». 

(5.39) 

This requires the o(T4) term of (5.36). A little 
algebra shows that this term is 

(~y'y"(y"3 - y'3) - 3yy'2y"2] 

x l(Z + 1)(~l(l + 1) - 1](128)-lT4 

+ yy'y"(y"2 - yy')l(l + 1)235~T4. (5.40) 

The T4 term of the second square bracket of (5. 18) 
can be calculated in the same manner. We find 

- ny'y"(y'3 + y"3) + 3yy'2y"2] 

x l(l + 1)[~l(l + 1) - 1](128)-lT4 

- yy'y"(y2 - y'y")l(l + 1)23~~T4. (5.41) 

Substituting (5. 40) and (5.41) for the square 
brackets in (5.18), the scalar product in (5.39) can 
now be calculated. We find 

X(2) = l(l + 1)(~l(l + 1) - I]C, 

where the constant C is given by 

C = 5(.!.)5 100 

dydy'dy"(ss's")-1(yy'y")3 
81T 0 

x o(y - y' - y") 

= t (i7i) 5 ~1 dxx 3(1 - x)3 

x fori) dyy10 coth (-¥-) csch 2(i) 

= 3.353. 

(5.42) 

(5.43) 

Thus, we conclude that the lowest eigenvalue of 
JZ in the low-temperature limit is, putting the 
subscript l in now for clarity, 

(5.44) 

In view of (5.42),A~2) vanishes for l = 0,1 as it 
should. 

E. Higher Eigenvalues 

Higher eigenvalues can also be considered as 
expansions in T2. We shall be satisfied here with 
an estimate of their leading temperature depend­
ence. Consider, for an aribtrary X(y), the bilinear 
form (X, X(O)x). We have 

.(x,X(O)x) = 1~1T 1a~ dydy 'dy" (ss's,,)-1 

X (yy'y")20(Y - y'- y"H [x(y) - x(y') 

- X(y")]2. (5.45) 

This, of course, can be viewed as a special case 
of (5.5). As long as x(y) is not X(O)(Y) = y, (5.45) 
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is of 0(1). Therefore, we conclude that all higher 
eigenvalues of 3: are proportional to TS and 
independent of I in the low-temperature limit. 

F. Second-Order Perturbation and Damping of 
Second Sound 

We are now in a position to evaluate the second­
order term (5.16). The matrix element is non­
zero only for 1 = 2 intermediate states. Since 
the lowest eigenvalue is of 0(T9), while all the 
others are of O(TS), we need to keep only the 
lowest level in I = 2 levels to calculate the lead­
ing term in (5.16). The matr.ix element can be 
easily evaluated. We get for (5.16) 

T' = 2r-
9 

+ 0(T-7) = 0.003 314y-9 + 0(y-7) 
15A (~) , 

(5.46) 

which corresponds to a term in the imaginary part 
of II': 

Imll' = - T'q,2. (5.47) 

G. Summary of Results of Calculation 

Together with (5.12), we have the frequency of the 
second-sound II in terms of its wavenumber q. 
Recall that (v',q') '" (II/g,q/g). We have 

are free phonons. Qualitatively, oscillations be­
tween excited states can be described as oscilla­
tions in the distribution junction, which specifies 
the number of phonons per phase space volume. 

To relate the concept of distribution function to the 
function cp(p), we go back to (3.10), where a res­
ponse function is expressed in terms of the vertex 
function. Substituting the expression (3.23) for 
A; in terms of <1/ into (3.10),we have,for small II 

where we have defined 

and 

lij(p, q, II) = <jJ+ (p, q', 11')11' ",oj , 
uWp 

j= 1 IIf_~ i WP-1' -g 

(6.1) 

(6.2) 

(6.3) 

as before. We have written out the (q' , II') argu­
ments of <jJ + explicitly. 

The form (6.1) strongly suggests that lij be inter­
preted as the change in the distribution function 
due to an external perturbation. By the definition 
of response function, 

F(Pi pj)ei(q.x-vt) 
q' -q (6.4) 

c 2 = 3- 1/ 2 (1 + 10.57 T2) + 0(T4) + O(g), 

(5.48) is the average of momentum density at (x, t) if 
there is an external disturbance described by the 
perturbing Hamiltonian 

T = 0.003 314g-1T-9 + g-10(y-7) + 0(1). 
- (5.49) 

The damping must be much smaller than the real 
part of II in order to have a propagating wave. We 
therefore must have 

11« gT9, (5.50) 

which is far more restrictive than the qualitative 
estimate 11« gTS one would guess [see (2.20)]. 
The reason is that owing to the near proportion­
ality of phonon energy to its momentum, the dir­
ection of propagation of a phonon is not easily 
altered by emission or absorption. This in a 
sense greatly hinders the 'relaxation' of phonons. 

Clear ly, it is a matter of further straightforward 
algebra to obtain high-order terms in T2 for 
c 2 and T. For the O( T-7) term in T, the lowest 
1= 2 level is still sufficient. For the O(T-S) term, 
all higher 1=2 levels must be counted. 

6. DISCUSSION AND SUMMARY 

A. Oscillations in the Phonon Distribution 
Function 

We have mentioned before that, in contrast to the 
zero sound, the second sound reflects oscillations 
between certain sets of excited states. In the 
zeroth-order approximation, the excited states 

H' = pj eiq.x-ivt -q . (6.5) 

It is then clear that 

lij(p, q, lI)e iq - x - ivt (6.6) 

is the change in distribution function from the 
equilibrium one at (x, t) as a result of an external 
perturbation. This interpretation holds if P..~ is 
replaced by another operator. The poles of cp+ 
near the real II axis thus describes oscillatfons in 
the distribution function. 

Now we return to the eigenfunctions in (5.7) and 
(5.8) for the eigenvalue zero of ::::. For q'= 0, 
it is clear that (4.20) and (4.21) have the solutions 

(~ 
1.L'p 

'Po = 1i{3 0 7.' 

)
PZ 

(n = liui 0 -
'1'1 1 II' , 

(6.7) 

(Po = liEG)~ , 

where we have arbitrarily written 1i{3, liu i , and liE 
for the source terms. Substituting (6.7) in (6.2), 
we obtain 

(6.8) 
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6{ ~ 6U o P YL ~ 1 f 
'J ow B(') -, p e wP+uu' P _ 1 

(6.9) 

(6.10) 

Thus (6.8) may be interpreted as a change in 
inverse temperature 6{3, (6. 9) a uniform notion of 
the phonon gas with velocity 6u,and (6.10) a uni­
form shift of energy scale. When the term q'·vo1 
is turned on in (4.20) and (4.21), we showed that 
the second sound appears as a result of the coupl­
ing of rfJo and rfJl' while 7i5 o gives no propagating 
wave. Therefore we can interpret the second 
sound, in view of (6.8) and (6.9) as a wave of drift­
ing velocity of phonons coupled with temperature 
oscillations. For discussions along this line in 
problems of crystal lattices, the reader is referred 
to Refs. 6 and 7. Although the above physical 
picture is appealing, we wish to emphasize the 
qualitative nature of the interpretation in terms 
of oscillating distribution function, which is a 
concept valid only in the noninteracting limit. 

B. Relaxation Time 

For the second-sound problem in solids, there 
has been no concrete procedure from which the 
damping of second sound can be calculated. The 
authors in Refs. 6 and 7 simply introduced a re­
laxation time to count for the effect of a sum like 
(5.16). Their procedure is clearly consistent with 
our approach. In this paper,we have a well-defined 
model, which allows us to calculate the damping 
rate from first principles and display the physical 
mechanism responsible for it. 

C. Higher-Order Terms 

Keeping only the leading order in g seems to be 
essential in getting a tractable integral equation. 
This is rather unfortunate because we expect some 
of the higher-order processes such as phonon­
phonon scattering to be important. They would 
give rise to large-angle scattering, which is more 
effective in supporting the second sound than the 
absorption-emission processes appearing in the 
leading equation. As was mentioned before, the 
absorption-emission processes are nearly all in 
the forward direction and are ineffective. Thus, 
higher-order terms may give qualitatively differ­
ent temperature dependence of the damping rate. 

The next-order calculation will also produce a 
correction to c 2 due to the lowest-order interaction 
between phonons. It is clear from our calculation 
in Sec. 5 that c2 depends only on the free phonon 
dispersion curve and has nothing to do with the 
interaction between phonons even though the damp­
ing rate does depend on the interaction through 

o(PP'p"). This is not surprising in view of the 
following observation. 

Our integral equations are equations at zero g 
limit, Le., qualitatively a zero phonon density limit. 
Like the Boltzmann equation for dilute gases, it 
depends only on the cross sectirJns of reactions, 
Le., the square of the amplitudes A, but not the 
phase of the amplitudes. The quantity c 2 is related 
to the "compressibility" of the phonon gas which 
is obtained by differentiating the free energy of 
the interacting phonon gas. We know that the 
Boltzmann equation contains no information con­
cerning the free energy except for the ideal-gas 
term, even though it can count for transport coef­
ficients. The free energy depends on the phase 
of the scattering amplitude and there is no informa­
tion of this kind in the Boltzmann equation.s Our 
integral equation contains no phase information .in 
the phonon decay or absorption amplitude. There­
fore only the compressibility for the ideal phonon 
gas can be obtained, even though the interaction 
plays a crucial role in the propagation and damp­
ing of the second sound. 

D. Summary 

We have described the phenomenon of second 
sound with a model containing only one dynamical 
parameter g. This is very likely the Simplest pos­
sible model which allows a realization of second 
sound. In contrast to a general hydrodynamical 
approach, we have taken a specific perturbation 
theory approach. We started with the Bethe-Sal­
peter equation (3.11) after a qualitative investiga­
tion. We extracted the leading terms in the small­
g limit. After taking symmetry prinCiples into 
account, we arrived at the integral equations (4.20) 
and (4.21). The eigenvalues of the homogeneous 
equations were studied. by repeated applications of 
perturbation theory treating the wavenumber q' 
and T2 as small parameters. The eigenvalues 
giving rise to a nearly real frequency are found 
and interpreted as the second sound. The speed 
and damping rate are evaluated for small T, [(5. 48) 
and (5.49)). Finally, some qualitative interpreta­
tions are sketched. 

The physical picture and mathematical apparatus 
are very elementary. Our analysis is strictly 
within the framework of equilibrium statistical 
mechanics. No concept of local thermal equilibrium 
is used. We have made no use of any macroscopic 
concepts such as viscosity or thermal conductivity. 
Indeed, the next step is to understand these concepts 
in a more precise manner in terms of a microsco­
pic theory. 
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A linearized Einstein-Maxwell field composed of a mass monopole, a radiating mass quadrupole, a 
Coulomb field, and radiating electromagnetic dipole and quadrupole fields is examined to second order. 
If the first-order radiation is a pulse of finite duration, then the only second-order radiation present 
after the pulse has turned off is due to interactions involving the mass monopole. All other interactions 
contributing to the second order produce no such scattered radiation. At third order, the dipole-dipole­
mass interaction is found to give rise to scattered radiation. 

1. INTRODUCTION 

Nonlinear effects that show some interesting 
aspects of the interaction of gravitational radia­
tion fields in empty space-time with themselves 
and with mass monopoles have recently been dis­
covered. 1 - 3 These previous investigations made 
use of a perturbative approximation scheme to 
calculate the nonlinear effects. In this paper we 
apply the same perturbative scheme to the case 
where an electromagnetic field is present in space­
time and investigate certain interactions of elec­
tromagnetic fields with gravitational fields and 
with themselve&. 

We assume that all quantities occurring in our 
formulation of Einstein- Maxwell theory are expand­
able in a perturbation series in which the zeroth 
order represents flat space-time with no electro­
magnetic field present, the first-order fields are 
those of linearized Einstein-Maxwell theory, the 
second-order fields are those required by the 
field equations to first nonlinear order, and so 
forth. 

Specifically, we take our combined linear gravita­
tional and electromagnetic field + to be composed 
of a mass monopole field m,a retarded gravita­
tional quadrupole radiation field 1/.1 , a Coulomb 
field e, and an electromagnetic radiation field ¢ 
consisting of a retarded dipole plus a retarded 
quadrupole. The radiating multipole fields are 
chosen to be pulses of radiation that turn on and 
off simultaneously. The field + is taken to be 
axially symmetric. 

We symbolize the field by writing 

+ = m + e + 1/.1 + ¢. 

Formally, there are then ten possible second­
order interactions: 

e 2 + m 2 + 1/.1 2 + ¢2 + me + m1/.l + m¢ + e I/; 

+ e¢ + I/;¢. 

Since the first-order gravitational and electro­
magnetic fields are not coupled (Le., the first­
order electromagnetic field does not contribute to 
the first-order metric and vice versa), a second­
order electromagnetic field can arise only from 
the interaction of a first-order gravitational field 
and a first-order electromagnetic field. This is an 
obvious consequence of the fact that the interaction 
terms in Maxwell's equations are products of the 
electromagnetic field with quantities constructed 
only from the metric. A second-order gravitational 
field can arise only from the self-interaction of 
fields and not from the interactions of the gravita­
tional field with the electromagnetic field. This 
follows obviously from the fact that the electro­
magnetic field occurs in the Bianchi identities 
only quadratically. Hence the electromagnetic 
parts of the interactions e2 ,m2,1/.I2,¢2,m1/.l,and 
e¢ do not occur, and the gravitational parts of the 
interactions me, m¢, e1/.l, and I/;¢ do not occur. 
The gravitational part of m 2 and the electromagne­
tic part of me are not eliminated by the general 
nature of the nonlinearities of the Einstein-Max­
well equations, but direct calculation of these two 
interactions shows that they vanish. This is in 
agreement with the fact that they do not enter the 
Reissner-Nordstrom solution. The gravitational 
part of the e 2 interaction does not vanish. How­
ever, it is part of this well-known static solution. 4 

The m1/.l and 1/.1 2 interactions have been analyzed 
completely in Ref. 1. 
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mass interaction is found to give rise to scattered radiation. 

1. INTRODUCTION 

Nonlinear effects that show some interesting 
aspects of the interaction of gravitational radia­
tion fields in empty space-time with themselves 
and with mass monopoles have recently been dis­
covered. 1 - 3 These previous investigations made 
use of a perturbative approximation scheme to 
calculate the nonlinear effects. In this paper we 
apply the same perturbative scheme to the case 
where an electromagnetic field is present in space­
time and investigate certain interactions of elec­
tromagnetic fields with gravitational fields and 
with themselve&. 

We assume that all quantities occurring in our 
formulation of Einstein- Maxwell theory are expand­
able in a perturbation series in which the zeroth 
order represents flat space-time with no electro­
magnetic field present, the first-order fields are 
those of linearized Einstein-Maxwell theory, the 
second-order fields are those required by the 
field equations to first nonlinear order, and so 
forth. 

Specifically, we take our combined linear gravita­
tional and electromagnetic field + to be composed 
of a mass monopole field m,a retarded gravita­
tional quadrupole radiation field 1/.1 , a Coulomb 
field e, and an electromagnetic radiation field ¢ 
consisting of a retarded dipole plus a retarded 
quadrupole. The radiating multipole fields are 
chosen to be pulses of radiation that turn on and 
off simultaneously. The field + is taken to be 
axially symmetric. 

We symbolize the field by writing 

+ = m + e + 1/.1 + ¢. 

Formally, there are then ten possible second­
order interactions: 

e 2 + m 2 + 1/.1 2 + ¢2 + me + m1/.l + m¢ + e I/; 

+ e¢ + I/;¢. 

Since the first-order gravitational and electro­
magnetic fields are not coupled (Le., the first­
order electromagnetic field does not contribute to 
the first-order metric and vice versa), a second­
order electromagnetic field can arise only from 
the interaction of a first-order gravitational field 
and a first-order electromagnetic field. This is an 
obvious consequence of the fact that the interaction 
terms in Maxwell's equations are products of the 
electromagnetic field with quantities constructed 
only from the metric. A second-order gravitational 
field can arise only from the self-interaction of 
fields and not from the interactions of the gravita­
tional field with the electromagnetic field. This 
follows obviously from the fact that the electro­
magnetic field occurs in the Bianchi identities 
only quadratically. Hence the electromagnetic 
parts of the interactions e2 ,m2,1/.I2,¢2,m1/.l,and 
e¢ do not occur, and the gravitational parts of the 
interactions me, m¢, e1/.l, and I/;¢ do not occur. 
The gravitational part of m 2 and the electromagne­
tic part of me are not eliminated by the general 
nature of the nonlinearities of the Einstein-Max­
well equations, but direct calculation of these two 
interactions shows that they vanish. This is in 
agreement with the fact that they do not enter the 
Reissner-Nordstrom solution. The gravitational 
part of the e 2 interaction does not vanish. How­
ever, it is part of this well-known static solution. 4 

The m1/.l and 1/.1 2 interactions have been analyzed 
completely in Ref. 1. 
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We therefore restrict our attention to the second­
order field that arises from the interactions ¢2, 
m¢ ,etJ;, e ¢, and tJ; ¢. The boundary condition that 
the second-order field have no gravitational or 
electromagnetic radiation that comes in from in­
finity is imposed. In fact we require that the 
second-order field vanish for all times prior to the 
emission of the first-order radiation, and further 
require that after emiSSion, it has no radiating 
multipole Singularities at the origin. With these 
conditions we are able to calculate the second­
order gravitational and electromagnetic fields 
that arise, and we do this separately for each 
interaction. For the second-order field of each 
interaction we ascertain whether there is a gravi­
tational or electromagnetic radiation field present 
in regions of space-time after the first-order 
radiation pulses have turned off. The boundary 
conditions ensure that if any radiation is present 
after the emission of the first-order radiation, it 
has been generated by the interaction. Whether 
such gravitational or electromagnetic radiation 
fields are present is the major invariant property 
of intel'est concerning the second-order field. 

2. EINSTEIN-MAXWELL THEORY 

We use a null tetrad of basis vectors 5 ,6 

(ljJ,njJ ,mil ,mil) satisfying 

ljJmjJ = njJmIJ = O. 

(2. 1) 

The vector ljJ is chosen as the gradient of null 
hypersurfaces labeled by the coordinate X 0 = u so 

III = U'll' The vectors nil' mil' and mil are parallel­
propagated along the geodesics to which III is 
tangent. The coordinate x 1 is taken to be the affine 
parameter r along ljJ; and the coordinates Xi label 
different null geodesics in each null hypersurface. 
Our tetrad then has the form: 

lll= 6~, 

nil = 611> + U6~ + Xi 6i , 

mil = w6~ + ~i6~ • • 

(2.2) 

The gravitational field is given by the tetrad com­
ponents of the Weyl tensor: 

1/12 = - C mYnvlPmo jJVpCr , 

tJ;3 = - CllvrxfiLllnvlPnC1, 

0/' = - C mllnV'mPn C1 ' 
'I" 4 jJvpa , 

(2.3) 

and the electromagnetic field is given by the tetrad 
components of the electromagnetic field tensor: 

¢o = FIl)jJm v, 

¢1 = iFjJv(ljJn v + mjJm v), 

¢2 = FIlVmllnv• 

The tJ;A satisfy the Bianchi identities: 

(2.4) 

(~)tJ; A - (~tJ;A-l = (1 - A) (~) If; A-2 - (3 - A)2 (;) tJ; A-l + (5 - A) (f)1/; A + (~) [All1/; A-I + 2(2 - A){3tJ;A 

- (4 - A)atJ;A+l] - (t.)(6A1 + 6A3){[6 - 2(2 - A){3]¢A-l_+ [(3 - A)a + (1- A)Il]¢l} + (6A2 + 6A4) 

x {[ ~- 2(3 - A)Y]¢A-2 + [(4 - A)T + (2 - A)II]1>l}) + (t) (6A1 + 6A3 )D¢A-l + (OA2 + 0A4) 

x {[6 - 2(3 - A)a]¢A-2 + [(4 - A)p + (2 - A)A]¢l})' (2.5) 

with A = 1, 2,3,4, where 6 AB is the Kronecker 
symbol, 

P = lll;v mllmV, 

a = -21 (l nllm" - m niJlmY) lliV Ii;v , 

{3 = ~ (llliVnllrn" - m jJi viilIIm II), 

T = a + (3, 

II = - nlli llnillnv , 

Y =-21(l nllnV-m mflnll) 
11; v J.!.;V' 

(2.6) 

and the differential operators (D,~, 13, 6) are the 
intrinsic derivatives with respect to the tetrad. 
Maxwell's equations in terms of the ¢A are 

(~)¢A -a~A-l = (1- A)(~)¢A_2 - 2(2 - A) 

X(;)1>A-l + (3 - A)(~)¢A +(~) 
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with A = 1,2. 

The perturbation scheme applied to these equations 
gives the differential equations that govern the 
fields at each perturbative order. 

The zeroth-order field is given by 1/1 A = cfJ A = ° 
and we have 

p=-l/r, U=r/-L=-L 

QI = - {3 = - (-v'2/4r) cote, 

V = (-v'2/2r) (1, i/ sin e), 

(u, r, e, cfJ) are null spherical polar coordinates. All 
other spin coefficients and tetrad vector compo­
nents vanish in flat space. 

The first-order field of our problem is given by 

./, =~ y; &2 + (_I2)A-2((4-A)!)1/2 
'+' A r3 0 00 A " A! 

- (a 1 o\A Q 
xJ6 2-A Y20 AU - 2" ai) r 5 - A' (2.8a) 

with A = 0,1,2,3,4; 

"., _~ Y &1 + (_1)A Y (~_l~)A 
'+'A - y2 0 00 A I-A 10 \ou 2 or 

x L A - ((3 - A) !) 1/2 
r 3- A + ( - 1) (v'2) A-l (1 + A)! (2.8b) 

xla l-AY 20 r(1- _ .l.l....\ A+l -q-, 
AU 2 or! r4-A 

with A = 0,1,2 where m is the mass, e the electric 
charge, Q the mass quadrupole moment, p the 
electric dipole moment, and q the electric quadru­
pole moment; the quantities Q,p,and q vanish out­
side the interval u 2 > U > ul' The functions sYz"o are 
spin-weighted spherical harmonics of spin weight 
s.7 

The first-order spin coefficients and metric 
variables are 

-!f.Q +~\CotelY (2.9) 
4 \r3 r4 ) 20' 

,\ _ ~ (2Q + .!L Q) _ 
- 2 r r2 + 4" -2Y 20' 

r . 

1l=_J2-(2+ 3Q +~Q-Q+3Q-Q)-lY20' 
r 2r2 4r3 4r4 

-m 1 ". (.Q+ Q 
U = rOY 00 + 2" v6 \ r 

+ Q+ Q 
r2 

Q + Q) + oY20 , 
2r3 

w = 12 (~_ 3Q _!{) Y 
'r 2r2 r3 1 20' 

_ 1. (1 _i _) (...2:. + Q) 
2 , sin e r3 r4 - 1 Y20 , 

~j = _',[2 (1 ~)(Q + R) Y 
2 ' sine r2 r4 2 20' 

where the dot denotes a/au. 
These quantities can be obtained from the metric 
and the field equations, G v = - 81Tk T 11 v = -
81Tk(F; Fup - ig"v FpJFP'l when both the metric 
and the field equations are written in their tetrad 
form. l . 5 

The first-order field satisfies the equations 

iflA - 1 = 0, 

(2. 10) 

with A = 1,2,3,4; 

(

a 3_A) ( ,[2. ) -+__ -'15 

ar r IDA + 2r cfJA-l = 0, 

_12('5 _.l...+l~+~ 
2r au 2 or 2y 

(2.11) 

with A = 1,2. The operator (') is a raising opera­
tor for spin-weighted quantities and is defined by7 

5Tj = - (Sine)s(aoe + s;ne ~) [(sinef
s
1J], 

and 8 is a lowering operator defined by 

- (. -s( () i 0 \ [ . ,s ] 15Tj = - sme) (; e - sine a cfJ) (smB) IJ , 

(2. 12) 

(2. 13) 

where Tf is a quantity of spin weight s. At each 
perturbative order the 1/1 A have spin weight 2 - A 
and the ¢ A have spin weight 1 - A. 
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The second-order field satisfies a modified form 
of Eqs. (2.10) and (2.11) that has instead of zero 
for the right- hand sides driving terms composed 
of products of known first-order quantities. These 
driving terms for Eqs. (2.10) and (2.11) are, re­
spectively, given by 

(1-A)C)~A-2 + [(1)-2(3-A) (~)]~A-1 
+ (~) {AIl~A-l - [0 - 2(2 - A){3 - (5 - AhJ~A 
- (4 -A)U\f;A+l} 

( 
¢O) ft (.'/2 . 1 - A \ 

+ ~ ~OAI + 0A3) 2r M A- 1 + ~ ¢1} 

+ (OA2 + °A4) Uu -~ a~) ¢A-2] 

+ (!~)[(IiA1 + 0A3) :r ¢A-1 - (OA2 + °A4) 

( /2- 4 -A \J 
+ 2r b¢A-2 + -r- q'y 

'0d

_A) C) qJ k2 + [(~) -2(2-A) (~)] ¢A-1 

+ (~) {Alld A- 1 - [0 - 2(1 - A){3 - (3 - A)T ]¢A 

- (2 - A)u¢A+11• 

The second-order field is obtained by solving the 
driven form of Eqs. (2.10) and (2.11) in conjunction 
with the boundary conditions. 

3. THE SECOND-ORDER FIELD 

We find the second-order Einstein- Maxwell field 
caused by each interaction by solving for l/- 0 and 
¢o in the driven form of Eqs. (2.10) and (2.11) with 
A = 1. The other ¢A and I/-A can then be obtained 
from the remaining equations by straightforward 
calculation. We will only display ¢o and t¥o. 

A. The cfl- Interaction 

There is no electromagnetic field arising in this 
case. The solution for the gravitational field is 
given by 

1/- 0 = r- 5 [(W + V)2 Y 20 + (X + O)2Y30 

+ (Y + S)2Y40] + r-6 [3(X + O)2Y30 (3.1) 

+ 7(1' +S)2Y40] +r-7 14[Y+ S]zY40 +Z, 

where V, 0, and S are, respectively, the second­
order quadrupole, octupole, and sixteen-pole mo­
ments due to second-order outgoing gravitational 
news. This news is present only in the pulse 
regionS and is unrestricted there except for the 
following relations which must be satisfied at 
u = u 2 : 

dun dun' 
n=0,1,2, (3.2a) 

dnO dnX 
n = 0,1,2,3, (3.2b) ----

dlJ n dun' 

dnS dny 
n = 0,1,2,3,4. (3.2c) ----

d7ln dun' 

The terms W, X, Y and Z are defined in the Appen­
dix. 

We see that l/- 0 == 0 outside of the pulse region, so 
that the radiative part of this field vanishes in 
space-time regions outside of the first-order 
pulse. If the conditions at u = u2 expressed by 
Eqs. (3.2) were not required, the second-order field 
would still be nonradiative but I/- 0 would not vanish 
for u> u 2 • 

B. The ml/J Interaction 

There is no gravitational field arising in this case. 
The solution for the electromagnetic field is given 
by 

where 

I==fU p(u')du' 
U1 (u + 2r -u')2' 

K(u) == 2 JU P(u')du' 
U 1 (u - u')2 ' 

J == ~ + ~ fU. q(u')du' , 
20r U 1 (u + 2r - u')2 

L(u) == 12 fU q{u')du', u ~ u 1. 
U1 (u - u')2 

The outgoing electromagnetic news for this field 
is given by 

(3.4) 

in the region after the pulse. This shows the scat­
tering of the electromagnetic radiation off the 
Schwarz schild mass. 

C. The e~ Interaction 

There is no gravitational field arising in this case. 
The solution for the electromagnetic field is given 
by 

~2~ 1/2 ~ Q 3Q ) ¢O = - e - - + - 1 Y20' 
1f r4 r5 

(3.5) 

which vanishes outside of the pulse region. This 
field is therefore nonradiative in the region after 
the pulse. 

D. The el/J Interaction 

There is no electromagnetic field arising in this 
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case. The solution for the gravitational field is 
given by 

lj;o = (~\ 1/2 e (-.i _ 6q ) Y 
TTj r 5 r6 2 20' 

(3.6) 

which vanishes outside of the pulse region. This 
field is therefore nonradiative in the region after 
the pulse. 

E. The ¢lj; Interaction 

There is no gravitational field arising in this case. 
The solution for the electromagnetic field has been 
calculated for the electromagnetic dipole-gravi­
tational quadrupole interaction. The field is found 
to vanish outside of the pulse, and is therefore non­
radiative in that region. This is also found to be 
true when the first-order field is not restricted 
to be axially symmetric. 

It has previously been found l that there is scatter­
ed radiation arising from the mlj; interaction and 
no scattered radiation in the case of the 1/;2 inter­
action. These results and the interactions calcula­
ted here show that for the complete second-order 
field arising from 1/;, the only scattered radiation 
present after the pulse is due to the scattering of 
the first-order gravitational and electromagnetic 
radiation off the mass monopole; no radiation is 
scattered if the mass monopole vanishes. In par­
ticular, the interaction of these first-order elec­
tromagnetic radiation fields with themselves or 
with a radiating gravitational quadrupole produces 
no scattered radiation after the pulse. 

4. THE THIRD-ORDER FIELD 

We will discuss only the mass-dipole-dipole inter­
action. There is no third-order electromagnetic 
field ariSing in this case. The solution for the 
gravitational field is given by 

(4.1) 

APPENDIX 

The quantities W,X, and Yare defined as follows: 

where 

m -'--
N(u) == r.= V (u), U =::: u l , 

2,,4rr 

= [U F(u')du' R-o , u=:::u 1 • 
"1 (u + 2r -u')2 

M(u) + N(u) == - 24 JU F(u')du' u =::: Ul' 
u 1 (u-u')2' 

m r, 2(3)1/2_'':l 
F(u) == - 2fu LW + V - '7 10rr (PP - 6PP)J ' 

T == Ii D(rD21 _ 4DI + 6/). + LD2 (DI) + 15 pp 
y3 r 2y2 \ y 7r7 

and now the terms involving q are not present in 
Wand V. 

The third-order outgoing gravitational news for 
this field is given by 

(4.2) 

in the region after the pulse. We see that we will 
have scattering in the region after the pulse unless 
the second-order outgoing gravitational news 

1= 

-;; V2 Y20 is chosen such that F(u) = 0 everywhere. 
In tha!,case, in the region after the pulse we have 
I/; 0 = M = 0 and no radiation is present. We in­
terpret this to mean that in general, third-order 
gravitational radiation is produced by the inter­
action of first-order electromagnetic radiation 
with the mass. In the special case that F '= 0 the 
produced radiation is canceled by radiative scat­
tering of second-order gravitational radiation off 
the mass. 
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The equations of hydrodynamic s are derived from the principles of classical statistical mechanics for a 
single component system of spherical molecules. Exact expressions for the stress tensor and heat flux 
are obtained without resorting to any methods of approximation, The derivations are carried out for a 
system of molecules which interact through a continuous pair potential, and for a system consisting 
solely of rigid spheres, The "long-wavelength" expansion employed by Irving and Kirkwood [J, Chern 
Phys.18,817 (1950)) in their expressions for the stress tensor and heat flux is examined. It is demon­
strated that this expansion converges only if the intermolecular potential goes to zero faster than any 
positive power of (l/r) in the limit of large r (r is the internuclear distance) and hence diverges for any 
realistic intermolecular potentiaL An elementary example is considered to demonstrate the effect of 
finite wavelength on the stress tensor. 

1. INTRODUCTION 

The derivation of the hydrodynamic equations, the 
general conservation laws of macroscopic physics, 
from the principles of molecular mechanics has 
always been a central problem in statistical 
mechanics. One of the earliest approaches to this 
problem starts with the Boltzman transport equa­
tion l which arises in the study of dilute gases. Al­
though this approach yielded the correct kinetic 
contributions to the equations of hydrodynamics, 
the role played by intermolecular forces was not 
generally understood until about twenty years ago. 
At that time Irving and Kirkwood developed their 
general distribution function formalism 2 to obtain 
explicit expressions for the stress tensor and heat 
flux in terms of microscopic quantities. Since 
then their results have been widely used as the 
starting point of more detailed investigations. 3 

In order to obtain expressions for the stress ten­
sor and heat flux, Irving and Kirkwood arbitrarily 
expanded a pair distribution function occurring in 
the general conservation expressions in a Taylor 
series. The underlying assumption for performing 
this expansion is that the pair distribution runction 
is a slowly varying function of the center of mass 
of the two molecules over distances comparable 
to the "range- of the intermolecular forces. Simi­
lar expansions, appearing frequently in the litera­
ture,4-7 may be characterized as "long-wave­
length' expansions. Irving and Kirkwood, as well 
as Green, MOri, Zwanzig, and Frolich, assume that 
for most situations the convergence of the expan­
sion is sufficiently rapid to justify disregarding 
all but the first nonvanishing term. 

Unfortunately, as shown in Sec. 14 of this paper, the 
long-wavelength expansions for the stress tensor 
and heat flux do not converge unless the inter­
molecular pair potential vanishes faster than any 
positive power of l/r in the limit of large r(r is 
the internuclear distance). This is a requirement 
no realistic potential can meet and poses the prob­
lem of obtaining a satisfactory derivation of the 
hydrodynamic equations. It is our intention to 
supply solutions for these problems under the 
limitations of classical statistical mechanics. 

We rigorously derive the equations of hydrody­
namics for a single-component system of spherical 
molecules and obtain exact expressions for the 
stress tensor and heat flux. We consider not only 
molecules exhibiting continuous, differentiable 
potentials, but also a system of rigid spheres. The 
effects of finite wavelength on the intermolecular 
contribution to the stress tensor, as opposed to the 
kinetic contribution, are then considered in an ele­
mentary example. Any external forces on the sys­
tems considered are assumed to be conservative, 
and functions of position only. 

Although the results for a system with a continuous 
intermolecular potential were obtained by Choh 8 

from the BBGKY hierarchy, 9 he immediately em­
ployed the long-wavelength expansion of Irving and 
Kirkwood. It should be noted that the derivation 
presented here has two distinct advantages: It 
gives the physical origin of all terms appearing in 
the transport equations and is independent of the 
equations governing the evolution in time of the 
required distribution functions. 
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though this approach yielded the correct kinetic 
contributions to the equations of hydrodynamics, 
the role played by intermolecular forces was not 
generally understood until about twenty years ago. 
At that time Irving and Kirkwood developed their 
general distribution function formalism 2 to obtain 
explicit expressions for the stress tensor and heat 
flux in terms of microscopic quantities. Since 
then their results have been widely used as the 
starting point of more detailed investigations. 3 

In order to obtain expressions for the stress ten­
sor and heat flux, Irving and Kirkwood arbitrarily 
expanded a pair distribution function occurring in 
the general conservation expressions in a Taylor 
series. The underlying assumption for performing 
this expansion is that the pair distribution runction 
is a slowly varying function of the center of mass 
of the two molecules over distances comparable 
to the "range- of the intermolecular forces. Simi­
lar expansions, appearing frequently in the litera­
ture,4-7 may be characterized as "long-wave­
length' expansions. Irving and Kirkwood, as well 
as Green, MOri, Zwanzig, and Frolich, assume that 
for most situations the convergence of the expan­
sion is sufficiently rapid to justify disregarding 
all but the first nonvanishing term. 

Unfortunately, as shown in Sec. 14 of this paper, the 
long-wavelength expansions for the stress tensor 
and heat flux do not converge unless the inter­
molecular pair potential vanishes faster than any 
positive power of l/r in the limit of large r(r is 
the internuclear distance). This is a requirement 
no realistic potential can meet and poses the prob­
lem of obtaining a satisfactory derivation of the 
hydrodynamic equations. It is our intention to 
supply solutions for these problems under the 
limitations of classical statistical mechanics. 

We rigorously derive the equations of hydrody­
namics for a single-component system of spherical 
molecules and obtain exact expressions for the 
stress tensor and heat flux. We consider not only 
molecules exhibiting continuous, differentiable 
potentials, but also a system of rigid spheres. The 
effects of finite wavelength on the intermolecular 
contribution to the stress tensor, as opposed to the 
kinetic contribution, are then considered in an ele­
mentary example. Any external forces on the sys­
tems considered are assumed to be conservative, 
and functions of position only. 

Although the results for a system with a continuous 
intermolecular potential were obtained by Choh 8 

from the BBGKY hierarchy, 9 he immediately em­
ployed the long-wavelength expansion of Irving and 
Kirkwood. It should be noted that the derivation 
presented here has two distinct advantages: It 
gives the physical origin of all terms appearing in 
the transport equations and is independent of the 
equations governing the evolution in time of the 
required distribution functions. 
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Transport equations for a system of perfectly rigid 
spheres were obtained by EnskoglO for moderately 
dense, as well as dilute systems. All of his results 
depend on approximation methods of limited appli­
cability and are incorrect for highly dense systems. 

2. DISTRIBUTION FUNCTIONS 

Let g(N)(X1, PI; ... X Nl P N; t) be the canonical distri­
bution function, normalized to unity, of the entire 
system, where Xi is the position and Pi the momen­
tum of the ith molecule, and N is the total number 
of molecules in the system. The two-particle dis­
tribution function in configuration and momentum 
space is defined by 

g (2)(x1 , PI; X2' P2) == N(N - 1) 

X J6(N-2)dim dx 3 '" dxNdP3 . " dPNg(N) 

and the one-particle distribution function in con­
figuration and momentum space is given by 

g(l~Xl> PI) = N J6 (N-I)dim. dx2 ••• dxNdP2 

X ••• dPNg(N). (2.2) 

The two- ahd one-particle distribution functions in 
configuration space are, respectively, 

the mass of one molecule, then p is defined by 

Having defined all of the distribution functions we 
shall require, we may now proceed to derive the 
statistical transport equations. 

3. TRANSPORT OF MASS 

Throughout the following work we shall be con­
cerned with the rate of change of some property 
(mass, momentum, etc.) of a simply connected 
region R in configuration space. The velocity of a 
boundary point of R is defined to be the average 
velocity vo of a molecule at that pOint: 

(3.1) 

where Po is the average momentum of a molecule 
at Xl' 

The mass MR contained in the region R is given by 

(3.2) 

j(z)(X1,X2) = J dPIJ dP2g(2)(X 1 ,PI;X2,P2), 

jU)(xl ) = J dpIg(l~xI,Pl)' 

so that, from the definition of R, the rate of change 
(2.3) of MR is 

(2.4) 

For convenience we have suppressed the depen­
dence of these functions on the time t, but it is 
assumed that there may be explicit dependence on 
t in any or all of them. 

It will be convenient to introduce the vectors w, p, 
r, and x, where 

w = P2 - PI' 

r = X 2 - Xl' 

P = t (P2 + PI)' 

x = t (X2 + Xl); 

and the functions rand y defined by 

r(w, r; P, x) == g (2)(x1, PI; X 2' P2)' 

y(r, x) = j(2)(x1, x2). 

(2.5) 

(2.6) 

Because the molecules are identical, g(2) and 1(2) 

are such that 

(3.3) 

where da is an element of the boundary surface of 
R and Ii is the unit vector normal to the boundary 
surface and directed outward. Applying Gauss's 
theorem to the second term on the right-hand side 
(rhs) of Eq. (3. 3) 

(3.4) 

Now, the only way in which MR may change is by 
the flow of molecules across the boundary surface 
of R. Consider a molecule with position Xl and 
momentum PI such that Xl is in the region (11m) 
(PI - Po)oil da 0 t just inside the surface and 
(PI - PoHi > 0 for some surface element da: 
Clearly, ifot is positive but very small, the mole­
cule will leave R in the time ot. Thus, the number 
of molecules with PI ( dPl and Xl ( (11m) 
(PI - PoHi da Of leaving R in the time ot is 

g(2)(XI , PI; X2' P2) = g(2)(X2, P2; Xv PI)' 

1(2~Xl> x 2) = j(2)(X2, Xl); (2.7) (l/m)(PI - Po)oiig(l~xl' PI)H[(PI - po) "n]dpldaot, 

so that 

r(w, r; p, x) = r(-w, -r; P, x), 

y(r, x) = y(-r, x). 
(2.8) 

where H(y) = 1 if X > 0 and H(x) == 0 if X < O. Simi­
larly, the number entering in Ot from just outside 
da and with PI ( dPI is 

- J.. (Pt - Po)oilg(l)(x t ,PI)H[(po - Pl)"ii]dp1daol 
m 

We mention that in hydrodynamics the mass density so that, as each molecule carries with it the mass 
p is frequently employed in place of j(l). If m is m, 
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dM R __ .[ J (1) ( 
dt - ':!R da dpln'(P1 - PO)g XI,P I) = 0, 

(3.5) 

by Eqs. (3.1) and (2.4). As this is true for any R 
in the system, we find from Eq. (3. 4) that 

£E-. a at + aX
I 

'pvo = 0, (3.6) 

which is the familiar equation of continuity in 
hydrodynamics. 

From the foregoing analysis it should be clear 
that if X(x l , PI} is some property associated with a 
molecule located at Xl with momentum PI' then the 
rate of change of XR , the quantity of '( contained in 
R, due to the flow of molecules across the boundary 
of R is given by 

(~XR\ = _l i daJdp (p - P }'nvo(1) 
dt -; m Y R I I 0 ~ 

flo" 

(3.7) 

1· a 
= - in JRdxlax' J dpl (PI - pohg (1), 

I 

where we have used Gauss's theorem. We shall 
make frequent use of Eq. (3. 7) in what follows. 
Moreover, it should be noted that Eq. (3. 7) applies 
regardless of whether the property X is a scalar, 
vector, or tensor quantity. 

4. TRANSPORT OF MOMENTUM 

The momentum p R contained in the region R at the 
time t is given by 

by Eq. (3.1), so that the rate of change of PR is 

r a a 
JRdxI aTPvo + aXl'voPvo 

JRdXIP(it + Vo 'a~l)vo' (4.2) 

where, in the above, we first applied Gauss's 
theorem and then the continuity equation, Eq. 
(3.6},to obtain the result. 

The contribution to the rate of change of P R due to 
the flow of molecules across the boundary of R is, 
from Eq. (3. 7), 

(dP R\ = _ ~ JRdX l - o- • J dpl (PI - po) 
\ dt } flow rn aXl 

(4.4) 

to tre rate of change of P R • 

The force exerted on a molecule at Xl due to the 
presence of another molecule at x2 is 

o</J(/X2 - Xli) = _ o</J (/r/) =.! qp(r) 

oXl rdr 

= r</J'(r) 

where cp(r) is the intermolecular potential. Now, 
gi ven a molecule at Xl' the probability that there 
is another molecule located in dX2 is 

Thus, the rate of change of PR due to intermole­
cular forces is 

(dPR\ = JRdxl J drr</J'(r)j<2)(xl,Xl + r) 
dt} in!: 

= JRdxl J drr</J' (r)y(r,Xl + ir). (4.5) 

We shall now express the integrand as the diver­
gence of a tensor. We note that 

(4.6) 

where, we first let r -> -r (without altering the 
limits) and then used Eq. (2. 8). NOW, since y is a 
continuous function of the components of x, we 
find 

(4.7) 

where y = Xl + 1/r, the Yi and ri are the Cartesian 
components of y and r, and repeated indices are 
summed over. But, 

X (PI - Po)g(1) (4.3) Hence 

as JdPl (PI - po)g (1) = 0. 

If F(x1 ) is the external force per unit mass acting 
on the molecules in R, then F contributes 1l/2 o'V = d1/ r' ....:::.J... 

-l/2 Z ox' z 
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where we have defined y by 

y(r,xl) = f-YA d1)y(r, Xl + 1)r). 

The intermolecular contribution to the rate of 
change of P R may now be written as 

(4.8) 

(4.9) 

(dPR~ r a I r ~ , )-{it = JRdXl -a - • 2)drrr¢ (r y(r, Xl)· 
tnt Xl (4. 10) 

Adding up all of the contributions and using the 
fact that R is arbitrary, we obtain the balance 
equation for the transport of momentum: 

a a 
p(at + Vo • axl)vo 

= pF + ~ • (- L J dPI (PI - po) (PI - Po)g(1) 
aX l m 

+ t J dr fr¢'ji ). (4.11) 

5. TRANSPORT OF ANGULAR MOMENTUM 

Because we have assumed that the molecules of 
our system have no internal angular momentum, 
a molecule with position Xl and momentum PI 
possesses solely its orbital angular momentum, 
Xl x Pl. We shall see later that such a system 
must have a symmetric stress tensor. Here, how­
ever, we shall simply find the balance equation 
for the transport of orbital angular momentum. 

The angular momentum contained in R is 

LR = JRdxIJ dpl(XI x PI)g(1) 

JRdxIXI x JdPIPIg(1) 

(5.1) 

so that the rate of change of LR is found in the 
usual way to be 

dL R f 0 "dt = R dx I XI X at pvo + §R dafi • Vo (Xl Xpvo ) 

= fRdXIP(:t + Vo °O~I)(XI x vo ), (5.2) 

where we have used the arguments leading to Eq. 
(4.2) to obtain Eq.(5.2). 

The rate of flow of angular momentum into R is, 
from Eq. (3. 7), 

dL R 
dt flow 

- - 1 f dx _0_ f ( ) ( \ (1) - m R I OX
I 

0 dPl PI - Po Xl X PIlg 

=!fdx _0 
m R I oXl 

olfdPI (PI - po) (PI - po)g( 1)) x Xl 

We define the symmetric tensor A by 

A = Jz f dPI (PI - po) (PI - p
o

)g(1) , 

so that 

(dL~\ 
elt/fIO" 

(5.3) 

(5.4) 

= - fRdxlxl x a!l 0 A + JRdxIAijej x ei' (5.5) 

where the ei are the Cartesian unit vectors, the 
Xi are the components of Xl' the Aij are the ele­
ments of A, and we have employed the convention 
of summing over repeated indices. Now, since A 
is symmetric, 

(5.6) 

and the contribution due to flow may be written as 

X (PI - po)g{ 1») x xJ 
= - k fR dx l x l x a~ • f aPl{P1 - po) 

1 

(5.7) 

Since the external forces are only functions of 
position, the contribution they make is simply 

(5.8) 

In the previous section we demonstrated that the 
average force on a molecule at Xl due to the pre­
sence of all other molecules is 

Hence, the intermolecular forces contribute 

fRdxlxl x fdrr¢'j(2)(x I ,xI + r) 

to the torque acting on the molecules in R. Apply­
ing Eqs. (4.5)-(4.9) to the above, we obtain 

(5.9) 
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Now, the tensor 

is obviously symmetric, so that the arguments 
used on A in Eqs. (5. 5)-(5. 7) also apply here, and 
Eq. (5. 9) may be alternatively expressed by 

(
aL R) = _ iR dx l _0_ • (~f arrr¢')' x xil. 
at . ax! 

Int (5.10) 

Adding the contributions due to flow, external 
forces, and intermolecular forces, equating the 
sum to the rhs of Eq. (5. 2), and using the fact that 
R is arbitrary, we obtain the balance equation for 
the transport of angular momentum: 

p(;t + Vo • a;J (Xl x vol 

= Xl X pF - a;l • [(-1 fdpl(Pl - Po) 

X(PI - po)g (1) + ~ f arrr¢ I Y) X Xl] 

= Xl x [PF + a;l • (- ~ f dpl(Pl - Po) 

X (PI - PO)g(l) + ~ i drrrcfly )1 (5.11) 

The motivation for expressing this balance equa­
tion in two alternative forms will be made appar­
ent when we discuss the stress tensor. 

6. TRANSPORT OF ENERGY 

We ascribe to each molecule in a given pair the 
potential energy ~¢, and we write mq,(x l ) as the 
scalar potential due to the external forces of a 
molecule at xl, so that 

With these definitions, the average energy of a 
molecule at xl with momentum PI is 

(6.1) 

while the average energy of a molecule located at 
Xl is 

e(x l ) = m¢ + _1_ 
fl) 

x (2~ f dp l iP l i2g(1) + ~ f drj (2)(Xl' Xl + r)¢). 

(6.3) 

The total energy En contained in the region R is 
then 

where f is the energy per unit mass: 

1 
f =-e. 

m 

(6.4) 

(6.5) 

In the usual manner we find that the rate of change 
of En is given by 

(6.6) 

The contribution due to flow is simply 

(dE R..\ = _l fRdxI -00 • jdpl (PI - po)g(1)e 
dt 1 m Xl 

flow (6.7) 

and it should be noted that, since <I> depends solely 
on Xl' the external forces make no contribution to 
the flow term. 

The average increase in the kinetic energy of a 
molecule at xl with momentum PI in the time fJt is 

(FOPI + ".~(l) Pl· fdrjdp2 r cpg(2) (Xl,Pl;XI 

+ r,p2~fJt 
and the average increase of the potential energy 
of such a molecule in ot is 

( 
o <I> 1 

Pl· OX
I 

+ 2
m

g(1) f dr j dp2(P2 - PI) 

of¢'g(2)(Xl ,PI;XI + r,P2») tit , 

where we have expanded ¢ and <I> through first 
order in tit to obtain the result. Multiplying the 
last two expressions by gO), integrating over all 
PI and over Xl fR, dividing by tit, and adding on the 
flow contribution, we find 

dEn 0 1 f -- = - j dXI - 0- dpl(P1 - P )eg(l) dt R aX l m 0 

+ fRdxl f dr j dp2 2~ (PI + P2) 

(6.8) 

where we have used Eq. (6.1) in the above. 

We shall now proceed in a manner similar to that 
of Sec. 4 to express the second term on the rhs of 
Eq. (6.8), the intermolecular term, as the integral 
over Xl fR of the divergence of a vector quantity. 
Transforming to w, r, and p coordinates, the inter­
molecular term may be written as 

fRdxljdr¢'ro jdwfdplpr(w,r;p,x1 + ir). m 
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Defining b(r, x) by 

b(r,x) = jdwjdppr(w,rjp,x), 

we have 

b(-r,x) = j dw j dppr(w,-rjp,x) 

= jdwjdppr(-w,rjp,x) 

= jdwjdppr(w,rjp,x) 

= b(r,x), 

(6.9) 

(6.10) 

where we first used Eq. (2. 8) and then let w ---:> - w 
without altering the limits. We may now write the 
intermolecular term as 

1 jRdxI j dr ep'X:- b(r, Xl + ir) m 
1 J: j '~( 1 =-- Rrixl drepr-b-r,XI -2r ) m 

= 2~ jRrixl j dr ep'r-[b(r,x l + ir) 

- b(r, Xl - h)] 

= 2~ ~dXl j dr ep'r- j dw j dp 

x p[r(w, rj p, Xl + ir) - r(w, rj p, Xl - ir)]. 

But, applying the arguments used in Eqs. (4. 7)­
(4.9), we find that 

1 1 a -
r(w, rjp,xl + 2r) - r(w, rjp,xI - 2r ) = r--a - r, 

Xl 

(6.11) 

where r is given by 

7. THE STRESS TENSOR 

In hydrodynamics and the theory of continuous 
media it is assumed that the rate of change of P

R 
is due to forces acting on the surface of R (stresses) 
and external forces (or body forces). If da is an 
element of the boundary surface of R, and if T is 
!he stress ten~or, then the force acting on da is 
n-Tda, where n is the outward directed unit vector 
normal to da. Thus, if T exists, 

(7.1) 

so that the momentum balance equation of hydro­
dynamics is, from Eq. (4. 2), 

(
a a ) a p at + vo- aX

I 
Vo = aX

I 
-T + pF. 

The rate of change of LR in hydrodynamics is 

giving us, with Eq. (5. 2), the balance equation 

p(a~ + vo-a;J (xl x Vol 

(7.2) 

(7.4) 

- 11/2 r(w, pj r, Xl) = dT/ r(w, rj p, Xl + T/r). Now, it is easy to verify that 
-1/2 

(6.12) 

Finally, the intermolecular contribution may 'be (a~ + vo- a!J (Xl x Vol 
expressed as 

-2
1 1 dX I -J-- j dr rep'r- j dwj dp pl'. m R uXl 

Adding up the contributions and using the fact that 
R is arbitrary, we find that the balance equation 
for the transport of energy may be written as 

(6.13) 

While the term in large parentheses may be inter­
preted as the total energy flux, in order to find the 
heat flux we shall first need to determine the 
stress tensor. 

(7.5) 

which may be combined with Eqs. (7.2)-(7.4) to 
give us the further condition on T: 

This condition is satisfied if and only if T is 
symmetric. 

(7.6) 

Hence, the conditions that any candidate for the 
stress tensor must satisfy are, first of all, that it 
satisfy the momentum and angular momentum 
balance equations, secondly, that it be symmetric, 
and thirdly, that it reduce to the familiar result 
obtained from the virial theorem for a system in 
thermal and mechanical equilibrium. Thus, from 
Eqs. (4. 10) and (5.11), and from the fact that, in 
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equilibrium, y depends only on r, the stress tensor 
is given by 

potential energy and the difference between its 
average kinetic energy and (112m) IPoI2. The 
appropriate transport equation is obtained easily 
from the balance equations for momentum and 
energy transport. 

+ ~ Jdr rr¢'Y. (7.7) We observe that 

8. THE HEAT FLUX 

In hydrodynamics the rate of change of E R is 
ascribed to the work done by the surface forces 
and the flow of heat across the boundary surface of 
R. Thus, 

dER ,( ~ ,( ~ -- = :J'.. da ooTov - :1', da ooq 
dt R 0 R 

= I dx _a_ o(Tov - q) 
R IaXI 0 , (8.1) 

where q is defined as the heat flux, or conductive 
heat current. The balance equation for the trans­
port of energy is, from Eq. (6. 6), 

( a a )' a p - + vo o- E = _o(Tovo - q) at aX I aX I 

so that, from Eq. (6.13), 

q = Tovo + l.. jdPI(PI - po)g(l)e 
m 

Inserting the rhs of Eq. (7.7) in the above, and 
noting that 

we find, with a little rearrangement, 

q = ~2 jdPI (PI - Po) IpI - Po 1
2g(1) 

2m 

+ 2~ JdPljdp2jdr(PI - po)¢ 

Xg(2)(Xl'PI ;XI + r,P2) 

(8.2) 

(8.4) 

Any candidate for the heat flux not only must satis­
fy Eq. (8. 2), but must also vanish for a system in 
thermal and mechanical equilibrium. By inserting 
the Maxwellian form of the momentum distribution 
functions on the rhs of Eq. (8. 5), it is easily veri­
fied that our expression for q vanishes in equili­
brium' and hence is the correct choice. 

9. TRANSPORT OF INTERNAL ENERGY 

The internal energy of a molecule located at Xl is 
defined as the sum of its average intermolecular 

where we first asserted the symmetry of T and 
then used Eq. (8. 2). Inserting this result into' 
Eq. (8. 2) we obtain 

p(a~ +vooa!I) [2~12 jdPI(lpII2_IPoI2):(~I: 

1.r: j(2)(Xl'XI+r~ avo a +- drrl-. - T' -- _oq 2m 'r' j(1) -. aXI aXI ' 

(9.2) 

where the term in square brackets is the internal 
energy per unit mass. Now, the kinetic temperature 
8 is defined by 

1 r 2g(I) 
8(xI ) = -3 jdpllpI - Pol ~ m j(I) 

_ 1 ( I I 2 _ I I 2 g (1) 
- 3m jdPI( PI Po )j(l) , (9.3) 

and we define the internal potential energy u by 

1 r j(2)(XI'X1 + r) 
u = - jdr¢-----

2 j(I) (9.4) 

so that u is the average potential energy of a mole­
cule at Xl' Inserting these definitions into Eq. (9. 2) 
we obtain 

1 ~a a ) 3 avo a -p - + v 0 - (2 8 + u) = T: - - - oq m at 0 aXl aXI aXI ' 

(9.5) 

the balance equation for the transport of internal 
energy. 

10. PROPER'I1ES OF A SYSTEM OF RIGID 
SPHERES 

In the previous sections we have shown that well­
defined representations for the stress tensor and 
heat flux may be found for systems with a contin­
uous intermolecular potential ¢. We shall now 
demonstrate that this is also true for a system 
consisting of perfectly rigid spheres of mass m 
and radius a. 
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Before we start, we need to consider two more 
characteristics of the distribution functions rand 
I' for a system consisting specifically of rigid 
spheres (the definitions and some of the general 
properties of these functions are in Sec. 2). First 
of all, since two rigid spheres cannot overlap, we 
note that rand y must vanish if r < 2a; clearly 
these is a discontinuity at r == 2a. In this work we 
shall define r(w, 2ar; p, x) and y(2crr, x) by 

r(w, 2ar;p,x) == limr(w, (1 + €)2ar;p,x), 
E.~+O (10. 1) 

y(2ar,x) == limy«1 + €)2ar, x), 
€ .... + 0 

that is, as the limit r ~ 2a taken from above. 
These quantities are perfectly well defined and 
have a definite physical interpretation. 

In order to develop the second property, we con­
sider the collision of two rigid spheres at the time 
t. Suppose that, at the time t - 0, their momenta 
are 

Pl == PlL + Pl 0 rr and P2 == P2l. + P2 orr, 

where PlL and P2.l are the proLections of Pl and 
p in a plane perpendicular to r, so that after the 
c~llision, at the time t + 0, their momenta are 

pi == PlL + P2"rr and P2 == P21 + Plorr. 

We observe that the collision has duration zero, 
so that no simultaneous triple, or higher multi­
plicity, collisions occur. Thus, if t,,:,o molecule~ 
are approaching each other at the hme t -:-.0 w~th 
separation 20- + 0, the outcome of th~ .coll1slOn is 
completely determined. The probability that two 
molecules are approaching each other at t - ° 
with momenta Pl and P2 must be equal to the ?ro­
bability that they are moving apart at t + ° with 
momenta PI and PZ' so that r must have the 
property· 

r(w.l + worr, 2ar; p, x) == r(w.l - worr, 2ar; p, x) 

(10.2) 

for a system consisting specifically of rigid 
spheres. 

/ 
COLLISION 
CYLINDER 

SF'HF RE 

FIG.1. Collision of 
two rigid spheres 

11. COLLISIONAL CONTRIBUTIONS TO THE 
EQUATIONS OF TRANSPORT 

The differences in the equations of transport be­
tween a system of rigid spheres and a system with 
a continuous intermolecular potential arise only in 
the intermolecular contributions. Rather than re­
peat all of the formalism of the first nine sections, 
our prescription will be first to calculate the col­
lisional, or intermolecular, contributions of a sys­
tem of rigid spheres to the various transport pro­
cesses, and then to modify the previous results 
accordingly. We shall be concerned with the aver­
age increase of some property of a hard-sphere 
molecule located at Xl' with momentum Pl due to 
collisions with other molecules in the time 6t. 
Hence, we need to know the probability that such a 
collision occurs in the time M. 

Suppose we are given a molecule at Xl with momen­
tum Pl: the probability that it has a collision with 
another molecule hav~n~ P2 ( dP2 and Xl ( dXI == 
(2a)2(1/m) i (P2 - PI)orldn6t in the time 6t is 

g(2)(xl ,PI;xl + 2ar,P2) (20-)2~ iwoiiH(-w"r) 
g(I)(xl,Pl) m 

x dndp2 M, (11.1) 

where dn is the solid angle subtended by dX2 at Xl 
(see Fig. 1), 2a is the radius of the collision 
sphere, and the requirement w" r < 0 (H(X) is defin­
ed in Sec. 3) ensures that the molecules will collide 
in the limit ot ~ O. Thus, if t.X is the increase in 
the property X of the molecule at Xl with momen­
tum PI due to a collision with a molecule at Xl + 
2ar with momentum P2' then the rate of change of 
X R due to collisions is 

x t.xlworIH(-w.r)g(2)(Xl,Pl;xl + 2ar,P2) 

== - ~ dxlfdpfdwfdn (~)2 t.x wor H(-wor) 

x r(w, 2ar; p, Xl + o-r), (11. 2) 

where X R is the amount of X contained in the region 
R. 

The momentum increase of the molecule at Xl due 
to the collision is W' rr so that 

(11.3) 

the increase in angular momentum is Xl x (t.Pl) 
giving us 
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(11. 4) 

and as the increase in energy of the molecule at 
Xl due to the collision is (l/m)(w o r)(p o r), 

(d~Rj col =: - kdxljdpjdw jdn (!'Y 
x (w or)2p orH(-w or)r. (11.5) 

The integrands in Eqs. (11. 3)-(11. 5) depend on 
w o r precisely ill the same ~manner; namely, through 
the function (w or)2H(-w o r)r. But,from Eq._ 
(10.2), we see that r is an even function of w o r. 
Hence, if we integrate over w before we integrate 
over n and if we break up the integration over w 
into an\ntegration over worr (where r is fixed) 
and then an integration over w.1.' we may replace 
H(- w ° r) by i in the integrand without altering the 
result. As the order of integration is arbitrary, 
we shall assume in what follows that this substi­
tution has been executed. 

12. THE BALANCE EQUATIONS, STRESS TEN­
SOR, AND HEAT FLUX FOR A SYSTEM OF 
RIGID SPHERES 

Equations (11.3)-(11.5) are the collisional con­
tributions to the transport of momentum, angt41ar 
momentum, and energy for a system of rigid 
spheres. Each shall replace the appropriate inter­
molecular contribution (with subscript int) in the 
earlier work for a system with a continuous inter­
molecular potential. As in the earlier work, we 
shall express each contribution as an integral over 
Xl ( R of the divergence of a tensor, or vector, 
quantity. This is quickly accomplished by observ­
ing that each collisional contribution contains 

=:- jdnjdwr(w o r)2r(w, -20-r;p,x l -o-r) 

= - jdnjdw r(w o r)2r(- w, 20-r; p, Xl - o-r) 

the angular momentum equation is 

and the energy balance equation is 

= - jdnjdw r(w o r)2r(w, 20-r;p,x l - ar) 
= ijdnjdwr(w or)2[r(w, 20-r;p,x l + ar) 

- r(w, 20-r;p,x l - o-r] 

=o-jdnjdwrr(wor)2oo~ 1'(w,p;20-r,x l ), 

1 (12.1) 

where, in the first step we let r -) -r without 
changing the limits on n, in the second step we 
used Eq. (2. 8), in the third step we let w -)-w 
without changing the limits, and in the last step 
we. used Eq. (6.11). Inserting this result into Eqs. 
(11. 3)-(11.5), we obtain 

(dPR\ == _ldxl_a_o2a3 jdpjdwjdnrr(w o r)2r, 
dt / col R OXl m 

(12.2) 

(ddLtR\ = -1 dXlXl x -00 ° 20-
3 jdpjdw Jdn \; j col R Xl m 

x u(w o r)21', (12.3) 

(ddEtR\ = -1 fix l -ao • 20-
3 jdpjdwfdn 

\: -; col R Xl m2 

(12.4) 

It is now a straightforward matter to obtain the 
balance equations of transport for a system of 
rigid spheres; we simply perform the aforemen­
tioned substitution of each collisional contribution 
for the appropriate intermolecular contribution in 
the balance equations obtained for a system with a 
continuous intermolecular potential [Eqs. (4.11), 
(5. 11). and (6.13)]. We must also delete the terms 
containing ¢ (as opposed to ¢') in the energy per 
unit mass and in the flow contribution in the earlier 
energy balance equation, Eq. (6.13), since there is 
no long-range intermolecular potential in our hard­
sphere system. Performing these operations, we 
find that, for a system of rigid spheres, the momen­
tum balance equation is 

(12.5) 

(12.6) 

(12.7) 
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From the above, and the discussion of hydrodyna­
mics in Secs. 7-9, it is clear that the stress tensor 
T is given by 

T = - ~ jdpI(PI - PO)(PI - PO)g(1) 

- 2a
3 

jdpjdw jdn rr(w o r)2r (12.8) 

For a system having a continuous intermolecular 
potential ep, we have found that the stress tensor 
and heat flux are given by 

T = - ~ jdPI(PI - PO)(PI - PO)g(l) + t jdrrrep'y 

and (13.6) 

for a system of rigid spheres. Inserting the equili- q = 2~2 jdPI (PI - PO)iPI - Po i2g(l) 
brium form of the distribution functions, one quickly 

m 

obtains agreement with the virial theorem for a 1 j j 
system in thermal and mechanical equilibrium.. + 2m dP1 dp2jdr (PI - po)ep 

The heat flux q is found. as before by setting the 
term in large parentheses in Eq. (12. 7) equal to 
q - T °Vo to obtain 

1 ( ) (1) 
q = 2m 2 JdPI (PI - Po (PI - Po)g 

20
3 j j j ~ ~ ~-+ - dp dw dn r(PI - Po) 0 r(w o r)2r. 

m 2 

(12.9) 

Since a hard-sphere molecu~e possesses no inter­
molecular potential energy, the transport equation 
for the internal energy is simply 

(
a a) 3 avo a 

p at+vooax
i 

2m8=T:axl-axloq. (12.10) 

13. SUMMARY OF RESULTS 

We have shown that a single-component system of 
spherical molecules possessing either a continuous 
intermolecular potential ep(r), or a hardcore inter­
action of radius a, obeys the general hydrodynamic 
equations of motion: 

ap a - + _o(pvo) = 0 
at aXI ' 

mass transport, (13.1) 

p (:t +vooa!Jvo =pF + a!l oT, 

transport, 

momentum 

(13.2) 

p Ut + Vo 0 a!J(XI x vo) = xl x pF - a!l 0 (TX xl)' 

angular momentum transport, (13.3) 

p(.i.. + v O_a_)E = _a_ o (Tov - q) at 0 aX I aXI 0 , 
energy 

x g(2)(XI ,Pl;XI +r,P2) 

- 2~ jdr replro jdwjdp (p - po)r. (13.7) 

For a system consisting of rigid spheres of radius 
o we have found that 

T = - ~ jdPI (PI - PO)(PI - PO)g(I) 

20
3 J' j j ~~ ~ - ~ - m dp dw dn rr(w 0 r)2r(w, P; 2ur, xl)' 

(13.8) 

20
3 r j j ~ ~ ~ +-Jdp dw dnr(p-po)or(w or)2 

m 2 

xl' (w,p;2ur,x l ). (13.9) 

In the last four equations we have used the notation 

(13.10) 
- jl/2 r(w,p; r,x l )= d1} r(w, r;p,xI + 1}r). 

-1/2 

In obtaining these results we have assumed that 
the interactions between molecules may be des­
cribed by classical statistical mechaniCS, that the 
external forces are conservative and depend only 
on position, and that the interactions of molecules 
far from the system boundary with molecules in 
the boundary material are negligible. 

transport, (13.4) 14. DISCUSSION 

+ ~u) = T: avo __ a_ oq, 
m aXI aXI 

internal energy transport, (13.5) 

where m = mass of one molecule, p. = mass den­
sity, Vo = macroscopic velocity [= (l/m)po], F = 
external force per unit mass, T = stress tensor, 
E = energy per unit mass, q = heat flux, 8 = kine­
tic temperature, U = average intermolecular poten­
tial energy of a molecule at Xl. 

The stress tensor and the heat flux may each be 
considered as the sum of two parts which we label 
a local and a nonlocal contribution. The local part 
depends only on the distribution function g(l), 
whereas the nonlocal contribution depends onj(2) 
(= y), or g (2) (= r). The local contribution is a 
familiar result of the kinetic theory of gases and 
is discussed in great detail elsewhere'! It is the 
nonlocal contribution that interests us here. We 
call any contribution depending onj(2) or g(2) non­
local because it depends on what is happening to 
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the system not simply at xl' but also at points near 
xl' Thus, we expect the nonlocal contribution to be 
highly sensitive to the distribution of molecules in 
the substance making up the boundary wall (we 
have ignored this contribution here) when Xl is 
near the system boundary. 

The functions y and r play an important role in 
our theory. They appear in the stress tensor and 
heat flux in the terms due to the force exerted 
and work done, by molecules outside of the region 
R on the molecules inside R. They are obtained by 
averaging y and r in their center-of-mass depen­
dence over the straight line connecting Xl - ~ r 
to Xl + ~r. To understand the importance of this 
averaging process, consider the case when the sys­
tem is perturbed by a plane wave of such short 
wavelength that any significant variation of ¢ or 
¢' occurs over many wavelengths. In the limit of 
such short-wavelength phenomena, it can be expect­
ed that the dependence of y and r on r will become 
insensitive to the disturbance. We shall see that 
this is so for the elementary example considered 
in the next section. 

In order to understand the difficulties encountered 
with the Taylor expansion obtained by Irving and 
Kirkwood, we shall now examine the trace of the 
nonlocal part of the stress tensor, -1p Tint' for a 
system with a continuous intermolecular potential. 
From Eq. (13. 6) we find 

-1pT int = ~ jdrr¢'y = ~ jdn {Odrr 3¢'y, (14.1) 

We quickly obtain their result by expanding y 
about y(r,x l ): 

1/2 
y(r, Xl) = j dTJ y(r, Xl + TJr) 

-1/2 

~ 1 2n (l~ a) 2n ( ) = 'r: (2n + 1)! r 2r ° aXl y r, Xl , 

giving us 

1 ~ 1 fd (1 ~ a )2n JOO -1 pTint =2'r:(2n+1)! n 2rOaxl odr 

2n+3 () ) Xr ¢'ry(r,xl . 

Let us examine the integrand of 

(14.2) 

in the limit of large r. As y becomes the product 
of the number densities, 

lim y(r, Xl) = fl)(XI - ~r)fl)(XI + 1r), (14.3) 
r-+oo 

it does not vanish for large r. Thus, either ¢' goes 
( )

2n+3 .• 
to zero faster than 1/r or the mtegral blows 
up and the nth term in the expansion is not defined. 
Hence, for a square well potential or a Yukawa 
potential the Irving and Kirkwood expansion pro­
duces meaningful results, but for a Leonard-Jones 
potential the expansion is ambiguous. The reader 
may easily verify that the same difficulties are 
encountered with the heat flux. It is a straightfor­
ward matter, however, to avoid this pitfall. If one 
wants to determine T, one must know, or assume 
some form for, y (r, x). But, if one knows y , it is 
just as easy to integrate over TJ to obtain y and 
then perform the integration over r as to perform 
an expansion under the integral. Any long­
wavelength expansion can then be made on the ex­
pression for T obtained in closed form. 

We gain further insight into the Irving and Kirk­
wood expansion by contructing a Fourier decom­
position of y(r, x) in x: 

(14.4) 

By inserting Eq. (14. 4) into Eqs. (13.10) and (14.4), 
we quickly find 

(14. 5) 

Ok x sin~kor 
-1pTint = ~ jdk e' . I jdrr¢'g(r,k) 1 • 

2k· r 
(14.6) 

The reader may easily verify, by applying the 
power series of Eq. (14. 2) to 

(14.7) 

that the Irving and Kirkwood expansion consists 
of expanding sin~k· r / ~k • r in powers of (~k· r) in 
the integrand of Eq. (14. 6): 

1 ~ (- 1)n (dk ik'Xl 
.jpTint = 2'r:(2n + 1)! J' e 

x jdr r¢'g(r, k)(~k. r)2n. 

While the lack of convergence of the series is 
immediately apparent for a realistic potential, we 
shall find yet another shortcoming of the expan­
sion, even for well-behaved potential functions, in 
the next section. Although the first term of the 
series provides an excellent approximation for 
long-wavelength phenomena, the remaining terms 
may not provide useful corrections to this limit. 

15. AN ELEMENTARY EXAMPLE 

Suppose our system is a fluid which is slightly 
perturbed by a density wave of angular frequency 
wand wave vector k. We shall assume that the 
amplitude of the wave is small and that it may be 
considered a constant over distances of many 
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wavelengths. For such a disturbance the density 
is given by 

(15.1) 

where n is the number density in equilibrium. We 
shall also assume that in the perturbed state the 
two-particle distribution function is of the form 

(15.2) 

where we require 

lim h(r) = 1 
y .... oo 

(15.3) 

in order that/2) have the proper asymptotic be­
havior. 

With these conditions we find 

y(r,x) =n2h(r)[1 + 2E cos(ko·x-wt) cos~ko·r] 

+ order E2, (15.4) 

where we shall ignore all terms in E2, so that 

1/2 
y(r,x1) = I / dT/y(r,x1 + T/r) 

-1 2 

= n2h(r) [1 + 2E cos{ko·x1 - wt) sinko·r/ko·r]. 

(15. 5) 

The intermolecular contribution to the stress ten­
sor for a system with a continuous potential is, 
from Eq. (13. 6), 

so that, for our example, 

Tint = ~n2 Idrrr<jJ'(r)h(r) 

+ E cos{ko ·x1 - wt)n2 Idr rr¢' (r)h{r) 

x sinko.r/ko.r. 

(15.6) 

(15. 7) 

In order to determine the Irving and Kirkwood 
expansion for this example, we construct the 
Fourier transform of y(r, x) [see Eqs.(14. 4)-(14.8)]: 

S (r, k) = n2h{6 (k) + E cos~ko ·r[e -iwt 6{k - ko) 

+ e iwt o(k + k o)]}, 

where the o's are three-dimensional Dirac 0 func­
tions in k space. Inserting this into Eq. (14. 5) for 
y, and the resulting expression into Eq. (15. 6) we 
find that the Irving and Kirkwood expansion does 
not result in an expansion of the coefficient of 
cos(ko·x 1 - wt) in Eq. (15. 7)! Writing 

sinko ·r ~sin ~o .r) 1 
k. = 1 cos1ko·r, 

o r ~o.r 

we find that the expanSion consists of expressing 
sintko·r/tko·r as a power series in (~o·r) with-

out expressing cos~ko·r in similar fashion. This is 
clearly a shortcoming of the theory as every term 
in the expansion of the coefficient of cos{ko ·x1 -

wt) contains all the even powers of tko·r. We still 
encounter the previous difficulty in that the contri­
butions of most of the terms are not defined unless 
<jJ' goes to zero in the limit of large r faster than 
any positive power of (1/r). The correct long-wave­
length limit is found by setting sinko·r /ko·r = 1 
in Eq. (15.7), giving us 

(T int)/w = [(1 + 2 E cos(ko·x1 - wt» : rr n2 

(15.8) 

where I is the unit tensor. Hence, in the long-wave­
length limit Tint is spherical and there are no 
shears present unless the kinetic contribution is 
nonspherical. 

In order to determine Tint in the general case we 
shall assume that ko is in the e3 direction. Per­
forming the integration over angles in Eq. (15. 7) 
we find 

(T.) =.:JI. n2 Ioodrr3<jJ'h 
rnt 3,3 3 0 

+ 41TE cos(ko·x1 - wt)n2 1000 

drr3<jJ'h(k~r) 3 

x (sinkor - kor coskor) (15.9) 

and 

(Tint) = (Tint) = 21T n2 (OOdrJ,3rl-.'h 
1,! 2,2 3 Jo 'f' 

+ 21TE cos(ko·x! - wt)n2 f oo
drr3<jJ'h o 

x [k~r Si{kor) - (k~r r (sinkor - kor cosk oj, 

(15.10) 
where,!! 

() J x siny 
Si X = dy o Y 

(15. 11) 

All of the off-diagonal elements vanish, but the 
stress quadric is now an ellipsoid of revolution, 
so that the fluid is undergoing shear. 

It is interesting to note that, in the short-wave­
length limit (k o --7 00), Si{kor) --7 t1T, so that 

21T 00 ( 1 ) 2 (T int) --7 - n2 f drr3<jJ'h + order -k 
3,3 3 0 0 

(15.12) 
and 

21T foo 
(Tint)!! =(Tint)2 2 ---7Tn2 odrr3¢'h , , 

1T2 ~ + E- cos(k ·x - wt)n2 In drr2<jJ'h 
kd o! 0 

+ order (k1
o
)2. (15.13) 

Hence, in the limit of short wavelength the stress 
tensor returns to its spherical form. Moreover, 
if in this limit h(r) approaches the equilibrium 
radial distribution function, then Tint is unaffected 
by the disturbance and the perturbed part of Tint 
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in the ko "direction" vanishes more quickly than 
the perturbed part of Tint in the el and e2 "direc­
tions." 
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The multiple scattering theory of radiative transfer, in the light of Case's normal modes, is investigated. 
In particular, it is shown that in the Neumann expansion of the total intensity the expansion coefficients 
are related to the normal modes in the form of certain integrals over the continuum Case spectrum. In 
the general formulation of the theory, the phase function is kept arbitrary. Two types of boundary-value 
problems are considered which involve semi-infinite and bounded media. To illustrate the structure of 
the general formulation, the isotropic case is treated in detail. 

INTRODUCTION 

In boundary-value problems of radiative transfer 
one often seeks solutions of the transfer equation 
expressed as a powers series in the single scatter­
ing albedo w. 1-3 The coefficients in such a power 
series, the so-called "Neumann coefficients," are 
associated with the phYSical process of multiple 
scattering of the radiation traversing some given 
medium (c.f. Van de HUlst4). The radiation at any 
given point in the medium is decomposed into com­
ponents according to whether it has suffered no 
scattering, or has been scattered once, twice, or n 
times. At every stage of this process it is re­
quired that the equation of transfer be satisfied 
such that the scattering of the intensity in the nth 
process will give rise to a source function of the 
(n + 1) times scattered radiation. The nth coef­
ficient in the Neumann series then represents the 
nth order of scattering. 

In this paper we seek the relation of such an ele­
mentary process to Case's singular normal 
modes. 5 In other words, the relation of Neumann 
coefficients to the elementary solutions of the 
transfer equation is investigated. The general for­
mulation is presented for an arbitrary phase func­
tion. The two types of boundary-value problems 
we consider involve semi-infinite and bounded 
media. To illustrate the detailed structure of solu­
tions, we treat the isotropic case in detail. How-

ever, the whole procedure is kept sufficiently 
general so that, for a gray atmosphere, the exten­
sion to other geometries remains straightforward. 
The basic tool we use is Case's Green's function 
technique6 and its further developments are dis­
cussed in Refs. 7 and 8 

1. GENERAL FORMULATION FOR MULTIPLE 
SCATTERING 

The equation of radiative transfer we consider is 

Ill... J(T,n) + J(T,n) = ~ J dn'p(n-n')I(T, 12'), 
01' 41T (1. 1) 

where we have employed the usual notation. Thus, 
l' is the optical depth, 12 is the unit vector pointing 
into the direction of propagation of radiation. If 
n represents the unit normal at l' = 0 pointing into 
the volume of interest, then Jl = n·n. Finally w is 
the albedo for Single scattering, Le., W = a(a + K)-1, 
where a and K are the coefficients of scattering 
and extinction, respectively, penon') is a rotation­
ally invariant phase function, and 1(1',12) is the 
total intensity. Since the frequency occurs as a 
parameter in Eq. (1. 1), this dependence is not ex­
plicitly indicated. In general, of course, I and w 
will be. functions of the frequency. 

Let In (1' ,0) represent the intensity of the n-times 



                                                                                                                                    

STATISTICAL DERIVATION OF STRESS TENSOR 2187 

in the ko "direction" vanishes more quickly than 
the perturbed part of Tint in the el and e2 "direc­
tions." 
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ponents according to whether it has suffered no 
scattering, or has been scattered once, twice, or n 
times. At every stage of this process it is re­
quired that the equation of transfer be satisfied 
such that the scattering of the intensity in the nth 
process will give rise to a source function of the 
(n + 1) times scattered radiation. The nth coef­
ficient in the Neumann series then represents the 
nth order of scattering. 

In this paper we seek the relation of such an ele­
mentary process to Case's singular normal 
modes. 5 In other words, the relation of Neumann 
coefficients to the elementary solutions of the 
transfer equation is investigated. The general for­
mulation is presented for an arbitrary phase func­
tion. The two types of boundary-value problems 
we consider involve semi-infinite and bounded 
media. To illustrate the detailed structure of solu­
tions, we treat the isotropic case in detail. How-

ever, the whole procedure is kept sufficiently 
general so that, for a gray atmosphere, the exten­
sion to other geometries remains straightforward. 
The basic tool we use is Case's Green's function 
technique6 and its further developments are dis­
cussed in Refs. 7 and 8 

1. GENERAL FORMULATION FOR MULTIPLE 
SCATTERING 

The equation of radiative transfer we consider is 

Ill... J(T,n) + J(T,n) = ~ J dn'p(n-n')I(T, 12'), 
01' 41T (1. 1) 

where we have employed the usual notation. Thus, 
l' is the optical depth, 12 is the unit vector pointing 
into the direction of propagation of radiation. If 
n represents the unit normal at l' = 0 pointing into 
the volume of interest, then Jl = n·n. Finally w is 
the albedo for Single scattering, Le., W = a(a + K)-1, 
where a and K are the coefficients of scattering 
and extinction, respectively, penon') is a rotation­
ally invariant phase function, and 1(1',12) is the 
total intensity. Since the frequency occurs as a 
parameter in Eq. (1. 1), this dependence is not ex­
plicitly indicated. In general, of course, I and w 
will be. functions of the frequency. 

Let In (1' ,0) represent the intensity of the n-times 
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scattered radiation. Then for the nth-order scat­
tering the equation of transfer to be satisfied is 

J.L -ao [n(T,O) + [n(T,O) = 4w 
jdfl/P(0-0/)[n_1(T,0/). 

T rr (1. 2) 

One may readily check upon summing both sides 
of Eq. (1. 2) with respect to n from 0 to 00, that the 
total intensity 

00 

[(T,O) = ~[n(T,O) (1. 3) 
n=O 

is a solution of Eq. (2. 1), as it should be. 

It is convenient to separate out the azimuth angie 
dependence in Eq. (1. 2). This we do as follows. 
Writing 

and 

P(O-O/) = ~ im(<I>'-1» 5 ( ') u emil, 11 , 
m=-OO 

[ (m)( ) _1- f 21T d'" im<p[ ( n) nT,1l - 2rr 0 ",e nT,.o , 

we see that Eq. (1.2) then becomes 

~ [(Nt) ( ) + [(nt) ( ) J.L;jT n T,1l n T,J.L 

= ~ i~ dll' 5 ",(J.L, Il') I ~:'i (T , J.L'). 

N 
. in,1> 

ow, Since e are complete, we have 

I ( n) _ ~ ;",<I>[(m) ( ) 
n T, •• - u e n T,Il. 

m:=-oo 

(1.4) 

(1. 5) 

(1. 6) 

(1.7) 

Integral Representation of III{m) (Half-Space) 

Following the procedure discussed in Ref. 8, we 
first consider the time-reversed Green's function 
for a purely absorbing medium, i.e., 

(1. 8) 

Noting that G satisfies the reciprocity relation 

we combine Eqs. (1. 6) and (1.8) in the conventional 
way and obtain 

Fig.1. Contour in 
the complex K plane. 

(1.10) 

where the Fourier coeffiCients R~"') are defined 
as [see Ref. 9] 

R(m)(k. ) _ fOOd - ikT J1d '5 ( 1)/"')( ') n ,J.L - 0 Te _111m J.L, /l nT, J.L , 
(1. ll) 

and 8(T) is the Heaviside step function. This 
symbol (8) will be reserved throughout for the 
step function. 

We note that once the coefficients R(n~)l are deter-
(rII) n 

mined, then [n are known everywhere. In the 
usual fashion, an equation which determines these 
coeffiCients is obtained by letting T --7 0 in Eq. 
(1. 10). Before such a limit is considered we shall 
fi~st examine certain singular properties of 
Rn:'~ (k i J.L) in the complex k plane. Then re-expres­
sing the right-hand side of Eq. (1.10) over the 
Case spectrum, 7 we will utilize those singular 
properties and obtain certain modified coefficients 
which are relatively simple to evaluate. We will 
find that the modified coefficients are directly 
related to Case's normal modes. Let us remark 
here that Neumann coefficients Nn are defined 
simply as 

00 

[(T,O) = ~ WnNn(T,O), 
n=O 

(1. 12) 

where Nn are independent of wand correspond to 
the multiple scattering process in a purely scat­
tering medium (w = 1). 

Singular Properties of R~") 
Pursuing the procedure of Ref. 8, we take the 
Fourier transform of Eq. (1. 10) with respect to 
T, multiply both sides by S ,)J.L, Il') and integrate 
over J.L, to obtain 

R~m)(z;ll) =J}m)(Zi/l) + w; i:dJ.L' S;(~~? 

x R (m) (z. Ill) 
n-1 "... , (1. 13) 

where for convenience we have set k = i/z and 
defined 

and used the symmetry of S",(J.L, /l/), i.e., 

(1. 15) 

From Eq. (1. 13) it is clear that R~m)(z; /l) as func­
tions of z are sectionally holomorphi& in the com­
plex z plane cut from - 1 to 1. If R~m ± (II; J.L) 

represent the boundary values of R!m) (z; 11) as 
top 

z approaches the cut (from bottom)' then the sums 

and differences of these boundary values are re-
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lated in the manner as shown below, 

(1. 16) 

where <P represents the principle value and we have 
used Plemelj's formula, 

(1. 17) 

It is interesting to note that the left- hand side of 
Eq. (1. 16) is independent of v. The reason is 
simply that by virtue of Plemelj's formula (Eq. 
1. 17) the term associ&5ed with the sum of the 
boundary values of Rn :'1 (z; /-I), on the right- hand 
side of Eq. (1.13), is a delta function. This "fac­
torization" property of Eq. (1. 13) turns out to be 
very useful in obtaining the modified coefficients 
which are directly related to continuum normal 
modes, as we shall see presently. 

Keeping the recurrence relation (1. 13) in mind, we 
note that other than the branch cut tn the complex 
z-plane extending from - 1 to 1, Rn m)(z; /-I) have no 
other singularities. This implies that in the spec­
tral representation of In(m) (T, 11), the discrete 
modes, which correspond to the discrete spectrum 
of the transport operator of Eq. (1. 1) [the integro­
differential operator operating on the total inten­
sity I(T, 0)], will not occur explicitly. This is 
really not surpriSing, for the integro-differential 
operator of Eq. (1. 6) has only the continuous 
spectrum for any fixed value of n. However, in 
the infinite sum over I n("') (T, J.1), the discrete modes 
will be generated from the dynamics of the recur­
rence relation (1. 13). To illustrate this point we 
shall later examine the isotropiC case in detail. 

Spectral Representation of I!m) 

Now consider Eq. (1. 10) and a contour around the 
branch cut of R~n~)l (k; /-I) in the upper half complex 
k ~lane as shown in the figure. Since T > 0 and 
R~_i (k: J.1) in the half- space are functions of k (and 
J.1) only, the integrals over the semicircle do not 
contribute. Consequently, 

(1. 18) 

( ) 
(m) 

where + - on R n _1 (z;f..L),as before,represent the 
boundary values as z approaches the cut in the 

z-plane (z = ilk) from the top (bottom). The last 
term on the right-hand side, involving the sum 
of boundary values, may be eliminated by means 
of Eq. (1. 9). The result, after change of variables 
and rearrangement of terms, is 

I~'1l) (T, J.1)e(T) 5 ,)J.1 , v) 

= r~m)(Il; v)e- TIll e(J.1) + w5 n,(Il, v) 

x JoldV'<t>v'(Il)e-Tlv'r~'::i(v';/-I) - we- TIlle(ll) 

x i~dv'<t>Il(v')5m(V', v)r~:'i(/-I; v'), (1.19) 

where we have introduced the modified coefficients 
r ~m) and distributions <t> v (/-I) which are defined 'by 

r~m)(J.1;v) = -1/27TiIl2[R~m)+(Il; v)- R~m)-(/-I; v)] 
(1.20) 

+ A+(v) + A-(v) "( _ ) 
2 vv 11, 

with 1 d 
A(z) = 1 - ~ J ~. 

2 -lZ-J.1 

(1. 21) 

(1.22) 

One may readily check that <t> v (11) are Case's con­
tinuum normal modes 5 of the equation of transfer 
for a conservative (w = 1) isotropically scattering 
medium. For the sake of convenience, we intro­
duce another function defined by 

I{! ~ (/-I; v) = <t> v' (11)5 ",(11, v), 

and rewrite Eq. (1. 19) as 

I~''')(T, ll)e(T)5n,(/-I, v) = r n(m)(/-I;v)e- TIlle(ll) 

+ w J 1 d v' e - TI v' I{! v' (11; v) r !:'i (v'; 11) 
o m 

(1.23) 

- we - TIlle(ll) 11 dv'l{!ll (v" v) r (m) (II' v') (1.24) 
,- -1 m' n-l""" • 

We remark here that functions I{!,~ are independent 
of n. In the spectral representation of n-times 
scattered radiation I;m [see Eq. (1. 24)], the order 
of scattering occurs only via coefficients r ~m). 
Consequently, the functions I{!:, are fundamental in 
the sense that they involve the scattering proper­
ties of the medium and not the order of scattering. 
Finally, the coefficients r ~m) are to be determined 
by the boundary condition at T = O. In other words, 
at T = 0, we assume that 

(1. 25) 

where I~rn) (0, f..L) for f..L > 0 is the known incident 
radiation appropriately integrated over the azi­
muth angle <I> [see Eq. (1. 5)]. Then, the set of 
equations which determine rn(m) is 

r(m)(Il'v) = u.'J
1 
dv'l{! Il(V"v)r(n,)(f..L' v') 

n""'" -1 nt' n -1 , 

- w r 1 d v'l{! v '(J.1' v) r (m)( v" f..L) .10 m' n-1 , 

+ OnOI~''')(O, 11) 5m (/J. , v), J.1 > O. (1. 26) 



                                                                                                                                    

2190 MADHOO KANAL 

In particular 

(In)( (/fI)() ( ro /-I; v) == 10 0, /-I S"l-/-I, v), /-I> 0, (1.27) 
and 

r}"')(/-I; v) = wi~dV"lt~(vl; v)rll~>t(/-I; ~") 

1. 1 v' (m) 
- W 0 dv'lJ! m(/-I; v)r n - 1 (v ' ;/-I), 

/-I> 0, n ~ 1. (1.28) 

This is the recurrence relation which determines 
all the coefficients r ;m), in terms of normal modes, 
and the scattering kernel S", (/-I, ~'). Clearly r ~m) 
are proportional to w /I. Therefore if we set 

(1. 29) 

then, A;' satisfy 

A (m)(II' v) = 11 dv'lJ!l'(v" v)A (m)(w v') 
n""" -1 'fit' n-l' 

1. 1 v' (m) 
- 0 dvl lJ!m(/-I;v)An _1 (v' ;/-I), /-I>O,n ~ 1, 

(1.30) 

(1. 31) 

Now in Eq. (19) if we divide both sides by S",(/-I, v), 
then in terms of the coefficients A;:' defined by 
Eq. (1. 29), the component of the radiation n times 
scattered is given by 

(1. 32) 

In particular, at any T > 0 the nth order back­
scattered (/-I < 0) radiation is 

(m) n J 1 I V I ( ) - T I v I (m) (' ) I (T,/l)==W dvcj; /le A n - 1 v;/l, 
n 0 (1. 33) 

/l < O. 

The emergent intensity (T = 0) is 

I~")(O,/-I) = wll l
o
i dVIcj;VI(/l)A~:'{(VI;/-I), /-I < O. 

(1.34) 

From Eqs. (1. 33) and (1. 34) we conclude that for 
n = 0, corresponding to the process in which the 
radiation has suffered no encounters, the back­
scattered and emergent intensities are zero, as 
they should be. 

Let us now introduce the Neumann coefficients 
by defining 

00 ;m", -rll' n-l/l, [ 1 
A (m) ( • v) 

N n (T ,0) == ",Eoo e e EJ(/.l) Sm(/.l, v) 

_ Jl dVIcj;i1(V/) Sm(v' , v) A (m)(W V/)l 
-1 Sm(/-I, v) n-l' \ 

+ J
0

1 
dv'cj;u'(/-I)e-Tlv' A~:'i(vl;/-I>} (1. 35) 

In terms of these coefficients the total intensity 
I(T, m at any optical depth T is given by 

00 

I(T,O) = ~ w"N,,(T,O). (1.36) 
,,=0 

We remark here that in practical calculations 
this so-called "Neumann expansion" [Eq. (1. 36) J 
of I(T, 0) is very convenient for such purposes 
as computation of absorption line strengths, since 
it eliminates the problem of repeatedly solving 
the transfer equation numerically for various 
albedos w (the albedo being a function of frequency). 
In other words, the fact that the Neumann coef­
ficients Nn correspond to the multiple scattering 
process in a conservative medium (w = 1), and 
the same coefficients appear in the case of an 
arbitrary nonconservative (w < 1) medium, per­
mits us to reduce the problem of solving the 
transfer equation for various frequency dependent 
albedos to that of obtaining the coefficients N n 
once and for all. The solution for a nonconserva­
tive medium then results by trivial summation as 
given by Eq. (1. 36). Unfortunately, the Neumann 
series [Eq. (1.36)] for a near conservative medium 
(w "" 1) converges very slowly. ThiS, in a way, 
limits the usefulness of such an expansion (c.L 
however, Uesugi and Irvine10). However, by a 
simple modification of the multiple scattering 
process described earlier, an expansion in powers 
of (1 - w) can be obtained. We shall treat that 
case in a forthcoming paper. 

In the next section we examine the structure of 
coefficients A~m) for the simple isotropically 
scattering medium. Since the Neumann coefficients 
N

n 
are related to A!m) by means of Eq. (1. 35), the 

convergence properties of the series in Eq. (1. 36) 
then become transparent. 

2. APPLICATIONS 

Isotropic Case (Semi -Infinite Atmosphere) 

For the isotropically scattering medium, the for­
mulas derived in Sec. 1 are considerably simpli­
fied. ~jt us first examine the recurrence relation 
for An m [Eq. (1. 30) J. Since for the case under 
consideration m = 0, we have 

A (0)(11.' v) - J 1 dv'IJI i1 (v" v)A (0) (II' v') 
n r, - -1 0' ,,-I r, 

J l v' (0) 
- dv'lJ! (II'v)A (v" /l) o 0 r, ,,-I ' • 

(2.1) 

Now, by definition [see Eq. (1.23)] 

and for the isotropic case 
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Then >lt~' (J.I; v) reduce to normal modes, Le., 

(2.2) 

Also, from definitions of A~O) (J.I; v), r ~O) (J.I; v) [see 
Eqs. (1. 29), (1. 20), and (1. 11)], we conclude that 

(2.3) 

Le.,A~O) (J.I; v) are independent of the second argu­
ment v. 

With these simplifications, Eq. (2.1) becomes 

(2.4) 

where we have used the normalization 

f1 dWpl/(J.I) == 1 
-1 

(2.5) 

of the modes. 

Before we solve the recurrence relation (2.4) for 
An (J.I) ,let us introduce the functions 

H'O(J.I; v) == Btu - v), 

H 1 (J.I; v) == ¢ /J (J.I), 

J1 /J 

H2 (J.I; v) == 0 dv1¢ 1(J.I)H1(v1; v), 

and in general 

(2.6a) 

Z? 1. (2.6b) 

Now one may readily show that Eq. (4) has the solu­
tion 

with 

(2.8) 

being the incident radiation. 

Finally for the intensity I~O) (T, J.I), Eq. (1. 32) gives 
us 

In (T, J.I)8(T) 

== w
n

[A n(J.I)e- T/ 1l8(,u) + f01 dv¢V(,u)e- T/':A'n_1(V) 

- e- T/lle(J.I)A n_1 (J.I), ], (2.9) 

where we have deleted the superscript (0) on 
In(T, J.I). In particular,for J.I < ° (the backscattered 
radiation) we have 

( n11 v -T/V In T, J.I) == W 0 dv¢ (J.I)e A n-1 (v), 

J.I < O,T > 0, (2.10) 

whence the reflected intensity at T == ° is given by 

n 11 1/ In(O,/..I)==w o dv¢ (/..I)A n-1(v) , /..1<0. (2.11) 

For n == 0, 

(2. 12) 

Inserting the explicit form of An(v) [given by Eq. 
(2.7)] in Eq. (2. 11) yields 

n+1 " Z n! 
I n+1(0,J.I)==w IR(-I) (n-Z)!Z! 

1 x .fo dvA o(v)H z+1(/..I; v), J.I < 0. (2.13) 

The total emergent intensity is then 

00 

1(0,/..1) == E I n+1(O,J.I), /..I < 0, 
n=O 

Le., 

00 n z" n! 
1(0,/..1) == wn~ zR (-1) w (n -Z)!l! 

1 

x fo dvA o(v)Hz+1(/..I; v), /..I < O. (2.14) 

From this we conclude that the Neumann coef­
ficients associated with the emergent intensity 
are 

(2. 15) 

where,as a reminder, H Z+1(J.I; v) defined by Eq. (6) 
are the multiple integrals of normal modes. 

In Eq. (2.14) the right-hand side may be reduced 
to a single sum by an application of the Cauchy 
sum formulall 

00 n 00 co 

E E B(n;k) == E E B(n + k;k). (2.16) 
n=Ok=O n=Ok=O 

The result is 

(2.17) 

The slow convergence of the Neumann expansion 
for w "" 1 should now be obviOUS from Eq. (2. 17). 

3. GENERAL FORMULATION FOR FINITE 
REGIONS 

To see how the general formulation presented in 
Sec.1 for the semi-infinite region is modified in 
the case of a bounded region, let us consider an 
atmosphere bounded by two planes at T == ° and 
T == d. We assume that the incident intensity,at 
T == 0, J.I > ° and the intensity at T == d for /..I < 0 
are known. Following the procedure of Sec. 1, one 
may readily show that the integral re~resentation 
of the n-times scattered radiation I~m (T, /..I) is 
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(3.1) 

where, in contrast to the half- space problems 
[see Sec. 1, Eq. (ll)],R;m)(k; J,L;d) are now the 
finite Fourier transforms of the Source function, 
i.e., 

By the sa~~ token we have the recurrence rela­
tion for R n m of the form 

R (m)(k' 'd) = J(m)(k' . 0) - -ikdJ(nt)(k' 'd) n ,J,L, n' J,L, en' J,L, 

+~ J1 d ' Sm(J,L,J,L')R(>It)(k' "d) 
2 -1 J,L 1 + ikJ,L' n-1 ,J,L, , (3.3) 

where for x = 0 or d 

In(m)(k;J,L;x) = J~ d/-l'/-I'I~>lI)(x,J,L') Sm(J,L,/-I')/(l + ik/-l') 
- ~.~ 

From Eq. (3.3) it is clear that R ~m)(k; /-I; d) are 
explicitly dependent on the total optical thickness 
d. Aside from that, these coefficients share the 
same analytical properties as those discussed 
in Sec. 1 for similar coefficients for half-space 
problems. Thus, to remind us that R ;m) (k; /-I; d) 
are sectionally holomorphic in the complex k 
plane cut from - fOO to - i and i to iOO. However, 
due to the exponential dependence on d they di­
verge as Ik I~ 00 in the upper half k plane. Conse­
quently, in obtaining the spectral representation of 
I!m)(T, /J.) by considering the contour (see figure in 
Sec. 1) in the upper or the lower half k plane, it is 
necessary to decompose R~m) into two parts which 
converge in the respective parts of the k plane. 
Such a decomposition is readily obtained by noting 
that upon solving Eq. (3.3) one has 

R!rn)(k; /-I; d) = U!m)(k; /-I; 0) - e-ikdu!rn)(k; lJ;d), (3.5) 

where U~h), for x = 0, or d, satisfy the following 
recurrence relation: 

U~m)(k;/-I;x) =J~m)(k;/-I;x) +~ J~ dJ,L' 

S m (/-I , /-I') (m) 
x 1 + ik/-l' Un - 1 (k; /-I'jx). (3.6) 

By inserting the decomposition, given by Eq (3.5), 
into Eq. (3. 1), and solving the first integral on the 
right-hand side, we obtain 

W foo e ikr (m) 
+ -4 dk 1 + 'k Un-1 (k; J,L; 0) 11 -00 t /-I 

(3.7) 

N?~ since u.~m)(k; J,L; 0) are independent of d and 
Un (k; J,L; d) Involve d only through surface dis­
tribution at d, we distort the path of integration in 
the upper half K plane in the first integral and in 
the lower half in the second integral given on the 
right-hand side of Eq. (3. 7), respectively. In the 
manner of the procedure followed in Sec. 1 we 
0Pmttin the following spectral representation of 
In (T,/-I): 

I~m)(T, J,L)6(T)e(d - T)Sm(J,L; v) 

11 - T/u' v' (m) 
= W ° dv'e .p In (/-I; v)r n-1 (v'; J,L; 0) 

- e-T/~e(J,L)w11 dv'iIt jJ(v" v) 
-1 m' 

x r~~(J,L; V'; 0) + r!m)(/-Ij V, 0) e- rljJ 6(J,L) 

_ JO'd' Cd-T)/v'iIt V
'( • )r Cm)( '. 'd) W -1 V e m /-I, V n-1 V , fJ.j 

(d-T)J.jJ J1" + e e (- Il)W -1 dv'iIt;,.(v'; V) 

X rn(~l(ll; v'i d) - r!m)(lli Vj d) e (d-r)/~e (- Il), 

(3.8) 
where, for x = 0 or d, 

r!m)(Vj Il; x) = - (1/27Tiv2)( un(m)+(v; J,L; x) 

- u!m)-(v; J,L; x», (3.9) 

and, as before 

(3.10) 

with 1> V'(Il) being the continuum normal modes 
defined by Eq. (1.21). Equations which determine 
coefficients rn(mJ are obtained by letting T ---7 0 and 
T ---7 din Eq. (3. 9), so that 

I~m)(O, Il)Sm (Il, v) = wJ
0

1 
dv'iIt';,;(Il; V)r~~)1(vl; J,L; 0) 

(m) 11
" + rn (Il; v; 0) - W -1 dv'iIt;;. (v'; V) 

(m) 10 diu' V'( X rn-1(llill'iO)- W dll'e -¥m Ilill) 
-1 

X r!~i(V';Il;d), Il> 0, (3.U) 
and 

I!m)(d, Il)Sm(ll, v) 

wI 1 dll'e-d!v'.T,V'(H·II) r(m)(II" H' 0) 
= ° "'m .... ' n-1,r-, 

10 V'( ) (m)( - W dv'iIt Il' v r v" H'd) -1 m' n-1,r-, 

(m) 11 - rn (Il; v; d) + W -1 dv'oJ!~(v'; II) 

Il < 0, (3. 12) 
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where 

/J. > 0, 

/J. < o~ 
(3.13) 

are known from the boundary conditions. 

Finally, the reflected and the transmitted com­
ponents of the intensity are 

I!m)(O, /J.)Sm(/J., II) = wI: dll'w-::;(/J.; lI)rn~"t(II'; /J.; 0) 

- w1° dll'edlv'w-~(/J.; lI)r!,:,i(II'; 11; d) 
-1 

_ r(m)( .. d) d/~ + e d/iJ w11 dll'w-~(II'· II) 
n /J., II, e -1 m' 

x r(m)(lJ. II'· d) " < 0, n-1"" , , ,.. 

- w1° dll'w-mV'(/J.j lI)r(m
1
)(II'j /J.jd), 

-1 n-

(3. 14) 

/J. > 0, 
(3.15) 

respectively. 

4. APPLICATIONS 

Isotropic Case (Bounded Media) 

For the isotropic ally scattering medium, various 
equations derived in Sec. 3 are again consider­
ably simplified. Thus, in the notation used in Sec. 2 
the n-times scattered radiation In(T, IJ.) at any 
point [see Eq. (3.8)] is given by 

In(T, 1J.)E>(T)8(d - T) = w~1 dlle- T/V q,v (/J.)rn-1(lIj 0) 

- e- rliJ E>(/J.)wrn_1(/J.jO) + r
n

(/J.jO)e- r1iJ E>(/J.) 

- wi
o 

dlle(d-T)/Vcp V(/J.)r
n

_1(lIj d) 
-1 

+ e(d-T)/iJE>(_ /J.)wrn_1(/J.jd) 

- rn(/J.;d)eCd-T)/iJ8(- 11). (4.1) 

Equations which determine the unknown coeffici­
ents rn(/J.;O) and rn(/J.jd) from the boundary con­
ditions at T = 0 (/1 > 0) and T = d (/J. < 0) are 

In(O,/J.) = wI01 dllcpV(/J.)rn_1(1I;0) + rn(/J.jO) 

- wrn - 1(/J.jO)- wi: dlleM.ocp"(/J.)rn_1(lIjd), 

/1 > 0, (4.2) 

and 

In(d, /1) = w f01 dlle-d/"cp"(/J.)rn_1(lIj 0) - rn(/J.j d) 

- wio dllcp"(/1)rn_1(II;d) + wrn_1 (/J.jd), 
-1 

Il < 0, (4.3) 

where 

In(O, Il) = on01o(0, /J.), 
and 

In(d, /1) = 0nOIO(d, /1), 

/J. > 0, 

/J. < 0, 

(4.4a) 

(4.4b) 

are known. These are coupled recurrence re­
lations which have the following formal solutions 
expressed in terms of the Hj functions defined by 
Eq. (2. 6b): 

>< 11 d1l1° dll'ed/v'E1(/J.j lI)cpv'(II) 
o -1 

x rn - I - 1 (lI'j d), /J. > 0, (4.5) 

and n 
1 ~ ~1 r (- /J.jd) =- wnJ dIlEn(/J.jll)IO(d,- II) + LJ W 

n 0 1=0 

1 10 d/v' V'( ) x (dll dll' e E1(llj lI)cp II 
JO -1 

x rn -l-1(- lI'jO), /J.>O, (4.6) 

where for convenience we have set 

(4.7) 

Equations (4.5) and (4.6) are particularly suited 
for asymptotic calculations for large d. For 
example, the zeroth approximation is obtain.ed by 
neglecting the terms involving the exponentIals. 
The results is then 

/J. > 0, 
(4.9) 

which are merely the coefficients associated with 
the half-space problems. By using these values 
of rn(/J.; 0) and r n(- /J.; d), correction terms may 
then be obtained by calculating the terms pre­
viously neglected and so on. For arbitrary values 
of d, exact solutions of Eqs. (5) and (6) pose no 
real difficulties. 

Finally the reflected and the transmitted com­
ponents of the intensities are given by 

(1 v 10 diu In(O, /J.) = w Jo dllcp (/J.)rn - 1 (lIj 0) - w -1 dlle 

x cpv(/J.)rn_1(II;d) + ed/iJ Wrn_1(/J.jd) 

(4.10) 

and 
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In(d;/J.) = wi
o
1 

dve-d/u <p U(/J.)rn_1(V;0)- e-d/p. 

x Wrn_1(/J.;0) + rn(/J.;O)e-d/p. - wjo dv<pU(/J.) 
-1 

Xrn _1(v;d), /J.>O, (4.11) 

respectively. 
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We prove the following: The kernel K~ll corresponding to the lth partial wave of the modified partial 
wave Lippmann-Schwinger equation having symmetric kernel Ks = P/2G(jV)/2 belongs to the Hilbert­
Schmidt (L2) class for spherically symmetric potential V such that V(r) -> 1'-0, I) < 2 as l' --> OJ V(1') 
--> 1'-n, 11 > 1 as r --. 00. For V(r) = g Ira, 1 <Ci < 2, the kernel K s of the modified Lipmann-Schwinger 
equation satisfies Tr{(K;)mK;} < 00, if Ci> 1 + 1/m, m = 2,3,···. The above results are valid 
even f.\?r positive real ellergy. It is also shown that for potentials for which both K s and the kernel 
K = Go Vof the usual Lippmann-Schwinger equation belong to L2 class, the corresponding off-shell two­
particle T matrix (kl T(Y + iE) I k') has a unique limit as E -+ 0, E. O. Some important consequences of 
these results are discussed. 

I. INTRODUCTION 
1 

In a recent paper (hereafter referred to as I) we 
examined the conditions on the two-particle po­
tential V for which the associated kernel K(== G~ V) 
(or some power of it) of the Lippmann-Schwinger 
(LS) equation belongs to the Hilbert-Schmidt (L2 ) 
class, for complex energies only. It is found that 
when the energy is made purely real and positive 
by letting the imaginary part of it vanish, the trace 
of (K+K) is unbounded, showing that K does not be­
long to the L2 class. This happens even for short­
ranged potentials of the Yukawa or cut-off types. 
This points to the fact that if the two-particle T 
matrix associated with K is obtained as a solution 
of the LS equation for complex energies, its limit 
as the energy becomes real and positive may not 
tend to a unique value. To circumvent this diffi­
culty, it is often suggested2 - 7 that one should exa­
mine if the symmetrized form of the LS kernel 
defined by 

(1. 1) 

2 belongs to the L class for complex as well as real 
energies. The associated T matrix, denoted by 
T s' is related to that defined for the usual LS 
equation denoted by T, through the expression 

(1.2) 

These conditions hold for a class of potentials which 
obey the conditions: 

Tr{K1K} = (m 2 /21T 1 Imk I)Jd 3r 1 r(r) 12 < 00, (1. 3) 
2 

Tr{K!Ks} = m 2 Jd 3r Jd 3r' 1 V(r) II V(r') I 
41T 

-21mk Ir-r' I 
x e <00. 

Ir - r'1 2 (1. 4) 

Here m is the reduced mass, Imk is related to 
t~e imaginary part of the energy via the relation 
k /2m = E + iE. Consider for instance, the Yukawa 
potential V(r) == Voe-'Y/r for which both (1.3) and 
(1. 4) hold for Imk > 0, while for Imk = 0 (1. 3) is 
divergent, whereas (1. 4) is not. This indicates 
that if it can be shown that the T matrix obtained 
from K and that obtained from K s are identical for 
complex energies, then even though (1. 3) does not 
hold for real positive energies, a unique limit 
of it is assured because of (1. 4). We prove this 
here for a wide class of potentials, including those 
covered by our earlier work. 

In this paper we establish the statements similar 
to those obtained in I for K, Kl' the partial wave 
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by letting the imaginary part of it vanish, the trace 
of (K+K) is unbounded, showing that K does not be­
long to the L2 class. This happens even for short­
ranged potentials of the Yukawa or cut-off types. 
This points to the fact that if the two-particle T 
matrix associated with K is obtained as a solution 
of the LS equation for complex energies, its limit 
as the energy becomes real and positive may not 
tend to a unique value. To circumvent this diffi­
culty, it is often suggested2 - 7 that one should exa­
mine if the symmetrized form of the LS kernel 
defined by 

(1. 1) 

2 belongs to the L class for complex as well as real 
energies. The associated T matrix, denoted by 
T s' is related to that defined for the usual LS 
equation denoted by T, through the expression 

(1.2) 

These conditions hold for a class of potentials which 
obey the conditions: 

Tr{K1K} = (m 2 /21T 1 Imk I)Jd 3r 1 r(r) 12 < 00, (1. 3) 
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k /2m = E + iE. Consider for instance, the Yukawa 
potential V(r) == Voe-'Y/r for which both (1.3) and 
(1. 4) hold for Imk > 0, while for Imk = 0 (1. 3) is 
divergent, whereas (1. 4) is not. This indicates 
that if it can be shown that the T matrix obtained 
from K and that obtained from K s are identical for 
complex energies, then even though (1. 3) does not 
hold for real positive energies, a unique limit 
of it is assured because of (1. 4). We prove this 
here for a wide class of potentials, including those 
covered by our earlier work. 

In this paper we establish the statements similar 
to those obtained in I for K, Kl' the partial wave 
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decomposition of K, and its iterated counterparts, 
for the corresponding symmetrized kernel K s. 
This is given in Sec. 2. Section 3 proves the state­
ments that the T matrixes obtained from K and K s 
are identical for those potentials for which both 
(1.3) and (1. 4) hold, and that a unique on-shell 
limit of T exists for such potentials. The results 
are discussed in Sec. 4. The notations and defini­
tions employed here are the same as those in I. 

2. STATEMENT OF THE THEOREM AND ITS 
PROOF 

Theorem: (a) The kerneJ Ks of the modified 
LS equation belongs to the L class provided 

Jd 3r Jd 3r' I V(r) II V(r') I e -2 Imk Ir-r' 1/ I r - r' 12 < 00. 

(b) The kernel K(ll corresponding to the lth partial 
wave decompositi~n of Ks belongs to the L2 class 
for spherically symmetric V(r) such that 

• -6 
V(r) r->Q > r, 0 < 2, 

-~ 

V(r) r-+oo> r , 1) > 1. 

(2.1a) 

(2. 1b) 

(c) For the potential V(r) = g / r
U

, 1 < a < 2, 

Tr{(K!tK:} < 00 

provided 

a> 1 + l/m, m = 2,3,···, (2.2) 

and all statements (a), (b), and (c) are true even 
when Imk = o. 

Proof: Theorem (a) is well known2 and there­
fore will not be proved here. To establish (b) and 
(c) we proceed as follows: 

We have 

Ks = 0 /2
C"Q(E) 0 /2

, 

Ki = 0 /2C-(E) 0 /2 
5 0 , 

(2.3) 

(2.4) 

Tr{K!Ks} = Jd3r(rIK"tKs I r) (2.5) 

= Jd
3
r Jd

3
r'V(r)C;(r, r')C;')(r', r)V(r') (2.6) 

{Tr(K:Ks)lz 

.;; [gr[11 + ~(1 - A) ]r(2 JJ. + l)C 1 (A)2-A/~ 
r(1l + l)r(l + A)r(1l + ~)r(1l +~) j 

E> 0, 

X e ik'·(r'-r) V(r) V(r') (2.7) 

(2)~ ~ 2 00 2 = - ~ (21 + 1) )0 y dr V(r) r r' dr'V(r') 
n z~ 0 Jo 

x (IX) k
2
dk . (k ). (kr') (co k,2 dk' . (k'r)· (k'r') 

Jo - Jz r J / Jo + J / J / 
6. k 6.k' 

(2.8) 

(2.9a) 
00 

= ~ (21 + l){Tr(K!Ks ))/. (2.9b) 

It may be shown by the same procedures as in I, 
that 

Tr{K!K 5} = 23 
m

21 k+ 12 f; (21 + 1) to drr2 V(r) 
/=0 0 

X 10
00 

dr'r,2 V(r') Ij /(k+ r )h ~l\k+ r) 12, (2.10) 

with k+ = (2mE + 2miE)1/2. Since lim E -) (}'exists, 
we note that k+ can also be made real. Thus 
Jmk + ? o. By considering in detail the integral in 
(2.10), Theorem (b) can be verified. 

We now use (2.9) to study the Coulomb-like po­
tentials V(r) = g/ru

• Via the procedure de­
veloped in I, it is easy to show that 

X(l~ I V Ilk2>(lk2 1 V Ilk 3)· •• 

(lkm-11 V Ilk m)· .. (lk2m I V Ilk1). 

We now use Eq. (16) of I to obtain a bound on 
(lkl V Ilk') for V(v) = g/ruand get after some 
algebra similar to the one described in I, 

(2.11) 

{2.12) 

(2.13) 
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D(>.., /L) the term inside large brackets in (2.12). All 
other symbols are defined in I. A == a-I and so 
for 1 < a < 2, we have 0 < A < 1. The integral 

a-1 

J:~ 
fl.k 

is the straightforward Mellin transform which can 
be seen to exist even when E == 0 in the sense of 
the principal value. Therefore the integrals (2. 9a) 
exist even for E == O. The convergence is uniform 
in l. In a similar fashion following I, one can show 
the convergence of the multiple integrals (2. 11) for 
1 < a < 2. This can be seen as follows. As E --> 0, 
the most divergent part of the multiple integral in 
(2.11) can be isolated and expressed in the form 

Ii + I. k2 dk k + I. k 2dk III = J 0 0 _1 __ 1 " . J 0 0 ~ 
ko - to fl. - ko - 1.0 fl.-

kl Am 

k + I. k 2 dk k • t k 2 dk 
X J 0 0 m+1 m+1 .•• J 0 0 2m 2m 

ko-I.o fl.+ k -I. fl.+ 
km+1 0 0 1/2m 

X (lk1 1 V I lk2)(lk2 I V Ilk 3)'" (lk2m I V Ilk1), 

(2.14) 

where ko == [2m(E + iE)]1/2 and ~o is an arbitrarily 
small positive definite number, which is set equal 
to zero after the integration. Now let us define a 
real function F I of 2m variables: 

F I (k1, k 2,"', k2m) == (lk11 V!lk2>(lk 2 ! Vllk 3 ) 

X ••• (lk2 m! V Ilk1 ), (2.15) 

which is regular for 0 < kn <Ci",n = 1,2,"', 2m, for 
VCr) =g Ira. 

Now we write 

F I(k 1, k 2,"', k2m) == [F I(k1, k 2,"', k 2m ) (2.16) 

- F l(ko, ko, ••. , ko>1 + Fl(ko' ko, •.. , ko). 

This leads to the separation of the most singular 
part d s in the multiple integral (2.14): 

(
k +1. dk 1 

ds = F1(ko,k o"" ,ko) . k ~t 0 k~ A- .. , 
o 0 kl 

But the integral 

exists with the sense of principal value even for 

E = 0 and hence Ids I < 00 for E == O. The integra­
tions remaining after separating the most singular 
part given by (2.14) from (2.11) can similarly 
seen to be convergent for E == O. This proves the 
existence of the multiple integrals in (2. 11) for 
E == 0 for the potential VCr) == glra with 1 < a < 2. 
One also notices that the matrix element (lk I V I 
lk') falls off exponentially in I as 1-700 if k "" k'. 
When k == k' we can use the asymptotic behavior 
established in Eq. (19) of 1. As in I, we estimate 
the convergence of the I sum in (2.11) by consider­
ing the most divergent part of the multiple k inte­
grals as a function of I. This most divergent part 
of the I series occurs when kl = k2 == ... k 2m; 
corresponding to this, the l series is convergent 
if 

O! > 1 + m- 1 , m == 2,3, .... 

This proves Theorem (c). 

3. EVALUATION OF T FOR REAL POSITIVE 
ENERGIES 

From the Theorem it is clear that the class of 
potentials for which Tr{KrK J < 00 is not identical 
with the class of potentials for which Tr{K1K} < 00. 

In addition, even for the potential for which both of 
the above two traces exist, it is not yet clear that 
lim(k I T(E + i E) I k') as E --> 0 is unique and is the 
same as the one that one would get by solving 
(kjV1/2Ts(E + iE) I k') for E == O. Let E be nonzero 
and V(r) be such that both the kernels K and K s be­
long to L2. Let T' = Vl/2 T s' Then it is easy to 
see that T = T - T' obeys the homogeneous LS. 
equation: 

(3.1) 

Since the kernel K belongs to the L2 class for 
complex E, the usual Fredholm theory can be 
applied to the integral equation (3.1). Then we 
find that (3.1) has nontrivial solutions for some 
discrete values and En = E < O. These corre­
spond to one of the discrete eigensolutions of 
H == Ho + V. Since in the scattering problem we 
are interested in 

lim (It I T(E + iE) Ik') for E> 0, 
,-;0 

we deduce 

T == 0, E> 0, E "" 0 (3.2) 

as the solution to (3.1). In fact T == 0 except for 
negative real E" where K = 1. Thus 

(It I Vl/2Ts (E + iE) I k') == (k I T(E + iE) Ik'), E > O. 
(3.3) 
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Since Ihs of (3.3) has a well-defined limit for 
E ~ 0 in view of the results of Sec. 2, we can con­
clude that (k\Vl/2T s(E + iE) \ k') gives unique 
analytic continuation of (kIT(E + if) Ik') on the 
positive real axis. 

4. DISCUSSION 

We wish to stress the fact that the proof given 
above for the existence of a unique limit for 
(k I T(E + iE) \k') as E ~ 0 is valid only for that 
V(r) for which both Ks and K belong to L2 class. 
ill I we showed that for V(r) == g/r a , the partial 
wave LS equation has L2 kernel for ~ < a < ~. On 
the other hand, the symmetrized partial wave LS 
equation has L2 kernel if 1 < a < 2. Therefore 
the common re¥ion for which both have L2 kernel 
is for 1 < a <:L Thus,for 1 < a <~ with V(r) == 
g/r a , a unique on-shell limit of the partial wave 
T matrix exists. It can be noted that the Coulomb 
potential Vc(r) == g /r is not covered by our analysis. 
This is not surprising in view of the fact that plane 
wave representation of the off-shell Coulomb 
T matrix has no unique limit as one approaches 
E ~ 08 . 

The full symmetrized LS equation requires twice 
as many iterations as the usual LS equation in 
order to have L2 solutions. 

Another aspect to be emphasized is that G1iV ~ 
Vl/2G1iVl/2 is not the only way to obtain a modi­
fied LS equation. ill fact Coester4 shows that one 
can in general express V == V+V- and obtain the 
correspondingly modified LS equations. As an 
example let V == VB VI-B; then the modified LS 
equation: 

The evaluation of various traces corresponding to 
K~ == VI-BGtVB will lead to the same conclusions 
that we obtain from Ks for which (3 == ~. ill the dif­
ferential equation method employed in potential 
scattering, the constraint on the potential is 

J cor I V(r) Idr < co. It may be pointed out that po­
tJhtials obeying this condition are incorporated 
in Theorem (b), whereas the converse is not true. 
For example, V(r) == g/r a , 1 < a < 2 satisfies the 
requirements of Theorem (b), whereas the integral 

loco r I V(r) Idr is not convergent for this potential. 

There is another method to construct the modi­
fied LS equation, by employing the kernelS 

(4.1) 

For E '" 0, one can obtain for spherically sym­
metric potentials the result 

• Address after September 1971: Department of Physics, Birla 
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1 A. K. Rajagopal and C. S. Shastry, J. Math. Phys. (to be pub­
lished). 

{Tr(KJ,Km )} 

== (~) 2 ~ (2l + 1) 1 k2
dk 1 k'2dk' 

1T 1=0 I A t I I A t, I 
x [(lk I V Ilk' >]2 • (4.2) 

We notice that (4.2) differs from (2.9) in the 
presence of I At I and I At, I instead of A k and 
At,. Due to this difference (4. 2) diverges when 
E == 0 (the principal value integral does not exist), 
whereas for E == 0 (2.9) exists in the sense of 
princ~al value. However for E > 0, the existence 
of Tr{K;nK } has the same re strictions on the 
potential VCr) as stated in (2.1a) and (2.1b). 

Note added in proof: ill I and the present paper 
the specific case of E = 0 was not investigated. 
This case was studied subsequently and we sum­
marize the results below 

The existence of the limit E ~ 0 (from the negative 
side) for the trace 

Tr(KtK) == (1) 2 fOO r 2dr Co k
2
dk J'2 (kr)V2 (r) 

z 1T 0 . 0 16t 12 z 

can be obtained by explicit evaluation. Thus (with 
0==0) 

Tr(KtK)z 

(2) 2 rco d [fOO k
2
dki¥(kr)] _ - 4m 2 r 2V2(r)dr-

1T • 0 d{32 .0 (k 2 + f32) 

_ (~) 24m 2 1000 

r2V2(r)dr 

xL~ d~2 {IZ+l/2 (rf3)KZ+1 / 2 (r{3n] 

Here f32 == - 2mE > 0, and 11+1/2 and K1+1/2 are the 
modified Bessel functions of first and third kind, 
respectively. Via the properties of these functions, 
it is found that, for I == 0, Tr(KtK)1 diverges like 
{3-1 as {3 ~ 0 (i.e., E ~ 0) and, for I == 1, Y3, ... , 

lim {Tr(KtK)z} 
E->O 

exists provided that 

V(r) -7 r- b 0 < 2 
'1'-+0 ' 

and 

Similarly}from the study of (2.16) of the present 
paper, Tri.K!Ks}/ can be shown to exist as k+ -+ 0 
(i.e., as E -4 0), provided that V(r) satisfies the 
conditions (2.1a) and (2.1b). 
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The asymptotic form of the wavefunction for the scattering of a neutral particle on a hydrogen atom 
bound state is discussed, with particular reference to the case where the two Charged particles may be 
close together in the asymptotic region. 

1. INTRODUCTION 

In spite of the great progress that has been made 
in the past decade in understanding the mathe­
matics of multiparticle scattering problems, there 
are still problems that remain when long-range 
Coulomb forces are involved. 

If we look at p-H scattering (for example) in co­
ordinate space, we need to impose suitable boun­
dary conditions before the solution of Schrodin­
ger's equation is uniquely specified. Let us use a 
six-dimensional vector p = (r l , r 2 ) (with rl' r 2 
the positions of the electrons). Then the only 
boundary in the problem is a five-dimensional 
hypersphere at infinity, Le., p == (r~ + r~)l/Z -~ !Xl. 

The boundary conditions involve specifying the 
form of the wavefunction if?(p) as p ~ 00. 

The asymptotic form of if?(P) has already been 
given by Peterkopl and othersz for almost all the 
hypersphere, and is, for a wavefunction describing 
scattering from the ground state of hydrogen 
above the ionization threshold, 

(1 ) 

where f o(f5,,) is proportional to the amplitude for 
ionization with the electrons emitted in directions 
speCified by the unit vector Pu = p/ p. The function 
n(f5,) is related to the total energy E and the com­
plete potential V by 

T/(p,J = lim - pV/2../E. 
p-->oo 

(2) 

Form (1) is valid on all but three small portions 
of the hypersphere corresponding to the places 
where a pair of particles is close together. 

It is the purpose of this paper to describe the 
asymptotic behavior of if?(p) in those regions where 
two charged particles are relatively near each 

other. An understanding of the region where par­
ticles 1 and 3 approach each other, with a Coulomb 
interaction, is an essential step in understanding 
the behavior of three charged particles. For sim­
plicity, instead of e-H scattering, we here study a 
model in which V3 , Vz (the potentials between 12, 
23) are short range, e.g., a superposition of Yukawa 
potentials, but VI is a pure Coulomb potential 
-2c/rl' taken to be attractive for the following dis­
cussion (r > 0). Particle 3 is infinitely heavy and 
m l = m2 = 1/2. 

A prinCipal result of our work is that (1) becomes 
invalid if the inequality 

(3) 

is not satisfied. We call the region where (3) holds 
the outer region and its complement the inner 
region. 3 In the inner region, 1> is described by the 
well-known sum over the bound states ofthe hydro­
gen atom, with coefficients proportional to the 
amplitudes for elastic scattering and excitation. In 
addition there is a continuum contribution which 
Peterkopl has written as an integral over two­
body Coulomb scattering wavefunctions l/Iq(r2). We 
evaluate this continuum contribution in the inner 
region, and in particular find that, for fixed rl' it 
falls off as r z2 • We also find that, in the outer 
region, the bound-state sum falls off no faster than 
r z1rl- 9 / 4 , but that the continuum contribution 
cancels this term in such a way that (1) and the 
corrections to it given by Peterkopl are the only 
parts of q, that do not decay exponentially. 

II. BASIC EQUATIONS 

Let us suppose that, with the model we have de­
scribed, particle 2 is incident on a bound state of 
particles 1 and 3, so that the total energy is E. 
This initial state will have a wavefunction x(rv r 2 ) 

which is a product of a plane wave for partiCle 2 
and the bound-state wavefunction. The three-body 



                                                                                                                                    

2198 C. S. S HAS TRY, A. K. RAJ AGO PAL 

5 M. Scadron, S. Weinberg, and J. Wright, Phys. Rev. 135, B202 
(1964). 

6 A.Grossman and T. WU,J. Math. Phys.2, 710 (1961). 

JOURNAL OF MATHEMATICAL PHYSICS 

7 K.Meetz,J.Math.Phys.3.690 (1962). 

8 A. K. Rajagopal and C. S . Shastry (unpublished). 

VOLUME 12, NUMBER 10 OCTOBER 1971 

Asymptotic Form of the Wavefunction for Neutral Particle-Hydrogen Atom Scattering* 
G. Doolen 

Texas A&M University, College Station, Texas 77843 

and 

J.Nuttall 
Unil'ersity of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544 

and 
Texas A&M University, College Station, Texas 778431 

(Received 11 March 1971) 

The asymptotic form of the wavefunction for the scattering of a neutral particle on a hydrogen atom 
bound state is discussed, with particular reference to the case where the two Charged particles may be 
close together in the asymptotic region. 

1. INTRODUCTION 

In spite of the great progress that has been made 
in the past decade in understanding the mathe­
matics of multiparticle scattering problems, there 
are still problems that remain when long-range 
Coulomb forces are involved. 

If we look at p-H scattering (for example) in co­
ordinate space, we need to impose suitable boun­
dary conditions before the solution of Schrodin­
ger's equation is uniquely specified. Let us use a 
six-dimensional vector p = (r l , r 2 ) (with rl' r 2 
the positions of the electrons). Then the only 
boundary in the problem is a five-dimensional 
hypersphere at infinity, Le., p == (r~ + r~)l/Z -~ !Xl. 

The boundary conditions involve specifying the 
form of the wavefunction if?(p) as p ~ 00. 

The asymptotic form of if?(P) has already been 
given by Peterkopl and othersz for almost all the 
hypersphere, and is, for a wavefunction describing 
scattering from the ground state of hydrogen 
above the ionization threshold, 

(1 ) 

where f o(f5,,) is proportional to the amplitude for 
ionization with the electrons emitted in directions 
speCified by the unit vector Pu = p/ p. The function 
n(f5,) is related to the total energy E and the com­
plete potential V by 

T/(p,J = lim - pV/2../E. 
p-->oo 

(2) 

Form (1) is valid on all but three small portions 
of the hypersphere corresponding to the places 
where a pair of particles is close together. 

It is the purpose of this paper to describe the 
asymptotic behavior of if?(p) in those regions where 
two charged particles are relatively near each 

other. An understanding of the region where par­
ticles 1 and 3 approach each other, with a Coulomb 
interaction, is an essential step in understanding 
the behavior of three charged particles. For sim­
plicity, instead of e-H scattering, we here study a 
model in which V3 , Vz (the potentials between 12, 
23) are short range, e.g., a superposition of Yukawa 
potentials, but VI is a pure Coulomb potential 
-2c/rl' taken to be attractive for the following dis­
cussion (r > 0). Particle 3 is infinitely heavy and 
m l = m2 = 1/2. 

A prinCipal result of our work is that (1) becomes 
invalid if the inequality 

(3) 

is not satisfied. We call the region where (3) holds 
the outer region and its complement the inner 
region. 3 In the inner region, 1> is described by the 
well-known sum over the bound states ofthe hydro­
gen atom, with coefficients proportional to the 
amplitudes for elastic scattering and excitation. In 
addition there is a continuum contribution which 
Peterkopl has written as an integral over two­
body Coulomb scattering wavefunctions l/Iq(r2). We 
evaluate this continuum contribution in the inner 
region, and in particular find that, for fixed rl' it 
falls off as r z2 • We also find that, in the outer 
region, the bound-state sum falls off no faster than 
r z1rl- 9 / 4 , but that the continuum contribution 
cancels this term in such a way that (1) and the 
corrections to it given by Peterkopl are the only 
parts of q, that do not decay exponentially. 
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Let us suppose that, with the model we have de­
scribed, particle 2 is incident on a bound state of 
particles 1 and 3, so that the total energy is E. 
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wavefunction q,(rl' r 2) may be obtained from assume that the integral in (7) is over a bounded 
region when studying the analyticity of T(q, pl. 

Iq,)= Ix)+ lim 0,{'-H)-I(V2 + V3 )l x). 
ImW~O 

Here W is the total energy with real part E and 
positive imaginary part, and H = T + VI + V2 + 
V3 is the Hamiltonian for the problem. We work 
with this equation before the limit is taken. 

(4) This is due to the fact that we know enough about 
the phase of q, for large p (dominant term .JWp) 
to see that at no point where V2 + V3 is not ex­
ponentially damped is the phase of the integrand 
stationary for large p. 

Equation (4) can be rearranged to read 

At this point it is convenient to perform a partial 
wave resolution in the q and r 1 variables to obtain 
a partial wave analysis of T(q, pl. 

(5) We set lJi;(r1 ) = ~ Y~(i\)Yf(Ci)qLe-nTI/2r(L 
LM 

In the coordinate representation, (5) may be written 
as 

q, (r l ,r2)= x'(rl' r2) +(1/81T3 ) JdqdplJiq(rl ) exp(ip o r 2 ) 

x OV - p2 - q2)-IT(q, p) 

+ (1/87T3) 2.; IdplJiNLdr1) exp(ip or 2) 
LMN 

x (W - p2 + B N)-1 T NLM(P), 

with 

T(q;p) =jdr1dr2lJiq*(r1) exp(- ipo r2 ) 

x (V2 + V3 )q,(r1 , r2 ) 

and 

TNLJp) = Jdr1dr2lJij,LM(r1) exp(- ip o r 2 ) 

x (V2 + V3 )q,(r1, r 2 ). 

(6) 

(7) 

(8) 

Here lJiNLdr1) are the normalized Coulomb bound­
state wavefunctions and lJiii(rl ) are the correspond­
ing continuum functions for in-going scattered 
waves. The inhomogeneous term X' approaches X 
asW-70. 

In our model problem in which V2 and V3 are of 
short range, we shall see that, for fixed q, T (q, p ) 
and T NLM(P) are analytic functions of p for real p 
near p(q) = (E - q2)1/2 or near PN = (E + BN)1/2, 
Consequently,for large r 2 , we may approximate 
(6) by an extension of the method of steepest de­
scents, described in more detail for this case else­
where,4 with the result that 

It should be noted that this formula is not valid in 
regions 1'2/P -70 or I rl - r21/p -7 O. 

Equation (9) may be further simplified by the 
method of steepest descents, but care must be 
taken of the singularity that the integrand contains 
at q = 0, both in lJiq(r1 ) and in T(q,p(q)r2 ). The be­
havior of T(q, p) near q = 0 may be studied from its 
definition [Eq. (7)]. An important point, which is 
the basis of our whole analYSiS, is that apart from 
two exceptional regions, not near q = 0, we may 

+ 1 - in)3'~(q, r 1 ), 

where n = - e/q, with c positive in the attractive 
case under discussion. 

The function fTL (q,r 1 ) is defined in terms of Kum­
mer's function 5 M by the relation 

(2) 1/2 (2r1)L . 
fTL(q, r 1) = i L

; r(2L + 2) e-W1 

x M(L + 1 - in, 2L + 2,2iqr1) 

From (7), we have 

T(q, p) = ~ Y~(q)(- q)Le- nrr
/
2 

LM 

x r(L + 1 + in)tLM(q,P), 

with 

* tLdq, p) = Jdr1dr2Y~ (i\)fTL(q, r 1) 

x e-por2 (V2 + V3 )q,(r1, r 2 ). 

(10) 

The function fTL(q,r) [and thus tLM(q,P) from the 
argument above] is an even function of q and is 
analytic in q near q = O. 

The behavior of T(q, p) near q = 0 is governed by 
the factors given explicitly in (10). 

We can use (9) and (10) to write the asymptotic 
form in a more compact notation. The continuum 
contribution to (9) is 

_1- ~(_I)Ll°O dqq2L'2e-nTIr(L+ I-in) 
41T LM 0 

x r(L + 1 + in)fTL(q,r1)Y~(i1) 
iJAQ)Y2 

x _e_-tLdq,p(q)r2)' 
r 2 

(11) 

The integrand has poles at L + 1 - ,in = L + 1 -
N, N ? L + 1, or q = - ie/No 

We note that if tLM(q,P) is evaluated at q = - ie/N 
where N is a positive integer and N ? L + 1, it will 
be found to be related to the excitation amplitude 
TNLM by 

(P) (
27Tr(N + L + 1)\ 1/2.-L L·3/2 -L-2 

TNLM = r(N - L) J 1 e N 

(12) 
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(
27Tr(N + L + 1») 1/2 .-L L+3/2 ~T-L-2 

1fINLM (r) = r(N _ L) 1 C 1\ 

(13) 

Thus the behavior of TNLM(P) for large N is related 
to the behavior of the continuum scattering ampli­
tude tLM(q,P) for small q. 

Using (12) and (13), we may show that if the inte­
gral in (11) is taken on a contour consisting of a 
small circle about one of these poles, then the 
result is exactly the corresponding bound-state 
contribution to (9), 

Thus we may replace the sum over N by an integral 
over q and we write (9) as 

1 '\, r 2L+2 -nn 
q,(r1 , r 2 ) ~ x'(r1 , r 2 ) - 47T U la. dqq e 

LM 

x r(L + 1 - in)r(L + 1 + in) 

_..M e if{Q)Y2 ~ 
X ffL(q, r 1)YL (1'1) tLM (q,p(q)r 2), 

Y2 

where the contour O! is shown in Fig. 1. 

It is now useful to introduce the irregular Whit­
taker function 5 and write 

-L-1 

(
2\ 1/2 q nn 

{FL(q,r) = Til 2ir"'"e 

x (W- in .L+1/2(- 2iqr) 
r(L + 1- in} 

L+1 "'in.L+1/2(2iQr») 
+ (- 1) r(L + 1 + in} . 

FIG.1. The contour Ci used to include the bound­
state sum. 

-ic 

FIG. 2. The contour (3 used with the Whittaker 
function to include the bound-state sum. 

(14) 

Although this does not appear to be an even func­
tion of q, it must be remembered that Wkm(z) has 
a cut from z = 0 to - 00. As we take q alo'ng a path 
from real positive to real negative values either 
above or below the origin, the argument of one of 
the W functions crosses its cut. 

In view of (14) we can rewrite (11), the continuum 
contribution to (9), as 

- 2-5/2 7T-'J/2 i 2.,; L dqqL+1[r(L + 1- in) 
LM'O 

. L+1 
X lfin,L+1/2(2zqr 1) + (- 1) 

x r(L + 1 + in)W-in,L+1/2(- 2iqr1)] 

M e ip (Q)Y2 

x YL (i\) ~ tLM(q,p(Q)r
2

) 
r 2r 1 

or 
-5/2 -\3/2. '" fX' L+1 

- 2 7T Z U )-oc;, dqq r(L + 1 - in} 
LM 

(15) 

Since the first term of (14) is zero at the bound­
state poles q = - ic/N, we can include the contri­
butions of the bound-state poles to q, by integrating 
(16) along the contour (3 shown in Fig. 2: 

cI>(r1 , r 2 ) ~ X'(rl' r 2 ) - 2-5/21T-3/2iL; 1 dqqL+l 
LM i3 

X r(L + 1- in)W;n.L+1/2(2iqr1) 

M e ip (Q)Y2 

X YL(i\) r r tLM(Q,p(q)r2)' 
1 2 

m. ASYMPTOTIC FORM IN OUTER REGION 

(17) 

It is obvious that the asymptotic form (1) cannot 
be valid for all values of rdr2' however small, 
since T} -> tE(r 2 /r 1 ) as r 1 -> O. This form does not 
even satisfy Schrodinger's equation in this region. 6 

It is of interest to determine how small r l /r2 may 
be taken before (1) must be modified. Also, it 
might be asked whether the bound-state sum in 
(9) gives a contribution to the asymptotic form in 
the region where (1) is valid, since as N -> 00, 

tflNLM(r l ) is nonnegligible for increasing values 
of r l • 

We show below that, provided rr.E » 2cr~, the 
leading term of the asymptotic expansion is in­
deed (1), and corrections are given by the expan­
sion of Peterkop.1 This is done from a considera­
tion of representation (17) of the asymptotic form 
which includes both bound-state and continuum 
contributions. In Sec, IV it will be shown that the 



                                                                                                                                    

ASYMPTOTIC FORM OF THE WAVE FUNCTION 2201 

continuum contribution alone leads to a correc­
tion to (1) in the outer region which does not fall 
off exponentially. We are therefore led to the con­
clusion that the bound-state sum does not fall off 
exponentially in the outer region, but must in fact 
cancel the anomalous part from the continuum 
term. 

Let us choose the contour (3 used in (17) to follow 
the path shown in Fig. 3. If we assume that r1 is 
such that, for all points on r;, 1 q2(rd2c) 1 » 1, 
then we may use the asymptotic form of the Whit­
taker function, 5 

+ c1T/2q]. 

The dominant part of the phase of the integrand in 
(17) is iratE - q2)1/2 - iqr14 which leads to the 
saddlepoint at - qo = - r 1vE(rr + r~)-1/2 through 
which f3 passes. It may be shown that, as we move 
along (3 away from - qo in either direction, the 
integrand falls off exponentially, even though the 
contour passes close to the poles of the r function. 
For large p the width of the saddle at - qo is much 
less than the distance from - qo to the point B in 
Fig. 3. Thus the entire contribution to the asymp­
totic form comes from the saddlepoint, which 
leads to 

which agrees with (1) if we set 

(19) 

The above argument is valid only when (qcrr 1/2c) 
» 1, which is equivalent to rrE » 2cr~. This re­
lation describes the boundary between the outer 

-ic 

FIG. 3. The version of contour fl used in the dis­
cussion of asymptotic form in the outer region. 
The point B is - Hqo(l + i)]. 

region where all particles are well separated and 
(18) holds, and the inner region where particles 1 
and 3 are close enough together to have an inter­
action that significantly changes the nature of the 
asymptotic form. Note that, as p ~ 00, the inner 
region subtends a vanishingly small solid angle 
at the origin of the six-dimensional space. 

It would be interesting if the location of the boun­
dary we have found between inner and outer 
regions could be understood in classical terms. 
In this connection, we point out that the inequality 
r 2/1ii « rr/2(2c)-1/2 states that the time taken 
for particle 2 travelling at velocity Iii to reach 
the origin from r 2 is much less than the time 
taken by particle 1 to complete an orbit with 
average radius r 1 • We do not understand the sig­
nificance of this. 

IV. CONTINUUM CONTRIBUTION TO THE 
ASYMPTOTIC FORM 

We now discuss the form of the continuum contri­
bution. We shall see that the integral in (15) may 
be simplified, rather as is the case with short­
range forces. Unfortunately, we do not know of any 
comparable approximation to the bound-state sum 
in the inner region. 

In the region r1 fixed,r2 --') 00, it is best to use the 
representation (11) of the continuum contribution. 
Provided that largq 1< h we have, as Iq'l~ 0, 

e-nn r(L +1 - in )r(L + 1 + in )tFL(q, r 1) 

~ ~ (2 c/ c ).L -(2L+1) L+1!2J (_ (8 ) 1/2) v 7r , vr1 z q C 2L+1 rIc , 
(20) 

where J 2L+1 is a Bessel function. The rapidly 
varying part of the phase of the integrand in (11) in 
this region is p(q)r2 = r2(E - q2)l!2, which gives 
rise to a saddlepoint at q = O. To achieve maxi­
mum fall-off from q = 0, we must rotate the con­
tour near q = 0 througn ·h in a clockwise direction. 
Equation (19) is therefore valid. Thus we find that 
the continuum contribution <Pc has the form 

This result disagrees with a formula given by 
Peterkop 7, which is based on an oversimplified 
analogy with the case of short-range forces. 

To study the continuum contribution for larger 
values of r1' it is convenient to use the representa­
tion (15). We use WKB-type approximation to the 
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Whittaker functions, valid in the region I arg q I < 
17T, r 1 large: 

Wiin ,L+ 1/2 ( ± 2iqr 1) 

~ (1 + 0'-1)-1/4 ~xp[7Tc/2q ± ie], 

e = - c In ~ + ~_ 2c {(Q1(1 + 0'»)1/2 
q q q q 

-In[II + (11)1/2 - Q1 1 / 2 )}, (22) 

with 

The phase in (22) is too complicated to allow us 
to obtain in closed form the location of the 
saddlepoints of the two terms in the integrand of 
(15). However, it may be seen that the fir st term 
in (15) has its only saddlepoint at q = O. Using the 
expansion of e about q = 0, which reads 

~ _ 4 (r 1\112 _ 2c 2 (rl \3/2 + £. 4(rl)5/2 
e~ c 2c/ 3 q 2cJ 10 q 2c 

(23) 
to evaluate the saddlepoint integral, we obtain for 
the contribution <P Ie of the fir st term in (15) 

exp[ i.JEr 2 - i(Brc) 1/2] I; (ic) L+1/2 
cp ~ LM 

Ie 81Tr2ri/4(2c)1/4[r2/2.JE + tc(r /2c)3/2] 

The second term in (15) also has a saddlepoint 
fixed at q = 0, but in addition there is a moving 
saddlepoint that lies at q 0 for rj E »2cr~. This 
saddlepoint gives rise to the usual Lerm (1), while 
in this region the q = 0 point gives a contribution 
<l>2c, 

3i(2c)I/4 exp[i.JEr2 - i(8r 1c)1/2) <1>2 ~ - _______ ----'O..-__ -=--_~ 

c 81Tr2r19/4 

x L; (ic) L+l/2 Y:(f1)t LAI(O, JEf2) , for r 2 - 00 
J.M 

and ryE » 2cr~. 
As the ratio rlE/(2cr~) decreases from large 
values, the moving saddlepoint approaches q = 0, 
which it reaches when rlE/(2cr~) = t In this 
region, we need to include the fourth-order term 
in (23) when evaluating the second term of (15), 
with the result that 

1 (1T\1/2 
<P2 c ~ 161T \i(3j 
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exp[i~Er2 + i(8r1c)1/2 + i(ll2/(4(3)] 
x --~-----'~--~-----~~ 

ry/4r2(2c)1/4 

x (iQl ~ ~ (. )L+1/2yM(~ )t 
eric 2(i(3) 1/2) f:-ft IC L r 1 LM 

(0, ,;Ef2 ), for r 2 -> 00, ryE ~ 2cr~, 

where 

0' _ ~ _ 2C(rl\ 3/2 
- 2ft 3 \2cJ 

and 

8 = ~ .£ (r 1) 5/2 
, BE3/2 + 10 2c . 

As the quantity rrE/(2cr~) becomes much less 
than unity, we may use an expansion of erfc to 
deduce, with the help of (24), that in the case r l' 
r 2 large ryE « 2cr~, the entire continuum con­
tribution is given by 

IE exp(ifEr 2) 
<Pc '" {exp[- i(8r 1c)1/2] 

41Tr~ri/4 (2c )1/4 

+ i exp[i(8r
1
c)l/2]} I; (iC)L+1/2 

LM 

x Y:(f 1 )t LM (0,../Er2)' 

It will be seen that this result merges into (21) if 
an expansion of J 2L+1 for large argument is sub­
stituted into (21). 

V. REPULSIVE CASE AND GENERALIZATIONS 

The case of a repulsive Coulomb interaction be­
tween particles 1 and 3 is much easier to discuss. 
The amplitudes t LM( q, p) still approach constants 
as q -> 0, but the quantity 

e-mrr(L + 1 - in)r(L + 1 + in) -> 2e-2nrr 7Tn 3 

= 21Tcexp(- 2C/q)1T/q3 as q -> 0 

in (11) now falls to zero exponentially. Hence, the 
contributions to the stationary phases at and near 
q = 0 are suppressed by this factor. The width of 
the saddle in the complex q plane goes as r l/r 2' 

Thus for large r 2 ,<p(r 1 ,r2 ) goes to zero exponen­
tially as r l/r 2 decreases to zero. 

It is also possible to modify our results 9 to in­
clude the possibility of an additional short-range 
interaction between particles 1 and 3. 

We believe that the form of the results changes 
little if particle 2 is charged. Probably it is 
merely necessary to add a factor to our results 
for the form of <P in the region. We hope to return 
to this question elsewhere. 

2 R. W. Hart, E. P. Gray, and W. H. GUier, Phys. Rev. lOB, 1512 
(1957); E, Gerjuoy, ibid. 109, 1806 (1958). 

3 Note that there are really three inner regions, but we shall 
discuss only the one where the two charged particles of our 
model are relatively close together. 

4 J. Nuttall, Phys. Rev, Letters 19,473 (1967); for a general 
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5 L. J. Slater, Confluent Hypageometric Functions (Cambridge 
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6 A. Temkin, Phys. Rev. Letters 16,835 (1966). 
7 R. K. Peterkop, "Proceedings of the Sommerfeld Centennial 
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Memorial Conference and Symposium on the Physics of One­
and Two- Electron Atoms" (unpublished). 
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9 J. Nuttall, in Three Body Problem, edited byJ. S. C. McKee 
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Following the graphical method of Marzke and Wheeler it is shown analytically that if we know the 
space-time paths of all particles and light pulses we can deduce the connection and the metric of the 
space-time manifold. Specifically if such space-time paths fulfill some reasonable physical hypotheses, 
it is proved that space-time is a Riemannian manifold. To reach this conclusion a new definition of 
parallelism is introduced, based only on ideal experiments. This parallelism is entirely different from 
the ordinary parallel transfers, if the manifold is non-Riemannian; therefore it opens new ways of modi­
fying gravitational theory. 

1. THE INVERSE PROBLEM OF GENERAL 
RELATIVITY 

Usually general relativity is based on the postulate 
that space-time is a Riemannian manifold. Once 
the metric of such structures is known (by the 
integration of corresponding equations), we can de­
duce the paths of particles and light rays as geo­
desic lines of the metric. But the Marzke-Wheeler 
method of measurement1 ,2 allows us to invert the 
procedure. If the space-time paths of particles 
and light rays are experimentally known, Marzke 
and Wheeler show graphically how one can draw 
parallel lines, and construct an ideal geodesic 
clock that defines the metric over the whole mani­
fold. 

The finest achievement of Marzke-Wheeler method 
is the definition of the metric without clocks and 
measuring rods of atomic constitution. The metric 
only depends on the paths of particles and light 
rays. 

In this paper we shall adopt the same procedure, 
but from an anlytical point of view. First, we sup­
pose that we know the space-time paths of particles 
and light pulses, and that they satisfy some natural 
physical hypotheses which lead us to their dif­
ferential equations. Second, we show how to define 
a natural, both geometrical and physical, paral­
lelism (the Desargues transfer). Third, we find the 
parameter measured by a geodesic clock, i.e., the 
proper time. Fourth, we analyze the way in which 
this time defines a metric on the manifold. Finally, 
we conclude that if the proper time and the metric 
are defined unambiguously, the natural Desargues 
parallelism coincides with the ordinary parallel 
transfer of the Riemannian manifold which has 
such a metric. 

In this way the Riemannian structure of space­
time appears as a consequence of a set of natural 
and physical hypotheses. 3 We think that this work 
might allow us to begin a critical study of these 

hypotheses and to classify them according to their 
physical soundness. To acquire alternative theories 
to the classical one, we should keep those which 
are well founded and replace the weaker ones. 

But, perhaps, the most interesting novelty is the 
introduction, based on physical considerations, of 
a new kind of parallel transfer which can also be 
interpreted within the manifold itself; without em­
bedding the V 4 in a Euclidean space of more than 
four dimensions. This parallel Desargues transfer 
is entirely different from the usual Levi-Civita 
transfer, if the manifold is non-Riemannian and 
thereby opens new ways of modifying classical 
gravitational theory. 

2. DIFFERENTIAL EQUATION OF THE SPACE-
TIME PATH OF A FREE PARTICLE 

To begin with, we must adopt a hypothesis that 
fixes the geometriC background in which we shall 
work: 

Hypothesis Ho: Space-time is an analytical 
(differentiable) manifold V4 • Every phYSical field 
is defined by an analytical function over V 4' 

Specifically, each point x ( V 4 belongs to a neigh­
borhood U which is mapped on an open sphere S(U) 
which belongs to a four-dimensional Euclidean 
space It 4 by a coordinate system S, so that to each 
point x E U correspond for real numbers S(x) = 
(xi). 

The changes of coordinates and the functions that 
define physical fields in V 4 are analytical functions. 

To assume that these functions are analytical, 
i.e., that they lack any type of singularity or any 
other mathematical problem, is a usual hypothesis 
in physics, one that is probably not completely 
essential but is useful in this first approach. 

We must define a fundamental congruence of 
curves, within V4 , which is formed by every free­
particle space-time path and by the space-time 
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Following the graphical method of Marzke and Wheeler it is shown analytically that if we know the 
space-time paths of all particles and light pulses we can deduce the connection and the metric of the 
space-time manifold. Specifically if such space-time paths fulfill some reasonable physical hypotheses, 
it is proved that space-time is a Riemannian manifold. To reach this conclusion a new definition of 
parallelism is introduced, based only on ideal experiments. This parallelism is entirely different from 
the ordinary parallel transfers, if the manifold is non-Riemannian; therefore it opens new ways of modi­
fying gravitational theory. 

1. THE INVERSE PROBLEM OF GENERAL 
RELATIVITY 

Usually general relativity is based on the postulate 
that space-time is a Riemannian manifold. Once 
the metric of such structures is known (by the 
integration of corresponding equations), we can de­
duce the paths of particles and light rays as geo­
desic lines of the metric. But the Marzke-Wheeler 
method of measurement1 ,2 allows us to invert the 
procedure. If the space-time paths of particles 
and light rays are experimentally known, Marzke 
and Wheeler show graphically how one can draw 
parallel lines, and construct an ideal geodesic 
clock that defines the metric over the whole mani­
fold. 

The finest achievement of Marzke-Wheeler method 
is the definition of the metric without clocks and 
measuring rods of atomic constitution. The metric 
only depends on the paths of particles and light 
rays. 

In this paper we shall adopt the same procedure, 
but from an anlytical point of view. First, we sup­
pose that we know the space-time paths of particles 
and light pulses, and that they satisfy some natural 
physical hypotheses which lead us to their dif­
ferential equations. Second, we show how to define 
a natural, both geometrical and physical, paral­
lelism (the Desargues transfer). Third, we find the 
parameter measured by a geodesic clock, i.e., the 
proper time. Fourth, we analyze the way in which 
this time defines a metric on the manifold. Finally, 
we conclude that if the proper time and the metric 
are defined unambiguously, the natural Desargues 
parallelism coincides with the ordinary parallel 
transfer of the Riemannian manifold which has 
such a metric. 

In this way the Riemannian structure of space­
time appears as a consequence of a set of natural 
and physical hypotheses. 3 We think that this work 
might allow us to begin a critical study of these 

hypotheses and to classify them according to their 
physical soundness. To acquire alternative theories 
to the classical one, we should keep those which 
are well founded and replace the weaker ones. 

But, perhaps, the most interesting novelty is the 
introduction, based on physical considerations, of 
a new kind of parallel transfer which can also be 
interpreted within the manifold itself; without em­
bedding the V 4 in a Euclidean space of more than 
four dimensions. This parallel Desargues transfer 
is entirely different from the usual Levi-Civita 
transfer, if the manifold is non-Riemannian and 
thereby opens new ways of modifying classical 
gravitational theory. 

2. DIFFERENTIAL EQUATION OF THE SPACE-
TIME PATH OF A FREE PARTICLE 

To begin with, we must adopt a hypothesis that 
fixes the geometriC background in which we shall 
work: 

Hypothesis Ho: Space-time is an analytical 
(differentiable) manifold V4 • Every phYSical field 
is defined by an analytical function over V 4' 

Specifically, each point x ( V 4 belongs to a neigh­
borhood U which is mapped on an open sphere S(U) 
which belongs to a four-dimensional Euclidean 
space It 4 by a coordinate system S, so that to each 
point x E U correspond for real numbers S(x) = 
(xi). 

The changes of coordinates and the functions that 
define physical fields in V 4 are analytical functions. 

To assume that these functions are analytical, 
i.e., that they lack any type of singularity or any 
other mathematical problem, is a usual hypothesis 
in physics, one that is probably not completely 
essential but is useful in this first approach. 

We must define a fundamental congruence of 
curves, within V4 , which is formed by every free­
particle space-time path and by the space-time 
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paths of pulses of light. We can assume that the 
fundamental congruence is experimentally known 
a priori. Of course we know that our experimental 
knowledge of the fundamental congruence is not yet 
complete. This is why we are forced to make 
various hypotheses about the behavior of these 
curves. The origin and physical meaning of these 
hypotheses are well known. 

To begin with we must require that the congruence 
satisfies the weak equivalence principle;that is to 
say that paths of free particles are independent of 
the mass and of all other properties of the particle. 
At each point x ( V4 the tangent vectors to the 
curves of the fundamental congruence form a sub­
set I x of the tangent space at x: TX. We can then 
postulate: 

Hypothesis HI: For each point x ( V4 and for 
each vector (A ') ( I x there exists one and only one 
curve of the fundamental congruence that passes 
through x and is tangent to (A j). 

In other words: if u is a parameter such that Ai = 
dxi/du and if we know x and dxi/du, then we know 
the corresponding curve and also the second deri­
vative at a point x: 

d
2 

X j *' *. dxj *. dxi dxk 

- -- = r' + r ~ - + r~k - - + 
du 2 } du } du du 

*. dxil dxin 
+ r~ . --.... -- + ... , 

}l".}n du du 
(3) 

We know that "gravitational forces" do not exist in 
a system in free fall, so that the paths of free par­
ticles must be, locally, straight lines in such a 
system; thus we may postulate: 

Hypothesis H 3: There is a system S' in which 
the second derivative of the space-time path of all 
particles is proportional to the first derivative. 

This is of course a well-known feature of the 
equivalence principle. We observe that this state­
ment of the principle (although it is stronger than 
the weak principle) is weaker than the strong 
equivalence principle. 

By calculating ijle new coefficients f' in S' as a 
function of the t in S and imposing the condition 
H3 it is easy to prove that Eq. (3) becomes 

d 2 j * d j d k d i 
_~=r\2"-..3.- +C~, 

du J du du du 
(4) 

d
2
x i _ i ( . dx

j 
) 

du2 - f X'd;; , 
(1) and if we use an adequate parameter, 

so that the functions fi are experimentally known. 

A subset of the fundamental congruence is formed 
by the paths of light pulses. The tangent vectors 
to these curves define in each tangent space Tx ' a 
set of vectors C x ~ Tx that satisfy the following 
postulate: 

Hypothesis H 2: C x is the boundary of I x and is 
also a hypercone of Signature + , + , + ,-, I x is 
the "interior" of this hypercone. 

We shall call this hypercone the null cone. Its 
equation is 

(2) 

wh!,!re (Ai) (T • Naturally we shall ca~l ~ vector 
(A ') "il1teriori to the null cone if AijX:XJ = 
A .. A 'A] is the equation, in variables X ,of a hyper­
b&oid of two sheets in the space T x' In this way, 
at each point of V4 a tensor Ai.; is clearly defined 
[A .. can be considered to be symmetric because 
it~} anti symmetrical part is irrelevant, as can be 
seen from Eq. (2)], Ai' is of signature +, +, +,-
and can be multiplie:f by an arbitrary factor with­
out changing the null cone; i.e., we have a conformal 
metric. We can also say that Ai' is experimentally 
known. We shall find an adequa~e factor A such that 
A A .. could be considered as the true metric. 

'} 

If we develop the analytic function of the right-hand 
side (rhs) of Eq. (1), we have 

d
2 ij k 
~ + ri tl£ dx - 0 
du 2 jk du du - . 

(5) 

We have <X)2 parameters of this type, which can be 
obtained from each other by linear transformations. 
We shall call them affine parameters and we shall 
use them from now on. 

*. 
In this way the coefficients r;k (which are sym-
metric in jk for the same reason as ~jj is) are 
defined at every point of V4. Thus f;k can be con­
sidered as the coefficients of an affine cnnnection, 
which allows us to introduce a parallel transfer 
accor,ping to*Levi-Civifa and a covariant deriva­
tion (Vi. and D). But we shall see that this notion 
of parallelism is not physically correct, in general. 
We shall use the covariant derivation as an 
auxiliary notation, so Eq. (5) can be written as 

* . . . 
D dx' dx} * dx' 

du du = du Vj du = o. (6) 

It is known that a light pulse never becomes a par­
ticle of velocity less than c, nor is the inverse case 
possible. (At least this is true in all V4 except 
for a set of isolated pOints where phenomena such 
as photoproduction can take place.) Then we can 
postulate that, except possibly for a set of isolated 
points, the following hypotheSiS is valid in all V4 : 

Hypothesis H4 , If the vector dxi/du is the tan­
gent to a curve of the fundamental congruence and 
it belongs to a null cone at one point of the curve, 
the tangent vectors at all the other points of the 
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curve belong to their corresponding null cones. 
(We shall call this particular curve a null curve; 
it is the space-time path of a light pulse.) 

So if dxi/du has the property 

A. dx
i 

dx
j 

= 0 
'J du du 

light.) So we have physically defined the notion of 
parallelism, because in each (space-time-like) 
two-plane there are two pairs of parallel lines 
(i.e., two improper puints). These are the inter­
sections of the two null cones (Le., the two wave­
fronts) with the two-plane. According to the 
Desargues theorem (and some others such as the 

(7) Pappus theorem), given two pairs of parallel lines, 
we can obtain other pairs of parallel lines. 

at a point of a path of the fundamental congruence, 
Eq. (7) holds for all other points of the path. Tak­
ing the derivative with respect to u and remember­
ing formula (6), which is satisfied by dx'/du, we 
have 

In its affine version the Desargues theorem says: 
Given two triangles ABC andA'B'C' (Fig. 1) such 
that the three straight lines that join the corres-
ponding vertices intersect at point 0, if AC is 
parallel to A 'C' and if AB is parallel to A'B " then 

(8) BC is parallel to B 'C'. 

Then if dxt/du is a root of polynomial (7), it is also 
a root of polynomial (8), so the latter is divisible 
by the former, i.e., 

. . k .. k 

If, on a two-surface, we repeat the drawing of Fig. 
1, OA , OB, and OC are paths of particle s, A C and 
A 'C' are paths of light pulses that could be con-
sidered parallel, and the same happens with AB 
and A'B'; then BC is parallel to B 'C'. This method 
is essentially the one used by Marzke and Wheeler 

~, dx' dxJ dx _, dx I dxJ
, dx 

Vkl1.,j du du du - Itij du du I1.k du' 

where A k is a vector to be determined. Then 
4 

(9) to define parallelism, and, as the author has proved, 
it gives rise to an ideal experiment that allows 
parallel paths to be constructed. 5 The reader in­
terested in a more detailed explanation of the 

(10) 

Since this equation holds true except for a set of 
lS9lated pOints and we have assumed that Ajk and 
t;k are analytic functions of x, we can say that (10) 
is valid at every point of V4 • 

3. DEFINITION OF PARALLEL TRANSFER ON 
THE MANIFOLD V 4 

We can give a physical definition of parallel trans­
fer on space-time based on affine geometry. We 
know by H 3 that for every x (: V 4 there exists at 
least one privileged system S' that maps all curves 
of the fundamental congru,ence that belong to 
U(x ( U ~ V 4) on S '(U)[(x') ( S'(U) ~ R 4]; in such a 
way that they will have a vanishing second deriva­
tive in (x') (if we use an affine parameter); Le., 
in S'(U) all the curves of the fundamental con­
gruence are mapped on to approximately straight 
lines; we can make the approximation as good as 
we wish by reducing U. From now on we shall 
speak of paths of particles and light pulses as if 
they were straight lines, because we shall refer to 
their images under the S' mapping. For this set 
of straight lines of Euclidean space R 4 all theo­
rems of projective geometry are obviously valid. 

On the other hand it is evident that we can con­
sider the paths of two light pulses emitted by a 
particle and lying on a two-plane of R 4 as parallel. 
Indeed, in the system S', where gravitational fields 
do not exist, all events take place locally as in the 
special relativity, and in the flat space these paths 
of light pulses cannot intersect. (If such a thing 
could happen, two light wavefronts emitted by one 
particle would intersect, which would only be pos­
sible if the particles were travelling faster than 

physical meaning of this parallelism is referred to 
Refs. 1, 2, and 5. 

These considerations are only approximate, but 
they become exact if they are repeated on V 4 with 
paths of particles, instead of straight lines of R4 
and if we make Fig.! become infinitely small. 

To prove this, let us take a point 0 ( V4 of coor­
dinates (0,0,0,0) in an arbitrary system S, and two 
vectors A i (interior to the null cone) and Bi (arbi­
trary). Ai and Bi define a two-plane (Fig.2). Let 
us consider a two- surface formed by all the par­
ticles paths which pass through ° and are tangent 
to the two-plane, and let us define 

(11) 

Let us define an affine parameter u on each path 

c. 

o 
FIG. 1 

FIG.2 
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of the two-surface that passes through 0 in such 
a way that u = 0 for the pOint O. All the tangent 
vectors inside the null cone can be written as 

U: i) 0 = cosMA i + sinh/1B i. (12) 

In this way each pOint of the two-surface inside the 
null,cono~d at 0 is defined by two corrdinates u and 
8 :x' = x'(u, 0). 

Let DA be the path tangent to the vector A i (Fig. 2), 
and let us take two other paths DB and DC and two 
paths of light pulses AB and A C. Let u = u 1 (e) and 
U = u 2 (O) be the equations of these last paths. 
Then the coordinates of the points A, B, and Care, 
respectively, 

A: Xi = xi(U; e), 
B: Xi = x i (u 2 (82 )j ( 2 ), 

C: Xi = Xi(U1 (8 1 ); ( 1 ). 

Let us take e1 ---7 0 and O2 ---7 0 and calculate the 
tangent vector 

X
i
(U2(8 2 )j ( 2 ) - X

i
(U1(8 1 ); ( 1 ) 

82 - 01 

Calling the arbitrary limits 

(13) 

(14) 

Calling 

a -= A " ox i ox
i 

'J au au' 
axi ~xj 2 

c' U d=+ (b _ac)1/2, = "ij ae a8' 

we have 

dU2 b d 
"'([8= -a-a; 

(18) 

(19) 

by replacing (19) in (16), this last equation becomes 

o'x i == (~a + c!(3) axi _ aaxi 
a a au ae' (20) 

where we have introduced new constants 

a == - (a' + (3'), f3 = a' -f3'. (21) 

Let us develop the analytic function Xi == X i(u, a) in 
a power series: 

, (i) ( 2 i) ,ax 1 a u 2 2 
X == - u + 2 -2- U + o(u ). au 0 au 0 

But Since each curve is a path, it satisfies (5). 
Using (11) we have 

(22) 

8
1 

xi= (cosh8 Ai+ sinMAi)u-~(r;k)O(cosMAj 
el-->~~IlJ2-->O 82 - 81 = {3', (15) + sinhe A j

} ,(coshe A k + sinha A k)U 2 + 0 (u 2). (23) 

we have 

(16) 

If we take a' and {3' to be constant along the curve 
8 ==,0 (Le., OA) and we repeat the construction of 
ii'x' at ea~h point of the curve OA, we can con­
sider 6'x I to undergo parallel transfer along this 
curve according to the Desargues theorem. In fact, 
we have only drawn triangles ABC that satisfy the 
hypotheses of this theorem in such a way that the 
sides AB and A C can be considered parallel. After 
we have Il).ade angles 81 and 82 tend to zero, the 
vector ox' tangent to CB may be considered paral­
lel to itself along the curve. du 2 /d8 and du 1 /da 
must be taken in such a way that AB and A Care 
light pulses, i.e., 

ox i 
dU 2 ox i 

auae+ ae and 

must belong to the null cone. 

Then 

( 
axi axi) ~dU1 2)2 (axi axi) dU1 2 A -- -----=..1.::- +2 A --~ ij au au a 8 ij au au a 8 

ax; axi 
+ Aii Was = o. (17) 

We can define a new vector: 

parallel to ii'x i
• Then Eq. (20), with our compu­

tation of a, b, c, d, of (18) with (23) yields 

(24) 

ox; == (aC + i3D}A i - aAB i + Xiu + o(u 2
), (25) 

where 

Xi == - <f'Jk)oA k[(aC + i3D)A? - aABi] 

+ aAkAm(AiBn_BiAn)t> A 
k mn 

+ aLI iA k('~ A }{1/2D}{- ABmBn + 2CA mB n 
P" k mn 

and 
n 2 = C 2 

-AB. 

Differentiating, we have 

dox
i 

i 
- =X + o(u) du . 

(26) 

(27) 

(28) 

Let us take u ---7 O. In this way we consider only 
the points in an infinitely small neighborhood of 0, 
and Eqs. (25) and (28) become 

ox i = (aC + f3D}A i - aAB \ 
i 

d6x _ Xi 
du -

(29) 

(30) 
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i.e., we have 

+ (3A iAk(~ kAmn)(1/2D)(-AB mB n + 2CAmB n 

-BA mAn). (31) 

This is the differential equation of the parallel 
transfer of the vector 1ixi along the curve. 

From Eq. (12) we obtain t1~t A i is the tangent 
vector to the curve, and B t is. an arbitrary vector 
of the two-plane defined by A' and 1ix', as Eq. (29) 
shows. We shall call this transfer a Desargues 
transfer and we must observe that it is not the 
same as the ordinary Levi-Civita transfer. But the 
Desargues transfer can claim to be the real physi­
cal parallel transfer, as we have seen. 

Nevertheless, the tangent vector Ai can be obtained 
by making a = 0 in (29). Thus, it satisfies a dif­
ferential equation of the form 

V1ix
i 

i 
du ~f(u)Ox. (32) 

In this case, then, both parallel transfers cOincide. 

For further developments let us calculate the . 
Grass1!lann tensor of the two-plane defined by A ' 
and 1ix': 

T.. I Ai 1ixi I 
W'J= . '. 

A} Ox} 
(33) 

Bearing in mind that VA i/du = 0 and that 1ixi satis­
fies (31), we have 

bwij 
= ()WT 

ij du g u , (34) 

Le., the two-plane is subject to a parallel trans­
fer according to Levi-Civila. Then there exist two 
vectors that lie on the two-plane and that ar.e sub­
ject to parallel transfer. 6 One of them is A', 
the other B'. We have 

(35) 

Let us now consider a new Gra~f?mann tensor of 
the two-plane, proportional to W'): 

" /Ai Bil W'} = 
Ai B i ' 

which satisfies 

l.wii - 0 du -. 

Equation (29) can be written: 

(36) 

(37) 

(38) 

If we take 0/ and {3 to be constant and we differen­
tiate Eq. (38), using Eqs. (35) and (37), we obtain 

Eq. (31), so that Eqs. (38) and (35) also define the 
Desargues transfer. 

Let us finally observe that ox i can be decomposed 
into two components of peculiar characteristics. In 
fact, in ~q. (38) the second term of the rhs is paral­
lel to A' and the first one is orthogonal in the sense 
of the conformal metric, because 

(39) 

Then if we put {3 = 0 in Eq. (38), we obtain a vector 
that undergoes parallel transfer and which is 
orthogonal to the curve everywhere. So orthogon­
ality in the sense of the metric X ij is conserved 
under the Desargues transfer. 

4. THE PARALLEL RlBBON 

The vector OXi given by Eqs. (35) and (38) can be 
regarded as parallel to itself but not as equipollent. 
In fact it can be multiplied by an arbitrary scalar 
(variable along the curve) and it still satisfies (35) 
and (38), as can easily be shown. Now we want to 
determine this scalar in such a way that the 
origin and the end point of ox' define two parallel 
curves, i.e., two curves whose tangent vectors are 
parallel, as we shall define precisely later. 

We shall limit ourselves, for the moment, to th~ 
case of a vector orthogonal to the curve C (Fig. 3). 
Therefore Eq. (35) reduces to 

" i = ()x WimAn uX au mn • (40) 

We want to determine a(u) so that ox i may be 
conSidered equipollent to itself along the curve. 
At each point of the curve C we can cqnstruct a 
curve tangent to the corresponding 51 '. and geo- . 
desic, in the sense of the connection r'f" k' Le.; 5x' 
will be tangent to these curves and wi! undergo 
parallel transfer .along these curves according to 
Levi-Civita. Then if v is an affine parameter to 
these curves, we find 

i 
" i_~ 
uX - ilv ' 

(41) 

The set of points of these new curves generates a 
two-s~rface endowed with a system of coordinates 
x' = x'(u, v). We know that along the curve C 

(42) 

If we want the curves v = const to be parallel to the 
curve C (let C be the curve v = 0), their tangents 
must be obtained by the parallel Desargues trans­
fer of vectors A i along the curves u = const. But 

FIG. 3 
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the Desargues transfer preserves orthogonality; 
therefore the former condition is equivalent to 
demanding that the net of coordinate curves be 
orthogonal. Now if the curves v = const are paral­
lel, the vectors ox i, obtained by (41) as limits when 
v -) 0, may be considered equipollent. Therefore 

2 .. 
If we nOw calculate dD /du and e'e}, we obtain 

* 2 
eie i ~). .. := -A dD + D2dA (52) 

du 'J du du 

On the other hand, USing Eq. (10), we have 

dA kij* k ij " 
(43) du =.A: A A "'il").ij = A ).,,).ijA A = A).~ • (53) 

Bearing in mind that A i = .exi/au, that ox i = axi/ov, 
and that the coefficients r;k are symmetric, we 
have 

(44) 

Consequently Eq. (43) becomes 

(45) 

This is the differential equation that must be satis­
fied if we want the coordinate net to be orthogonal. 

Equation (45) defines the coefficient a(u) of (40) and 
it can be integrated if we use Eq. (10). This leads 
us to 

i . k 
+ A ;\»x'1Ix ).jk= O. (46) 

If we call 

(47) 

and 
(48) 

and if we calculate 

). .. eiei = _AD2 
'J ' 

(49) 

then 

Introducing (50) and (53) into (51), we have 

d~ loga + 2 d~ 10gA -! logD2 = 0, 

so finally, 

o=KD/A 2
, 

and the equipollent ox i is given by 

liXi == (KD/A2)AmnW
i17l

A
n

, 

where, in addition to the conditions (35), K is a 
constant. 

We shall call the curve e and a curve v == const 

(54) 

(55) 

(56) 

a parallel ribbon that can be approximately inter­
preted as the curv~s genera~ed by the origin and 
the end point of ox', when ox' undergoes parallel 
transfer. 

Now it is easy to understand that the coefficient a 
can be used to make the parallel tran.sfer equipol­
lent in the .general case (38), wh~n 1Ix' is not ortho­
gonal to A' . . Specifically, let oox', the normal com­
ponent of lix' at a point A of the curve e (Fig. 4), 
generate a parallel ribbon ee'. With formula (38) 
we transfer both 1Ix' and oOx' in the Des~rgues 
parallel way, to the point B. To adjust 0 x' so that 
it would belong to the ribbon, we must multiply it 
by 0, and so, we must do the same with ox l

• There­
fore equipollent transfer in the general case is 
given by 

(57) 

where K and H are constants, together with Eqs. 
(50) (35). 

If Ii is introduced in (46), we obtain 

(51) 

sx~ ,c' 

B 

FIG. 4 

5. THE GEODESIC CLOCK 

Now we can define a geodesic clock as a pulse of 
light that bounces back and forth between two boun­
dary curves of a parallel ribbon. If ox' is the vec­
tor that defines the parallel ribbon we want to 
find a parameter v (in general a nonaffine one) in 
such a way that if the diagonal curves of Fig. 5 
are the paths of the bouncing light pulses, the 
increment !:J.v of the parameters is the same for 
each oscillation of the light pulse. 

ox! + ~ !:J.vdxi/dv is the vector that can be con­
sidered as the path of the light pulse to a first 
approximation, so 

~ f" i + dx i !:J. v) (" j + dxi 
!:J. v\ = 0 

l1.ij~X dv 2 vX dv 2) , (58) 



                                                                                                                                    

THE R I E MAN N I A N S T Rue T U REO F SPA C E - TIM E 2209 

and if l5x i is normal to the boundary curve of the 
ribbon, as in Sec. 4, we have 

i j dx' dx) Av 
( ') ~ ') ~ ) 2 l5:= >.. ij l5x l5x := - >"ij dv dv ""2 (59) 

By Eqs. (50) and (55) we have 

(60) 

thus if we want ~v to be constant we must have 

>"ab' this equation leads us to 

k(A"):=1..(A"d + !dA) 
3 \ "A du ' 

(65) 

where 

ij* 
d" = >.. '~V'ij' (66) 

Then, using Eq. (53), we have 

(A ") " k = All", (67) 

(61) where 

where K' is a constant and v is the time parameter 
measured by the geodesic clock. 

In this way the notion of parallel transfer and the 
existence of null cones allow us to measure times 
(and distances too) and will also allow us to con­
struct a metric on V 4 if we add some hypotheses 
to those already given. Fundamentally the method 
of measurement given up to now must lead us to a 
unique result to make the definition of a metric 
possible. For example, v depends upon the parallel 
ribbon we are USing, Le.; two parallel ribbons with 
a common boundary curve C lead, in general, to 
different times v. Let us introduce the assumption 
that such a thing would not take place: 

Hypothesis H5 : Formula (61) gives us a unique 
time, independent of the parallel ribbon we are 
USing. 

If l5x i and l5'x i define two parallel ribbons with the 
same boundary curve C we must have 

(68) 

11" is a vector independent of Ai. Equations (64) and 
(67) must be satisfied by all A'. Then hypothesis 
H5 implies that 

s~ 
Aai Aij >"ai Aij 

= S 11" ilk k 
Aab >.. bj ijk 

>"ab AOj 

Contracting with >"ii and using (10), we have 

where 

and 

ak = l~ ( 2Ak + lOl1k - 2dk - 4c,), 

bk = M2>"k- 211k + 2ck), 

Contracting Eq. (70) with A ab, we obtain 

(69) 

(70) 

(71) 

(72) 

(62) ck=4>"k-~fJ.k' dk =-2>"k- 3I1k. (73) 

2 ' 2 where D and D are the correspondent determin- Then 
ants and KH is a constant. Then (74) 

, 2 2 
dD /du _ dD /du _ k(A i) b2 - D2 - , 

(63) and Eq. (70) becomes 

where k(A i) is function of >.. " and A i and is not a 
function of B i or (jx i. Then 'J 

When contracted with>.. ab, the inverse matrix of 

FIG,5 

~"Aab == (11k - Ak)Aab + (A a - ~(J.a>Abk + (Ab - ~(J.b)Aak· 
(75) 

In this way hypothesis H 5 allows us to give an 
explicit expression of the covariant derivative of 
A ab as a function of two unknown vectors Ak and 11 k . 
From now on we shall suppose that H5 il:! valid, so 
that time v is uniquely defined along each path. 

6 THE EXTENSION OF THE METRIC 

If it is possible to define a real metric, it must be 
one of the conformal metriCS, so 

(76) 

Besides, on any curve of the fundamental congru­
ence, the proper time v must be equal to the length 
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of the corresponding piece of path measured by the 
metric gii' Le., 

(77) 

From (76) and (77) we can find X: 

r dx
i 

dx i (du)2J-l 1 (dV) 2 
, A3 

A = - LAii du du dv = A\du = - K2 JYI ,(78) 

Let C be a curve of the fundamental congruence 
that joins point 0Xi to point Xi. By definition we 
take.A = 1 at Ox i, which means that we take Aii as 
the real gij in o.xt. In other words, in ox' we define 
the standards of time or length. Then if Aoand Do 
are the values of A and D in ox', then we have 

, D4 
K2 =-P' 

° and 
D6 A3 

A=PJ54' 

° 

(79) 

(80) 

But, of <;:ourse, A depends on the curve C that joins 
°x i to x'. This new ambiguity must be eliminated 
by a new hypothesis. 

Finally, we observe that if in (61) we substitute for 
K' its value given by (79), we shall obtain the 
proper time T according to the standard taken in 
°Xi. 

7. THE RIEMANNIAN MANIFOLD 

Let us then make a final hypothesis: 

Hypothesis H6: The preceding method leads us 
to a unique metric, independent of the curve we 
use. 

classical theory of Einstein. Then we shall prove 
the following: 

Theurem: If the hypotheses H o-H6 are valid, 
the Desargues transfer coincides with the ordinary 
parallel transfer of a Riemannian manifold with 
metric gij' 

Specifically, as gii = AA;j' using (75) and (83), we 
have 

* ( I V kgii = 2 Ak - 2Ilk)gii 

+ (A i - ~Il)gjk + (A j - ~Ilj)gik' (84) 

We can restudy the formulas that define parallel 
transfer, but now since gij is defined in a unique 
way, we can take it as the original A... Then we 

_ _ ) 'J _ 3 
havegii -Aij,A -1, and from (83 ,Ilk -iAk' Thus 

* I vkgij = 4[2Akgij + Aigjk + Ajgik ]. (85) 

From (63) and (65) we have 

(86) 

and from (53), (57), (85), and (86) we obtain the dif­
ferential equation of Desargues transfer: 

* i 
Dox = _ ~Aj, " i +li Q Wij , 

du 2 "jvX 4A Aj' (87) 

and from Eq. (57) 

t2 ox i = (KC + HD)Ai - KABi. (88) 

Then 
Bi =-~o i +(KC +HD)Ai 

KD x KA (89) 

and Let us express this hypothesis as a mathematical 
equation. From Eq. (80) we have 

WijAj = (A/KD)(-Ailixi + cxiAj)A j • 

(81) Replacing (90) in (87) we have 
d 3 dA 2 r;lD2 

-logA =---112"--du A du D du . 

(90) 

Taking (53), (63), and (67) into account, we have 

d~ logA = A k(3Ak - 21l k). (82) 

H6 requires that d logA be a total exact differen­
tial; Le., Ak and Ilk are related by the following 
equation: 

(83) 

where now A is defined all over V4 • We have now 
unequivocally defined the metric gij and the Des­
argues parallel transfer. We shall see that if we 
accept all the hypotheses Ho -H 6' the Desargues 
parallel transfer coincides with that of Levi-Civita, 
and is simply the one that corresponds to a Rie­
mannian manifold,:Le., the connection is given by 
the Christoffel symbols, so we would arrive at the 

(91) 

Le., 

dox
i 

+ (r i + .!..lii A) dx
j 

0 k = 0 du jk 4 (j k) du x . (92) 

Thus in this particular case the Desargues trans­
fer is simply the Levi-Civita transfer given by the 
new connection: 

r
i - r*i + l"i ik - jk 4 V (jAk )· (93) 

r;k defines a new covariant derivative, with V and 
D such that the Desargues transfer equation is 

d ox i i j dx k D i _ 
-d +rjklix -=--ox -0. 

u du du 
(94) 
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Finally Eq. (85) can be written 

a *h 1 h *h 1 h 
igjk - r jighk - 4A(jBi)ghk- rkigjh - 4A(kBi>~k == 0, 

(95) 
and, using the new connection: 

(96) 

From this equation one can immediately deduce 
that 

rJk == {;k}' 

which proves the theorem. 

Let us now see that the paths of the fundamental 
congruence are geodesics of the Riemannian V4 , 
by (61) and (80): 

(97) 

Thus, bearing in mind (53), (86), and (87), the dif­
ferential equations of the paths of the fundamental 
congruence are 

d2xi _ *i (}xj dxk 
! dxj A. dx

i 

([TZ" - - r jk dT dT - 2 dT J dT 
. k 

_ * i ! i ) dxJ dx 
- - (r jk + 4 B(kAj) du du' 

Le., . 
D (}X' 

- (-) =0. 
d1' d1' 

(98) 

(99) 

Then follows the law of motion of particles: The 
second covariant derivative, in the new connection 

1 k. F. Marzke, "The Theory of Measurement in General Rela­
tivity," A. B. Senior Thesis (Princeton, 1959) (unpublished). 

2 R. F. Marzke and J. A. Wheeler, Gravitation as a Geometry. 
The Ge()metry of SPace-Time and Geometro-Dynamics Stan­
dard Meters Enclosed in Gravitation and Relativity (Benjamin, 
New York, 1964) 

r is zero. The paths are then geodesics and the 
proper time l' is an affine parameter. 

8. CONCLUSIONS 

If we accept hypotheses Ho-H6' the preceding 
measurement method leads us to conclude that the 
structure of space-time is a Riemannian manifold 
and to formulate the classical theory of Einstein. 
H 0 must be accepted as a reasonable hypothesis in 
the macroscopic world, although we know it is not 
true microscopically. H1 is solidly based on the 
experiment of E(jtvos. H2 is a consequence of 
special relativity. H 3 is a reasonable formulation 
of the principle of equivalence. H4 is a physical 
fact. H 5 and H 6 are the less solid hypotheses, any 
possible modifications of the Riemannian theory 
must be sought by rejecting one of them. In par­
ticular, if we eliminate H6 and keep H5 it can be 
shown that we reach the Weyl geometry. 

Finally we must observe that if the manifold is 
non-Riemannian, the Desargues transfer does not 
COincide, in general, with the Levi-Civita transfer. 
This fact perhaps clarifies the failure of non­
Riemannian theories that use the nonphysical Levi­
Civita transfer. 
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In a previous paper the author proposed a representation r for the algebra of representations of a finite 
group G. Here a corresponding representation c for the algebra of classes of G is established, and the 
relations between the two representations are investigated. In particular, the idempotents of rand care 
studied in some detail. 

1. INTRODUCTION 

Having become interested in the geometr~ of 
group representations 1. as applied to theoretical 
physics, the author has attempted elsewhere2 to 
show the Significance of these ideas for finite 
groups. Subsequently, he discovered the papers 
by Gamba 3 and Killingbeck4 in which some of 
the same results were described. The present 
paper develops the duality between the irreducible 
representations A of G over the complex field and 
the classes Ci of G in the foregoing context. 

2. REPRESENTATIONS OF THE DUAL 
ALGEBRAS 

We begin then by assuming G to be of finite order 
g with classes C i' each containing gi elements with 
corresponding character X;. We as~ume the 
table of characters X has rows A and columns 
C i , and write the reduction of the Kronecker or 
tensor product 5 

A x J1. = AJ1. = J1.A = ~ g~1l11 

and the corresponding product of classes 

C .C. = C.C. = 6 c~J'C k , 
'J J' k 

where Cl = I. 

(2.1) 

(2.2) 

If we denote the sum of the elements of the class 
C i by the same symbol, it follows from Schur's 
lemma that the f A eigenvalues of the represen­
tation of Ci are all equal to yt, called the class 
multiplier of C i , where 6 

A A A 
Yi =giXjf . 

where we denote the representation with conjugate 
complex character to that of A by A' and the class 
inverse to i by if. 

In what follows we think of the character table of 
G as a matrix X, and we transform (2. 4r) and 
(2.4c) to yield 

xnA'X-l'xnll'x- l = .0 g~J.lXDV'X-l 
v 

(2. 5r) 

and 

X-lD., X·X-lD.lX= L; c~.X-lDk'X, (2.5c) 
, J k 'J 

The desired representations of the dual algebras 
are obtained by setting 

A' -1 A 
{A} = xn X = (gIlY') (2.6r) 

and -1 i 
{Ci} = X Di,X = (crs')' (2.6c) 

While relations analogous to (2. 5r) and (2. 5c) 
remain valid for transformation of (2. 4r) and 
(2. 4c) by any nonsingular matrix M, it is the 
special choice of M = X which yields the mat­
rices {A} and { C J with the g g Y and c ~ s as 
elements. 

3. THEOREM AND COROLLARY 

In order to prove the statements just made, it is 
necessary to recall the expressions in terms of 
the characters for the multiplicities g~1l and Ci~' 
We quote the result only7: 

A '" Il r A' gllY = (1/g) ~giXiXi Xi , 
B A' J' = L; XiXi (giXi /g), (3.1r) 

i 

It follows from (2.2) that 

AA ",kA 
i'i Yj = 'k' CijYk' 

which is symmetrical in (3, y, and A' and corres­
ponds to the matrix multiplication in (2. 6r). -

(2.3) Similarly,the value of c~s is given by8 

As in the former paper, 2 the clue to what follows 
is the writing of the characters X~ along the 
prinCipal diagonal of a diagonal matrix D \ for 
fixed A, and similarly the class multiplier Yt as 
a diagonal matrix Di ,for fixed i. We shall dis­
tinguish those formulas relating to the represen­
tations A of G by the suffix r and those relating 
to the classes Ci of G by the suffix c. Thus from 
(2.1)-(2.3) we have 

= g.,gi 2: 2.. XPX~,XP 
g P fP ., , s 

_ '" .(g rX~) p x P 
- L.J g Yi ' s' 

p 
(3. lc) 

which is symmetrical in r and i', but not in s, 
and corresponds to the matrix multiplication in 
(2.6c). 

and 

It follows from the above that we may obtain the 
(2.4r) desired matrix representations of the two algebras 

directly from the rows or columns of the tables of 
products, as will be illustrated in Sec. 5. In addi­

(2.4c) tion, the extra symmetry in (3.1r) leads to the 

2212 
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derivation already noted. 2 Thus we have proved 
the following. 

Theorem 1: (i) {A}{J.l.} = .0,${u{v}, (ii) 
{C i } {C j} = 6 kC~{Ck} with the following corollary. 

Corollary: If for some y (s) we have 

( ' ') i j 0 11 C r s' Cst' '" , 

then for some II (k) we have 

( ') v v 0 (") k k 0 1 gAil g 8 ex' "', 11 C ij Crt' '" , 

which is illustrated in Sec. 6, 

Perhaps it is worth writing out in detail the matrix 
multiplication involved in Theorem 1 (ii) to illus­
trate the complications which are involved. If we 
set 

i j k 
{C;} {C j } = (crs,)(cst') = E Cij{Ck }, 

then k 

'" i j uCrs'c st ' 

s = t? [f (g ~X~) yf, x:J[~ ( g :~) XI X~ J 
= ~ (g ~~) (yi, YJ')X~' 

'" k ['" (g r X~) P p] = U c ij U -g- Yk'Xt' 
k P . 

idempotent of the group algebra9 

T P =jPEx~c", TPTO'={T
O

P 

g i " 

E T P = I. 
P 

Substituting {C) for Ci " we obtain 

for 

for 

a=p , 
a"'p 

(4.1c) 

(4.2c) 

which is an idempotent I P of the matrix algebra 
with 1 in the p place of the diagonal and zeros 
elsewhere. 

If we seek to construct the analog of (4.1c) in­
volving representations p instead of classes Cil 
we run into difficulties. However, their represen­
tations {p} are all of the same dimension, and so 
we may set 

{Si} = ~i ~ xf{p} 

and, transforming again by X, we have 

x-l{s;lx = i ~ X;X-l{p} X 

= gi E X~DP', 
g P , 

(4.2r) 

'" kk = u Cij Crt', 
k 

(3.2c) which is also an idempotent Ii with 1 in the i place 
of the diagonal and zeros elsewhere. 

using the orthogonality relations of the characters. 
A similar reduction applies in the case of Theorem 
1 (i). 

It is evident from (2. 6r) that the eigenvalues of 
{A} are the elements of the A' row of X. Since 
the eigenvectors of D A

' are the Ei(O, ••• , 0, 1, 
0, ... ,0), it follows that the eigenvectors of {A} 
are the XE i' i.e., the corresponding columns of 
X. Similarly, the eigenvalues of {C i} are the 
elements of the C i column of Y and the eigen­
vectors of {C i} are the corresponding rows of y. 
This last statement follows from the fact that an 
eigenvector of {C) must have the form X-I E P == 
(fPIg)Xj, where JPIg is constant for varying i. 

4. IDEMPOTENTS OF THE ALGEBRAS 

Crucial in the development of the representation 
theory of any finite group G is the notion of the 

C1 C2 C3 C4 

a 1 1 1 }x ~ 
2 

b 2 P (J P 

C 2 (J P (J 

d 1 1 1 -1 2 

One continues to hope for an explicit mechanism, 
analogous to the Young diagram for Sn' to relate 
the classes to the representations of an arbitrary 
group G, even if it does not extend to products! 

5. EXAMPLE 

We illustrate these ideas in the case of the group 
of order 10 defined bylD 

S 5 == T2 == I, TST = S -1 , 

where 

C1 ==1, C2 =S,S-I, C3 ==S2,S-2, 

C4 == T, TS, TS2, TS3, TS4 . 

Setting p = ~(- 1 + ../5) and a == ~(- 1 - ../5), we 
have the following tables for X and y: 

2 5 

(J 0 

P 0 : y, 

2 -5 
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whence we derive the multiplication tables 

a b c d C1 C2 C3 C4 

a b c d C 1 C2 C3 C4 

b a+c+d b+c b C2 2C1 + C3 C2 + C3 2C4 

c b+c a + b + d c : 11 r C3 C2 + C3 2C1 + C2 2C4 

d b c a C4 2C4 2C4 5C1 + 5C2 + 5C3 

From 11 r we obtain 

1 0 0 

~} 
0 1 0 0 1 0 0 1 

{a} = 
0 1 0 

{b} = 0 1 
{c} = 1 1 

{d} = 
1 0 

0 0 1 1 1 1 0 0 1 0 

0 0 0 1 0 0 1 0 0 

so that 

2 2 p 0 

{Sl} = fa 
4 4 

{S2} = fa 
p2 po 

{S3} = 10 

where, e.g., 

{b} {b} = 

and 

{Sj} {Sj} = 

with 

4 4 

2 2 

p 

op 0 
{S4} = 10 

op p2 

(J p 

o 3 1 0 
1 0 1 1) 

= {a} + {c} + {d} 
1 1 2 1 

101 1 

{~Si} for i = j 

for i 7- j 

Similar ly ,from 1T c , 

{c,} ~ ~ 
0 0 

~) {c,} ~ ~ 
1 0 

1 0 0 1 

0 1 1 1 

0 0 0 0 2 

1 1 

{Ta} = fa 2 {T b} _-.£ 

2 
- 10 

5 

1 0 0 

0 0 0 

0 0 0 

0 0 

o 1 . 
110 

100 

002 

2 
10 

(
0 0 0 1) 
000 2 

{C4 } = 0 0 0 2 ' 

5 5 5 0 

: 11 c • 
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1 

{T d} ~ 
2 

10 2 

-5 

where, e.g., 

2 0 

{C 2 }{C2 } = 
0 3 

2 1 

0 0 

and 

1 1 

2 2 

2 2 

-5 -5 

1 

1 

2 

0 

0 

0 
= 2 {C l } + {C 3 } 

0 

4 

for i = j 

for i 7 j 

with {T
a
} + { T b} + {TC} + {Td} = I. Here 

X-l{Sl}X =X{Ta}X-l, X-l{S2}X =X{Tb}X-l, X-l{S3}X =X{TC}X-l, x-l{s4}X=X{Td}X-l. 

The form of the idempotent matrices suggests 

Theorem 2: The idempotents of the representa­
tions l' and c can be written as Kronecker products 
of suitably chosen row and column vectors. 

The proof follows immediately by rewriting (4. 2r) 
and (4. 2c) in the forms 

{S;J = XIiX-l, 

{T P} = X-lIP X, 

where Ii and I P are defined in § 4. 

6. COROLLARY (ii) 

(5.1r) 

(5.1c) 

Having illustrated Corollary (i) in the previous 
paper,2 we confine our attention here to (ii), and 
associate the six classes of S5' omitting C l ' with 

1 G.de B. Robinson, J. Math. Phys. 11, 3428 (1970). 
2 G. de B. Robinson, "Tensor Product Representations," J. 

Algebra (to be published). 
3 A. Gamba,J.Math. Phys. 9, 186 (1968). 
4 J. Killingbeck, J. Math. Phys. 11, 2268 (1970). 
5 W.Burnside, The Theory a/Groups (Cambridge V.P.,Cam­

bridge, 1910), Chap. 15. 

the accompanying Pasch figure (see Fig. 1). Since 
S5 = A5 + (12)A5' it is clear that the even classes 
(3,12), (221), and (5) must be collinear white the 
odd ones (2,13), (4,1), and (3,2) may be associated 
with the three remaining points of the figure in all 
possible ways. One could develop the analog of 
the 6j-symbol here also. 

(3,2) 

(3,12).-------~~--~(5) 

FIG. 1 

6 M. Hamermesh, GyOUP Thea>'.\' (Addison-Wesley, Reading, 
Mass., 1962), p. 109. 

7 Reference 5, p. 291. 
8 Reference 5, p. 285. 
9 Reference 5, p. 305. 

10 Reference 5, p. 296. 
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Perturbation Formulas* 

Masataka Mizushima 
Department oj Physics and Astrophy ,ics, Unil'ersity of Colorado, Boulder, Colorado 

(Received 12 May 1971) 

A simple form of perturbation formula is shown to be correct to the fifth-order of the perturbation. 
It also has the variational character, namely, it gives an upper limit for a correct eigenvalue when' 
applied to a bound state. The formula is in the form of a Pade approximant. The next approximation 
is correct to the seventeenth order and has the same variational character. Some examples are given 
and compared to conventional theories. 

1. INTRODUCTION o (a 2 ) is of the order of a 2 at least. If there is 
no degeneracy, 

E (1) = EO + (nO IH InO) 
n n 1 

is correct to the first order in a, because E ~, + 
(ru ° lHll m O) - E~l) is of the order of a ° for all 
m's except for n. 

3. SPACE CONTRACTION OPERATOR 

(5) 

The perturbation theory of Schrodinger1 is so 
powerful and useful that it is discussed in. almost 
all text books on quantum mechanics. The explicit 
expression of the' perturbation series, however, is 
not commonly given beyond the second-order term. 
An expression for the higher-order terms is given 
in Condon and Shortley's book2 but is quite com­
plicated. Brillouin and Wigner3 gave a simple 
expression for the perturbation series, but in actual 
calculations one has to reduce it to the complicated 
formula of Condon and Shortley. A modification of 
the Brillouin-Wigner method is given in the form 
of a continued fraction,4 which makes its applica­
tion easier. All existing formulations are applic­
able only to the nondegenerate case. In this paper 
we present perturbation formulas which are simple 
enough for practical applications and yet accurate. 
This scheme is also applicable to the degenerate 
case. 

Let us define an operator S~, called a space con­
traction operator 

We assume that 

(6) 

where 1 is the identity operator and Q n is a pro­
j ection operator defined by 

(7) 

(1) The well-known property of a resolvent 

where a is a parameter which indicates the stren­
gth of the perturbation Ii l' We also a~sume that 
all eigenvalues and eigenfunctions of Ho are known: 

The problem is to find approximate expressions 
for the eigenvalues En of H, 

(2) is used in obtaining the last expression of (6). 

It is easy to see that 

(H - E~)~ = Ho - E~ + (1- Qn)Hl~ (9) 

Ii In) = En In) (3) holds. 

by means of E~, E~" ••• , and In O), 111'1 0 ), •••• 

2. FIRST-ORDER PERTURBATION 

If we express the Hamiltonian matrix by taking the 
eigenvectors of H ° as the baSiS, we see that the 
diagonal matrix elements are of the form E~ + 
(nO IH1In O), while the nondiagonal matrix elements 
are of the form (nOIH1Im O). The secular equation 
is then 

(E~ + (nOIHlln O) - E) (E?n+ (m OIH1 ImO) 

- E) ( ••• - E) + 0(a 2 ) = 0, (4) 

where E is the unknown and the last term 0(a2 ) 

represents all terms in which nondiagonal matrix 
elements are involved. Since nondiagonal matrix 
elements always aPEear in products such as 
(nOla~ ImO) (mOlahlln O) in the expansion (4), 

4. THIRD-ORDER PERTURBATION 

Let us transform the original vectors In O), I mO), 
... into SO Ino), ~ I mO), .••• We will show that 
the nondi;~onal el~ments (n ° I §~ t.s;!, I m 0) and 
(no l~rHSm I mO) are all of the order a 2 or higher. 

By a straightforward calculation we obtain 

§~is?',= 1 + (E,~-HorlQmHl +HlQn(E~-Horl 
[( 0 ~ )-1 ~ ~ (0 o)-lll Q~ 1 + E",-Ho QmHl- Em-En 1 n 

X (E,?-HorlQ,,,H1 +HIQn(E~-HOrl 

X [HlQn(E~ - HOrl - QmHl(E~ - E~rlJ 
+ O(a 3), (10) 

where the last term 0(a 3 ) represents all terms 
which are of the order a 3 or higher. Therefore 

2216 
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(nolSotsol 0)=(EO_EO)-2 ( 0lii Ino) 
" m rn rlt" n 1 

+ (rn oIR1 Imo» (noIR1 Irno) 

We have seen that when s~)lno), S~)lmo), .•• are 
taken as the basis, all nondiagonal matrix elements 
of R - d are of the order (}'3 or higher. If we 

+ 0((}'3), if fit ;;c n. (11) reformulate the problem by replacing (14a) by 

The transformed vectors S~ Ino), s;" I ruo), . " are 
not orthogonal to each other, but the nonorthogona­
lity is of the order (}' 2 or higher. 

In a similar way we obtain 

(ll°l:s~rRs~1 mO) == (E~(noIR1Ino) + E~(mOIR1Iruo» 

X (noIR1Imo) (El~ - E~f2 + 0((},3), if 111;;C r>, 
(12) 

which is of the order (}'2 or higher. 

In the matrix of R - E 1 we therefore see that all 
nondiagonal matrix elements are of the order (}'2 

or higher, if we use S~ I n~, S~ I 11,°), ••. as the 
basis. Applying the same argument as we gave 
in relation to (4), we see that 

where 

R ~5) In 0) = E~5) In 0) 
and 

<mOIR~5)lno) == (moISrJ~l)tfls!1) In~1 

(17) 

(18) 

x [(moIS~l)tS~l)lmo) (noIS!l)tS!1)lno»;/2 (19) 

and by taking 

5(5)==1 + (E(5)_R(5»-1Q~ R(5)5(S) (20) 
n ,,0 n 1 n 

is correct to the order (}'3. 

instead of (15), then all non diagonal matrix ele-
(13) ments of R - d in the S~5)lno) representation must 

be of the order ((}'3)3 = (}'9 or higher. Therefore, 
we can neglect all non diagonal matrix elements 

5. FIFTH-ORDER PERTURBATION 

When we look at (11) and (12) we see that if we 
can get rid of the diagonal elements of H 1 in the 
original representation, we can make all nondia­
gonal matrix elements of H - d of the order (}'3 

or higher, and, therefore, obtain an expression for 
the approximate eigenvalue which is correct to 
the order of (}' s. It is easy to see that this can be 
actually done if we reformulate the problem by 
replacing (1) by 

(14a) 

where 

(14b) 

that is, making the perturbation Hi. purely non­
diagonal, and take 

for the space contraction operator. 

Following the same argument as before, we see 
that 

is correct to the order of (}'s. 

(15) 

6. SEVENTEENTH-ORDER PERTURBATION 

Although the fifth- order formula is accurate enough 
for almost all practical applications of perturba­
tion theory, it is worthwhile to indicate how we can 
obtain higher-order perturbation formulas. 

in the resultant secular equation up to the order 
of (}' 1 7 to obtain 

from the diagonal element only. 

7. PERTURBATION SERIES 

From (9), we obtain 

(nolsotRsolno) = EO(noI5otsolno) 
n n n n n 

+ <no IR lS~ Ino), 

therefore, 

Corresponding to (9) we easily obtain 

(R - (1»5 (1) == R _ £(1) + (} _ Q~ )fl S (1) 
n nOn n 1,,' 

so that 

In the same way we obtain 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Explicit expressions are obtained by using (6), (15), 
and (20). For example, (6) gives 
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SOln o) = InO) + y; ImO)(mn) 
n rt~n m where 

+ :6 IZO)(lm)(mn) (mn) == (mO IH1I nO) in the numerators, and 
motn.l"*n Zm 

y; IkO)(kl) (lm)(mn) + ... 
+ motn,l:tn,koFn kim 

III == E~ - E ~ in the denominators. (28) 

(27) 

Therefore 

(nn) + :6 [(nm)(mn)/m] +:B [(nl) (1m) (mn)/lm] + ... 
E(3) == EO + mfn mtfl,ltn 

n n "" 1 + L.I [(nm) (mn)/rn21 + ... (29) 
mtfl 

In the same way we obtain 

E(5) = E(l) +{ :6' [(nm) (mn)/m] + :6' [(nl) (1m) (nm)jlm] + :6 [(nk) (kl)(lm)(mn)/klm1 
n n ""I'n mtn,ltn mtn,UfI,Hn 

+ ~' (nh) (hk) (kl) (1m) (nm)/hklm] +"'}{l + :6' [(nm)(nm)/m21 
mtn,ltn,ktn, htn mtn (30) 

+ ~' (nm) (ml) (In) (1/nt2 1 + 1/mI2 ) + ... }-l, 
mtn,lfn , 

where diagonal elements of H 1 are excluded from 
the summations, and 

nl == E(l) _ E (1) in the denominators. (31) 
n 1'1. 

A considerably more complicated expression can 
be 08~ained for E~ 6) when in (30) we replace E~) 
by E: in front of the fraction and take 

fIl == E(5) _ /5) in the denominators 
n m 

and sUbstitute (kh) in the numerators by 

l k' 
:6" (kl) (lj) (jh) (-----­

(h - k) (h - l) (h - j) 

l' 

(32) 

j' 
+ +--------

(k - l) (h - l) (h - j) (k - l) (k - j) (h - j) 

h' + + 1 
(k - l)(k - j) (k - h) (h - I) (h - j) 

+ 1 + 1 ) 
(k - I) (h - j) (k - l) (k - j) 

+ 2]" (kl) (lj) (ji) (ih) ( ... ) + ."] 

x (1 + ~' (kl) (lk) 1 + '" )-1/2 
Uk (k_l)2 

X (1 + ~' (hl) (lh) 1 + ... ) -1/2, 
Uk (h _ 1)2 

where (kl) and~' have the same meanings as 
before, but 

(33) 

(h - k) = E~) - E~l) in the denominators, (34) 

k' = E~l) in the numerators, (35) 

'\''' and L.I is a summation over all intermediate states 
excluding diagonal matrix elements of H 1 and those 
intermediate states for which the corresponding 
denominators are zero. 

8. DEGENERATE CASE 

Let us assume that InJ), l!:1g), ••. , In~) have a 
common eigenvalue En of H 0' Since the argument 
in relation to (4) still holds even if such degeneracy 
exists, formula (5) is correct to the first-order 
of H1 without any modification. In order to obtain 
a third-order perturbation formula we replace 
(t of (7) by 

and replace S~ of (6) by 

(37) 

We obtain 

b 

X (nt ° I H 1 In?> + I; (m ° \H 1 In J > (n ~ I H 1 In?» 
J~l 

+ O(a 3 ), if m is not among n1"'" rib (38) 

and 

b 

X (mO IH1In~» + E~ I; (/TiD IH1In7)(n7IH1In?> 
J ~1 

+ O(a 3 ), if m is not among n 1 • .•. ,n b' (39) 
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If we solve the secular equation 

= 0, (40) 

9. EXAMPLES then these solutions are correct to the order of 
a 3 , because all nondiagonal matrix elements, 
except for those in the b x b submatrix, remain 
of the order a 2 or higher during the process of 
diagonalizing the b x b submatrix. 

In the one-dimensional simple harmonic oscillator, 
where 

Formulas (38) and (39) show that if ii l has no 
matrix element at all inside the b x b submatrix, 
then the above procedure gives solutions which 
are correct to the order of a 5. If ii 1 has any 
nonzero matrix element inside the b x b sub matrix, 
then we should diagonalize this sub matrix first 
to obtain a fifth-order perturbation formula. The 
diagonalization will remove the degeneracy, and 
the problem in this case will be reduced to that 
of the nondegenerate case. 

flo = (P;/2nt) + ~kx2, 

we may take 

fll = ax 

(41) 

(42) 

as a perturbation. In this case we know the exact 
solution as 

En = liw(n + ~) - ~(a2/k). (43) 

Our formula (30) gives 

(5) _ '" ( + l) ~(a2/k) + ~(2n + 1)(a2/k)2 + ft(5112 + 5n + 3) (a 2/k)3 + : .. 
E - {I W n 2 - -=-.:....--'---'--...::....:..----=--.;'--~'--:----''''-'-------'---'--'---'---

n 1 + ~(2n + 1) (a 2/k) + %(n2 + n + 1) (a2/k)2 + : .. 

= liw(n + D - ~(a2/k)[1- ~(a2/k)2 + ... ], 

which deviate from (43) only in a 6 and higher 
terms. 

It is interesting to compare this result to that of 
the Brillouin-Wigner perturbation method. 3 In 
their method, an approximate eigenvalue which is 
correct to the fifth order of a is given from 

E~ = ~(n + 1)a
2 (~) + ~la2 (~) 

E' -nw mw En + hw mw 
n 

+ ~(n + 1) (n + 2) (1l/11lw)2 a 4 

(E ~ - n w)2 (E ~ - 21i w) 

Equation (45) cannot be solved analytically but 
the result can be obtained as the expansion 

(44) 

E~ = - ~(a2/k)[1- ~(5n2 + 5n + 3) (a2/k)2 + ... ], 
(46) 

which is to be compared with our result (44). 

When we take 

as a perturbation to (41), the exact solution is 

+ ~n(n - 1) (li/mw)2a 4 

(E: + liw)2 (E~ + 21lw) , 
(45) En = nW(11 + ~) [(k + a)/k]1/2 

= nw(n + ~) [1 + ~(a/k) - ~(a/k)2 + ft(a/k)3 

where -1~8(a/k)4 + 2;6(a/k)5 - .. ,1, (48) 

while the perturbation formula (30) gives 

E(5) = nw(n + ~) + (2n + 1)[3 
n 

[(2n + l)/(hw + 2(3)J[32 + [(2n + 1)(1/ 2 + n + 3)/201"-' + 2(3)3J[34 + ... 
1 + [(n2 + n + 1)/2(hw + 2tl)2][32 + ... (49) 
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TABLE I. Magnitudes of exact and approximate eigenvalues of 
Eq.(51). (a = 1.) 

F 0.01 0.05 0.1 0.5 1.0 

exact 1. 019 803 90 1. 095 445 1. 1832 1. 732 2.24 
E(l7) 1. 019 803 87 1.095418 1. 1829 1. 693 2.06 
E(5) 1. 019 802 0 1. 095 24 1. 1818 1. 667 2.00 
E(2) 1. 020 00 1. 100 1. 200 2.00 3.0 

where 

{3 = allw/4k. (50) 

We indeed see that when (49) is expanded in~o a 
power series of (3 or a, the result agrees with (48) 
to the fifth order of a. 

The exact eigenvalues of the 2 x 2 matrix 

which deviates from (52) at ~6. In this simple case 
we can calculate the next approximation without 
much trouble. The result is 

E(17) = E(5) ± 2a (~) 2 (1 +~) -1/ 
n fI 1+~2 \' 1+~2 / 

[1 +(~)2 (1 + ~\ -2 ] 
1 + ~2 1 + ~2J 

_ (5) 2a~6 
- En ± (1 + ~2)(1 + 5~2 + 9~4 + ~6) 

= ± a 1 + 2~2(1 + 6~2 + 10~4 + ~6) . (55) 
(1 + ~2)(1 + 6~2 + 9~4 + ~6) 

In Table I numbers obtained by our perturbation 
formulas are compared with the exact ones and 
those given by the conventional second-order per-

(51) turbation formula, which is 

are well known as 

E = ± (a 2 + b2 )1/2 = ± a(1 + 4~2)1/2 
± 

= ± a(1 + 2~2 - 2~4 + 4~6 - ... ), 

where 

~ = b/2a. 

(52) 

(53) 

The perturbation formula (30) gives 

2a~2 E(5) = ± a ± -- = ± a(1 + 2~2 - 2~4 + 2~6 - ... ) 
n 1 + ~2 ' 

• Supported by NSF Grant No. GP-27444. 
1 E. SchrOdinger, Ann. Physik 80,437 (1926). 
2 E. U. Condon and G. H. Shortley, The Theory of Atomic 

SPectra (Cambridge U. P., London, 1935). 
3 P. Wigner, Math. Naturw. Anz. Ungar. Akad. Wiss. 53, 475 

(1935); L. Brillouin, J. Phys. 4,1 (1933). 

(54) 

(56) 

in this case. 

10. VARIATIONAL CHARACTER 

Since our perturbation formulas are obtained from 
the diagonal elements of unitarily transformed 
matrices, they obviously have variational character: 
When they are applied to a bound state we obtain 
its upper limit, and so forth.5 This property is 
clearly seen in Table 1. 

Our formula for E~5) is of the form of the Pade 
approximant, 6 and that for E~17) may be regarded 
as a generalized Pade approximant. 

4 P. Goldhammer and E. Feenberg, Phys. Rev. 101, 1233 (1956); 
R. C. Young, L. C. Biedenharn, and E. Feenberg, Phys. Rev. 
106,1151 (1957). 

5 R. Courant and D. Hilbert, Methods "f Mathematical Physics 
(Interscience, New York, 1953), Chap. 1. 

6 G. A. Baker and J. L. Gammel, Eds., The Pade Approrilllaiiolls 
ill Theoretical Physics (Academic,New York, 1970). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 10 OCTOBER 1971 

Explicit Decomposition of a General Two-Body Hamiltonian 
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The seniority classification of a general two-body Hamiltonian according to the group chain U(N) :::> 
Sp (N) :::> R(3) is conSidered. It is found that by using the standard contraction and symmetrization pro­
cess, one can explicitly decompose such a Hamiltonian into irreducible tensors with respect to the sym­
plectic group. An example is given where the explicit angular momentum coupled form of these tensors 
are also worked out. 

I. INTRODUCTION 

The method of classifying nuclear or atomic many­
particle states according to irreducible representa­
tions of various linear groups is well known. 
Among the commonly used groups is, for example, 
the group chain U{N) => Sp{N) => R(3) which speci­
fies the particle number, seniority, and total angu­
lar momentum of many-particle states formed 
from a set of N single-particle states. 

The corresponding decomposition of a general two­
body Hamiltonian into irreducible tensors of this 
group chain is, however, more difficult than the 
classification of states, and not much work has 
been done in this direction. This is because a 
Hamiltonian is generally a Kronecker product of 
irreducible tensors. In order to reduce it, one 
needs the vector-coupling coefficients of the group 
considered, but these coefficients are usually not 
known for the general representations. 

In the case of the unitary decomposition, Chang, 
French, and Thiol have obtained an explicit form 
by a contraction procedure. For the symplectic 
group, Judd 2 has considered the decomposition of 
a one-body Hamiltonian, and Wybourne 3 has listed 
the irreducible symplectic tensors contained in a 
general two-body Hamiltonian, but did not give the 
explicit form of these tensors. 

In this paper we shall show that by writing a 
general two-body Hamiltonian in the second quan­
tized form, one can obtain explicit expreSSions of 
the irreducible symplectic parts by the standard 
contraction and symmetrization process. 4 

In Sec. II, we give the general form of a two-body 
Hamiltonian in second-quantized form. We also 
write down the unitary tensors using the results of 
Ref. 1. In Sec. ill, we consider the general method 
of constructing symplectic tensors. Finally in the 
last section, we investigate a special case which 
may have physical interest, which is when the 
single-particle space consists of a single j shell 
in aj-j coupling scheme. 

IT. THE HAMILTONIAN AND ITS UNITARY 
DECOMPOSITION 

In the second-quantized picture, an orthonomal set 
of single-particle states can be expressed as 

where 10) is the vacuum state, and i = 1,2, ... 

The fermion creation operators at together with 
their Hermitian conjugates a i satisfy the anti­
commutation relations 

{a i • aj} = Dij 
and 

{ai' aj } = {at a;} = O. 

A general two-body Hamiltonian can now be writ­
ten as 

in which the two-body matrix elements have been 
anti symmetrized so that 

(ij I H 21 kZ) = - (ij 1 H 211k) 

= (jiIH2 1Ik). 

Similarly, a one-body Hamiltonian has the form 

HI = L:; {iIH1Ij)ataj . 
xJ 

In this paper we consider a Hamiltonian 

H = h + V 

=6 (ilhlj)aTa. - t 6 WIVlkl)atajakal , ij x ) ijkl 

which is assumed to be Hermitian so that 

and 
(i I h I j) = (j 1 h I i) * 

WIV/kZ) = (kl/vlij)*. 

(5a) 

(5b) 

Generally the single-particle space is infinite 
dimensional, but in practical calculations one has 
to restrict himself in a subspace with a finite num­
ber N of states. Hereafter we shall consider only 
such a subspace, which is then subjected to a uni­
tary transformation of dimension N and forms an 
irreducible representation {l} of the group U(N),5 
and the many-particle states formed from them 
can be ct{~composed into irreducible representation 
of U(N). However, the Hamiltonian H defined on 
this many-particle space is not irreducible with 
respect to U(N). The two-body part V, for example, 
contains the representations {2 21N - 4 }, {21N- 2}, and 
{oJ. Likewise h contains {21N - 2 } and {oJ. 
The decomposition of H into irreducible unitary 
tensors is done in Ref. 1. Here we shall only quote 

2221 
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the results. For the two-body Hamiltonian V, we 
shall write the irreducible parts as H 2 (1/), where 
1/ = 0 corresponds to {O}, 1/ = 1 to {21N"2}, and 1/ 
= 2 to {2 2 1N- 4 }. We have 

(6a) 

(6b) 

and 

H 2(2) = - t L; (ij I V I N)ajaJ-t:aZak - H 2(1) - H 2(0) 
ijkZ 

==- t L; (ijlVlkZ)aja+JoaZak • (6c) 
ijkZ 

For the decomposition of the one-body part h, one 
has the similar result 

and 

H 1 (1) = ~ (i I h Ij) at a j - En. 
'J 

(7b) 

Here n is the number operator 

N 

n == ~ ajai (8) 
'=1 

and (~) = n(n - 1)/2 is the blnomial coefficienl 
The quantities E, W, and (ij I V I kl) are defined as 

E == (1/N)L;(ilhli), (9a) 
i 

(9b) 

and 

(ijlvlkZ) == (iilvlkZ) 

- (N - 2)-1{Oik ~z + 0jZ Vik - OiZ Vjk - 0jk Viz} 

- (OikOjZ - 6iZ Ojk )W, (gel 

with 

Vik == Y (ii Iv Ik.i) - 0ik ~(~). (9d) 

It is not difficult to verify that H 2 (2) has the follow­
ing very important particle-hole symmetry: 

(10) 

which shows that for the irreducible unitary parts, 
the various creation and annihilation operators 
essentially commute. 

We shall define the quantity 

j == ~(N - 1), 

and rewrite the single-particle operators as 

and 
j _ ( )j+m B m = - a j +1 - m , 

(11a) 

(llb) 

with m = - j,- j + 1, ... ,j. For the group Sp(N), 
N must be an even integer, therefore j is half­
integral. It must be noted however that our change 
of notation is only for later convenience,and j does 
not necessarily have any physical meaning. Next 
we define the quantities 

UJ == (A J X Bj)J == L; [j j J] A j B j 

M M m(m') m m' M m m" 
(12a) 

z~ == - (l//2)(Ai x A)~, (12b) 

(12c) 

where square brakets surround the ordinary 
Clebsch-Gordan coefficient, and x denotes ordinary 
vector coupling. Hereafter we will follow the 
notations of Ref. 6. Equations (5) and (6) can now 
be written as 

H(O) = H1 (0) + H 2 (0) 

= En + wG)' (13a) 

H(1) = H 1 (1) + H2 (1) 

'" [ -1 ] [-:-Jl/2 J = LJ hJM + (N - 2) (n - 1) VJM J UM , 

J=1),M (13b) 

and 

H(2) = H2 (2) 

= ~ L; V;J(I I HZIl x ZI2)J, 
l I JM 12M 
1 2 

(13c) 

with the following definitions 

j == 2j + 1, (14) 

j + 
n = ~ A~m 

m=-j 

= LiJl/2UO, (15) 

hJiH == ~ I; [J]1/2 J J (m Ih 1m'), 1 ~ [0 J oJ 
[] ]m(w) m M m 

(16a) 

VJM == + I; [3]1/2 [j J jJ 
[]] mew) m' M m 

x (I;(mk I V Im'k) (16b) 
k 
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and 

11:(£1/ 2) = L; [j j 11 ] 
11I1m2(mlm~)jil(M2) m 1 m~ M1 

x l~2 1:2 ~J ~)M2 [~11 ~2 ~J 
(16c) 

where the subscripts in the parentheses are not 
summed over. We note again that since j does not 
correspond to any real physical angular IT. omentum , 
the Wigner - Eckart theorem cannot be applied to the 
matrix elements (m [h [m') or (m 1 mi[ V[ m 2 11l2). 
We shall also notice that 

and 

_ 1 
hO~ = ------- L;(m [h [m) = E 

[j] m 

1 2W(N) Vo 0 == ~] L; (mk [ V [ mk) = N 2 . 
[J m k 

(17a) 

(17b) 

m. THE U(N) => Sp(N) DECOMPOSITION OF THE 
HAMILTONIAN 

In this section we shall further reduce Eq. (13) 
into irreducible symplectic tensors. First, the 
branching rule of U(N) -) Sp(N) gives 

and 

{O} -? (0), (18a) 

{21 N- 2}" -7 (12) + (2), (18b) 

{2 2 1N- 4 }-7 (0) + 2(12) + (22) + (212) + (14). 
(18c) 

This is true for N >- 8. For N < 8 some of the 
symplectic representations do not appear. Also 
(212) vanishes for a Hermitian operator. 3 

The reason of rewriting the Hamiltonian in the 
form of Eq. (13) is that in this way the Hamiltonian 
is already partially decomposed into irreducible 
symplectic tensors. It is well known2 that the unit 
tensors UJ with odd J are the generators of the 
symplectic group and belong to the representation 
(2), while those with even J ~ 0 belong to (12). 
Therefore we immediately have 

H(O, (0» = H(O). (19a) 

H(l, (2»= L; [h JM + (N - 2)-1(n - l)V~JM] 
Jodd.M 

(19b) 
and 

H(l, (12» = L; [h JM + (N - 2)-1(n - 1) VJM ] 
JeveniD.M 

X Li] 1/2U~. (19c) 

We are now left only with the tensor H2 (2) given 
in Eq. (10), which according to the branching rule 
(18c) contains symplectic tensors with rank 0,2, 
and 4. It is however well known4 that symplectic 

transformations are invariant under contractions 
with an antisymmetic metric. Consequently we 
shall define such a metric tensor 

1)mn == [1]1/2 [~~ ~J 
( 

j-m = -) om.-n 

= - 1)nm (20) 

and proceed to separate the symplectic tensors of 
different ranks. 

We write H2 (2) as 

H2(2) = - t L; (m 1 m 2 [ 11 [- m3 - m 4) 
m1 m 2 m3 m4 

such that 

and 

(12[U[34) =- (12[U[43) 

= (21[ U [43) 

(12[U[34) = (34[U[12), 

(21a) 

(21b) 

~2) 

where the last equality comes from the assumption 
that 11 is invariant under time reversal. Note that 
the particle-hole contractions of U vanish as a 
consequence of being irreducible with respect to 
the unitary group. For example, we have 

= O. 

Thus we can decompose U as follows 

2 
(12[U[34) = L;(12[U(i)[34), 

i=O 

with 

(12[ fj(O) [34) 

(23) 

(24) 

== [1)121)34 + (N - 1)-1(1)141)23 - 1) 13'724)]E<0) , 

(25a) 

E(O) == N I)V -::\)~ _ 2) 1~41) 121)34 (12[ U [34), (25b) 

(12[[7(1)[34) = 1)12E~lJ + 1)34Eild 

+ 2(N - 2)-1[1]14E~lJ + 1]23EilJ 

- 1]13E~1,{ - 1]24EW], 

- N-2 " Ei~ == (N _ 4)(N + 2) [it1]34 (12[ U [34) 

1]12 " -"""!r u 1]121]34(12 [U[34)], 
1234 

(26a) 

(26b) 
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and 
(12Iu(2)134) == (12IuI34)- (12Iu(l)134) 

- (12 I U(o) 134). (27) 

The above formulas are derived in Appendix A. 

In the branching rule (18c), there is only one re­
presentation,7 (12), which has symplectic rank 2; 
hence we can identify it as U(1). Also the zero­
rank tensor U(Q) must belong to (0); then we have 

and 

Note that the above tensors still possess the 
particle-hole symmetry of Eq. (10). 

Finally, the different irreducible symplectic 
tensors contained in U(2) can be separated by 
using the Young symmetrizers.4 

(12IWiJ) 134) = %[(12Iu(2)134) + (14 !U(2) 123) 

- (13!U(2) 124)], (30) 

(121 E'<~J) 134) = %[2(121 U(2l 134) - (141~) 123) 

+ (13!U(2) 124)], (31) 

(32) 

where the last equation is a consequence of 
hermiticity and time-reversal symmetry. We now 
have 

H(2,(14» =- i6H(12 !U(2) 134) + 2(14 I U(2) 123)] 

x A1A~;tB4 (33) 
and 
H(2,(22» =-i6H(12Iu(2)134)- (141 U(2) 123)] 

x A1A2B~4' (34) 

Equations (28), (29), (33), and (34) can easily be 
written in the coupled form. In particular, if we 
define 

x (m 1 mil U(i) I m 2 m 2), 

then Eq. (33) can be written as 

H(2,(14» = (- t)WE(12 !U(2) 134) 

(35) 

X (~A1A~;tB4 + ~B1B2A3A4 + 2A 1B 2A 3B4) 

= - -A ~ ff2)U1I 2JM) 
11 r!O,JM,I2'O 

X [- (z 11 X ZI2)~ - (ZI1 X ZI2)~ 

+ 2(U 11 X UI2)~], (36) 

where the first equality is a consequence of 
particle-hole symmetry. From Eq. (B7c) of 
Appendix B we can write H(2, (14» as 

H(2,(14»=-,j~ 6 U(2)(I112JM) 
11 , 12 ;to , JM 

X[TI11XTI21]~~, (37) 

which verifies the fact that H (2, (14» is a pure 
quasispin-two tensor,3 Similarly, one can show 
that H (2, (22» is a quasispin-zero tensor. 

IV. THE SCALAR HAMILTONIAN IN A SINGLE 
j SHELL 

We now consider the special case when the single­
particle space consists of a single j shell in a 
j-j coupling shell model with a Hamiltonian 

H = hO]1/2 Uo + E [/]1/2 VI (ZI X Z 1)0, (38) 
I 

which is a scalar with respect to R(3). The opera­
tors U J and ZI were defined in Eq. (12), with j 
now corresponding to real angular momentum. 
We get from Eq. (19) 

H(O) = 1m + w(~) 
and 

H(l) = 0, 

with 

The remaining part is 

H2(2) = E[/]1/2 VI(ZI x ZI)O - (W/2)n(n -1) 
I 

(39) 

(40) 

(41) 

= E [/]1/2 VI (ZI X ZI)O - i 6(2W)O"kOil 
I ijkZ J 

x atafakaZ 

== iE yl(ZI x ZI)O, 
I 

From Eqs. (25) and (26), we can write 

E-(O) N - 1 -v (0) 
= (N + I)(N - 2) , 

H(2, (0» = i ~ [ffOl]1 (ZI X Z 1)0, 

[U(Ol)! = E(0){N0
10 

- 2(N - 1)-1[/]1/2} 

= (N /1)(; - 2) ~(~)OI0 - [/]1/2f~ 
and 

H(2, (12» = O. 

(42a) 

(42b) 

(43) 

(44a) 

(44b) 

(45) 
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Finally, we give the explicit forms of the second­
rank symplectic tensors: 

H(2,(14» = A~[U<2)]Il(ZI x ZI)O + (UI X UI)o] 
lio 

= ~ L: [U(2)]KfliIK - [IK]1/2 \~ .~ I () (ZI X ZI)O, 
IK \' /J J K\ (46) 

8(2, (22» = t ft [U<2)t (Ii IK + [IK]1/2 ~: : ~D 

(47) 

where the curly brakets indicate a 6 - j symbol, 
and 

(48) 

V. CONCLUSIONS 

We have shown that, starting from the irreducible 
unitary tensors of a general two-body Hamiltonian, 
the subsequent irreducible . symplectic tensors 
can be obtained by first separating those of dif­
ferent ranks with the standard contraction pro­
cedure with an antisymmetric metric, and then 
constructing tensors with different symmetry by 
using the Young operators. Finally we considered 
a special case when the single-particle space con­
sists of a single j shell in the j-j coupling scheme. 
In that case one can easily obtain the explicit 
angular momentum coupled form of these irre­
ducible tensors. 
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APPENDIX A: THE DECOMPOSITION OF 
SYMPLECTIC TENSORS 

We consider the decomposition of U defined in 
Eq. (20). In general, such a tensor can be written 
as4 

(12[ U (34) == (12[ U(2) (34) 

(1) (1) (1) 
+ 1712U34 + 1713 V24 - 1723 V14 

- 1714 V~~) + 1)24 vg) + 1)34U~~ 

where we have used the symmetry properties 
Eq. (21). Here U(i) is an ith rank tensor. Contract­
ing, we get 

(A2a) 

and 

E 11131124 (12[ U (34) = NU(O) + (N2 - N)V(O) = O. 
1234 (A2b) 

Solving these two equations gives 

V(O) = - (N - l)-lU(O) (A3) 
and 

Next, we have 

~ 1113(121 U 134) = 2Ui~) + (N - 2) l-2~) = 0, 
13 (A5) 

which gives 

V
2
(!) = - 2(N - 2)-1 U

2
(!). 

Finally, from the equation 

~1112 (12IUI34) 
12 

(A6) 

= NU
3
(l) + 4V

3
(!) + 1134[N - 2(N - 1)-1 ]U(O), (A7) 

we get 

(1)- N-2 E(1) 
U - (N - 4)(N + 2) (A8) 

and 
- 2 (1) 

(N - 4)(N + 2) E , (A9) v<ll 

with 

Ei~) == ~1)34(12IUI34) - ~2 E 1]121]34(12IuI34}. 
34 1234 

APPENDIX B: THE QUASISPlN TENSORS 

It is well known8 that if we define 

and 

(A10) 

(B1a) 

(BIb) 

(BIc) 

1 ... 
where n = :fUJ, then these three operators form the 
quasispin algebra, 

l S+, A;,.] = 0, 

[8_, A;..l = B~, 

l So' Aim] = ~At", 

(B2a) 

(B2b) 

(B3a) 

(B3b) 

(B3c) 
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which together with similar ones for B;" demon­
strate that the operators A~ and B~ form an irre­
ducible quasispin tensor with rank ~. We shall 
write 

T
j 

m 
and 

Ti 
m 

1/2 =~ 
1/2 -

1/2 = 13j 
1/2 - m' 

(B4a) 

(B4b) 

From them we now construct a quasi spin tensor 
of rank 1 

. 1 
1 == _ (1/v'2) [Ti1/2 x Ti1/2]J 
l' Mil 

== (1/v'2) ~ [j j , JJll~2 1:,2 ~] 
ms.(ms') m m M 

x T j 1/2 Tj 1/2 
m s m SI , 

which gives the following identifications 

(B5) 

(B6a) 

• Supported in part by the U.S. Atomic Energy Commission. 
1 F. S. Chang, J. B. French, and T. H. Thio, Ann. Phys. (N. Y.) (to 

be published). 
2 B. R. Judd, in Grull!' Tlleurr ([1/(/ Its LINlielltioJls. edited by 

E. M. Loebl (Academic, New York, 1968). 
3 B. G. Wybourne, J. de Phys. 30, 39 (1969). 
4 M. Hamermesh, G rUII!' Theorr (Addison-Wesley, Reading, 

Mass., 1962). 
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Tk~ ~ = - (1/ v'2){(1/ v'2) (Ai X B j
) i 

+ (l/-/2)(Bj 
X Aj)l} = _Ul + (fl/2)1/2010 , 

(I even), (B6b) 
and 

Finally one can form the quasi spin tensors 
(/1 ,12 ;;to), 

_ [T 1•1 X TI21]~ g = (1/.J3) (ZIl XZI2)~ 

(B6c) 

+ (l/.J3) (ZIl X ZI2)~ + (1/.J3) (U ll X UI2)~ 

(B7a) 

- tTIll X TI2l]~ ~ = (1/v'2) {(ZIl X ZI2)~ 

_ (Z11 X ZIz )~} 

and 
- [TIll X TI211~ ~ = (1/v'6) (Z11 X 212)~ 

+ (1/v'6)(Z11 X Z12)~ _"';[<U 11 X UI2)~. 

5 The irreducible representation of U(N) is denoted as 

(B7b) 

(B7c) 

{AlA;'" AN] which corresponds to a Young diagram of N 
rows, the ith rOw being of length .\;. 

6 J. B. French, in 1l1{/)l\'-Body DcseriplioJl 01 Nllcle([r Struetllre 
([1/(1 HCllcliulIS, edited by C. Bloch (Academic, New York, 1966). 

7 Under time reversal the two (12) representations are mixed. 
8 R. D. Lawson and M. H. MacFarlane, Nuc!. Phys. 66, 80 (1965). 
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In a perturbed periodic classical motion, the angle variable may be eliminated either by Kruskal' s trans­
formation to "nice variables" or, if the system is canonical, by the Poincare-Von Zeipel method. For 
systems that possess a Hamiltonian, the present work (j) shows that Kruskal's transformation may be 
made canonical order by order, (ij) derives a practical formula for achieving this result, and (iii) shows 
that the two methods are equivalent and may be matched order by order. 

1. INTRODUCTION 

A basic perturbation problem in celestial mechan­
ics and in guiding center motion involves a set of 
n first-order differential equations which can be 
represented vectorially as 

dx/ dt = F(x) (1) 

and which has the .following properties: 

(i) F(x) depends on a small parameter EO « 1 and 
may be expanded in it: 

F(x) = F (O)(x) + EOF (l)(X) + (2) 

(ii) In the limit EO --7 0 (unperturbed case) the sys­
tem may be solved and its solution is then periodic 
in time. 

The problem is then to find an approximate solu­
tion valid for small but finite EO and useful for time 
intervals of the order of c 1 periods. 

Kruskall devised a method for achieving this, 
which in many ways resembles the method of 
Bogoliubov and Zubarev and of Krylov and Bogoliu­
bov. 2 The calculation in this case proceeds in two 
steps. First, a transformation to "intermediate 
variables" y(x) is performed, such that in the 
limit EO --7 0, Y

n 
is an angle variable linear in time 

while the remaining n - 1 components of y (which 
we shall collectively denote by y) are constant. 
The equations according to which y eVOlves, de­
rived from Eq. (1), then have the form 

(3) 
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which in many ways resembles the method of 
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bov. 2 The calculation in this case proceeds in two 
steps. First, a transformation to "intermediate 
variables" y(x) is performed, such that in the 
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In these equations, Y it appears in the g (k) only as 
the angle argument of periodic functions and g(O) 
has only one nonzero component, the last one3 

g(O) = (0, 0, ... ,0,1). 

The second step involves a near-identity trans­
formation to "nice variables" z 

(4) 

z = y + L; Ek~(k)(y), (5) 
k=1 

such that in the new equations of evolution, the trans­
formed angle variable z" no longer appears on the 
right-hand side: 

(6) 

where as before 

and (7) 

A general recursion scheme for deriving z order 
by order has been described in an article by Stern 4 

(henceforth referred to as I). We shall follow the 
notation introduced there, which differs slightly 
from Kruskal's (a similar scheme for the related 
Krylov- Bogoliubov expanSion has been given by 
Musen 5). After Eqs. (6) have been derived in this 
fashion, their first n - 1 components constitute an 
autonomous system for deriving the components of 
Z, which can then be independently solved. The 
problem is thus reduced to one with n - 1 vari­
ables. 

If the system furthermore possesses a Hamiltonian, 
an additional variable may be eliminated by deriv­
ing a constant J of the motion. It is defined as 

(8) 

with the integration performed using an arbitrary 
canonical set (p, q), over a group of points ("ring"), 
all of which evolve according to (6) and possess 
the same z but with values of zn that cover the full 
range for that variable (this property, if established, 
is maintained throughout the ring's evolution in 
time). 

If z itself forms a canonical set, with Z1 the mo­
mentum conjugate to zn' then one may use this set 
in (8), leading to 

)
1 

J = z1dzn = Z1' o 

which is a great simplification. 

(9) 

If this is not the case, one is forced to retrace the 
transformations x ---> y ---> z until some canonical set, 
with which (8) can be evaluated, is reached. 

Kruskal did not derive nice canonical variables. 

but he showed them to be possible. Specifically, he 
proved that in any "nice" set, the following Poisson 
bracket relations are always satisfied: 

a 
a-lZi,Zj] =0, (10) 

zn 

(11) 

Following Nordheim and Fues, 6 Kruskal then shows 
that J and zn may be augmented by n - 2 functions 
of the Z i to form a complete canonical set. 

In what follows, we shall assume that the interme­
diate variables Y i form a canonical set, in which 
case a near-identity transformation like (5) can, 
in principle, lead to nice canonical variables. This 
assumption is not unreasonable Since, if a Hamil­
tonian for the system is known, such Y i can in 
general be derived by solving the unperturbed 
motion via the Hamilton-Jacobi method. 

We then 

(i) Show that the freedom allowed by Kruskal' s 
method in the derivation of each order of Eq. (5) is 
sufficient to assure the canonical character of the 
"nice variables" Zi. 
(ii) Derive a method for obtaining such Z i. 

(iii) Show that the result is equivalent to what is 
obtained by conventional perturbation methods\based 
on the Hamilton-Jacobi equation. 

ll. THE POSSIBILITY OF STEP-BY -STEP 
DERIVATION 

If Y is canonical 

y=(p,q), 

then from (10) 

a 
aZ

n 
{[zi'Zj]-[Yi'Yj]}= 0. (12) 

If (5) is substituted here,the zero-order part can­
cels identically and the expression remaining in­
side the curly brackets separates into orders of 
E and gives 

(13) 

This condition is satisfied for any nice set z. If z 
is not merely nice but also canonical, then the ex­
pressions in the curly brackets of both (12) and 
(13) are not only independent of zn but actually 
vanish. 

Let us now assume that the expansion (5) has al­
ready been derived and brought to canonical form, 
up to and including order k - 1. Then the first 
k - 1 orders of (13) do, in fact, vanish, leaving 
(after division by E k) 
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o { (k) (I.) az:- [~i'Yj]-[~ j ,Y j ] 

k-1 

+ ~ [~(:>,~(k7)]} + O(€) == O. 
",,1 

(14) 

As the next step, one may derive ~ (k) and thus ex­
tend the calculation of z one more order. The 
equation satisfied by ~ (k) is [I, Eq. (15)] 

o~(II)/oYn - h (k)(y) = X (k), (15) 

where X (k) depends only on lower orders of ~ (m) 

an~ p (m), assumed to be known at this stage. If 
(X II) denotes the result of averaging over the angle 
variable Y" 

one gets [see I,Eq.(19)] 

~(k)= J;n(x(k)_(X(k»))dY'n + ~(k)(y) 

= ~(II) + ... (1/)(1). 

(16) 

(17) 

Here ... (k) is an arbitrary additive vector inde­
pendent of Y", allowed by the fact that the derivative 
of ~ (II) which enters (15) is unaffected by such an 
addition. The question now arises whether ... (11) may 
be selected so as to make the expansion (5) can­
onical to order k. 

If this occurs, then the 0(1) part of (14) must 
vanish. It helps here to introduce the concept of the 
conjugate vectors fj [I, Eq. (4)] 

y = (q,- p). (18) 

Then 

[~(~)'Yj] - [~(;>,Yj] = 0~(7) /oYj - o~(;) /ay
j

• {19) 

This has the form of a component of a curl dyadic 
in y space, which one may call the conjugate curl, 
with components denoted by 

Because the ~(s) in this case are known to be can­
onical up to and including order k - 1, Eq. (22) will 
hold for the lowest k - 1 values of m; however, it 
will also hold for m = k, for even then the orders 
of ~ appearing in the equation are all lower than 
the kth. Substitution in (14) then yields 

(a/azn){V x [t(k) - r<k)(~)]} + O(€) = O. (23) 

Now let the transformation inverse to (5) be 

Y = z + ~ €s11(s)(Z). (24) 

Given the expansion (5), the 11 (k) may easily be de­
rived (see the Appendix). Alternatively, they may 
be directly obtained from expanding the relation 
between (3) and (6), in a manner similar to what has 
been done for the expansion (5) in I. This is essen­
tially the method of Krylov and Bogoliubov,2 as 
expanded by Musen. 5 Indeed, the elimination of 
the angle variable by Kruskal' s method so resem­
bles the Krylov- Bogoliubov approach that the 
two ought perhaps to be regarded as one method 
(which could be called the Krylov-Bogoliubov­
Kruskal method; however, Kruskal's work proceeds 
past the elimination to the derivation of invariants). 

Since the inner part of (23) is a function of y, one 
must transform 

_0 _",ayi_a_=,,[ +'B€Sa1](:)J~ (25) 
GZ

n 
- L.J GZ n oYj ~ Din az" 'oYi' 

or 
a a 

32= -a-+ O(E). 
n Yn 

Equation (23) thus becomes 

_0 {v x [~(k) _f(k)(~)]} + O(€) = O. 
oY" 

(26) 

(27) 

One may now assume that all variables in (27) are 
expressed in terms of y; in that case, each order 
in € vanishes separately, including the zeroth. Be­
cause differential operators commute, this means 

(28) 

(20) This integrates to 

Now it has been shown in an article by Stern 7 

(henceforth referred to as II) that the general 
condition for an expansion (5) to be canonical is 

~(m) == f(m)(~) +v/m ), m = 1,2, ... , (21) 

- • - (m) • where 'i1 is a gradient operator my space, X 1S 
an arbitrary scalar) and f (m)(~) are vector s of a 
certain form, depending on orders of ~ lower than 
the mth and on their derivatives. Various choices 
of f(m) are derived in II, all of which satisfy the 
identity (for ca.nonical t ($ J) 

m-1 
(,- f(m» __ '" [I' (s) I' (m-s)] 
\'i1 x ij - ~ '> i ,,> • 

s~l 

(22) 

a; [t(k) -f(k)(t)] = vljI, 
n 

~ (k) _ f( k)(~) = VT + u(y), 

(29) 

(30) 

where T is the indefinite integral of ljI and U is an 
additive function independent of zn' allowed by 
the integration. 

The above condition is satisfied by any t (II ) belong­
ing to a nice set of variablep r-;hiC~ is c~nonical .to 
order k - 1. For instance, ~ ( defmed m (17) w1ll 
correspond to a certain T and to a 2ertain additive 
function, which may be denoted by u: 

(31) 
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If one now chooses in (17) 

(k) ~ 
f1. = -u, 

then 
~(k)= ~(k)-a 

= f(k)(~) + VT, (32) 

and by (21),~ (k) satisfies the condition for canonical 
variables, making z canonical to order k. Thus the 
requirement can be met. 

m. PRACTICAL CANONIZATION 

In order to actually derive the "canonizing" f1.(k>, 
one must first investigate the amount of arbitrari­
ness inherent in that vector. Let 

(33) 

extend the canonical properties to O(E \ i.e. let it 
satisfy 

t(k) + ,,(k)(y) = f(k)(I.:) + Vx (k). (34) 

Then if one replaces p(k) with 

(35) 

with .p an arbitrary function independent of Y n' one 
finds 

which still has the required form (21). The canoni­
zing choice of p(k) is thus arbitrary within the 
addition of a conjugate gradient of some scalar .p 
which does not contain Y n • 

In order to isolate 11 (k) one operates O? ~34) with 
the averaging operator of (16); since" k is inde­
pendent of the angle variable, it equals its own 
average, giving 

P (k \y) = (f(k)(I.:) _ ~ <k» + (Vx <k» 

= (lk)(I.:) _ € (k)/) + V(XW ). (37) 

The last term on the right is a conjugate gradient 
of some function of y, and it has already been 
established that such vectors, when added to f1.(k) do 
not affect canonization. One may thus drop this 
part and obtain 8 

(38) 

To evaluate this, t(k) must be derived from (17), 
while f(k) may be obtained by methods given in 
II. The most general canonizing additive function 
is then 

(39) 

with .p arbitrary . 

IV. EQUIVALENCE TO CANONICAL PERTURBA-
TION THEORY 

A widely used method for solving perturbed periO­
dic canonical systems is due to Poincar~ and Von 
ZeipeI5,9-12 and operates in the following manner. 

First, one expresses the Hamiltonian in terms of 
the solution 

y = (p,q) 

of the unperturbed Hamilton-Jacobi equation, with 
Yn an angle variable and Yl the conjugate action 
variable. In the absence of "slowly varying" quan­
tities, the Hamiltonian then assumes the form 

~ k (k)( ) H = Yl + LI E H y. 
k=1 

(40) 

Next a near-identity transformation to new variables 

z = (P,Q) 

is sought, produced by the generating function 

a(P,q) = Z:;Fjqj + ~ Eka(k)(P,q), (41) 
k=1 

and having the property that the new Hamiltonian 
H* (z) is independent of the transformed angle 
variable zn' making the conjugate Z 1 a constant of 
the motion. Since the transformation is a near­
identity one, the lowest order of H* has the same 
form as that of H, giving 

H*(i) = z1 + z:; EI<H*(k\i). 
1<=1 

(42) 

Methods then exist for deriving a(l<) and H*<k) order 
by order. 

Suppose now that two near-identity canonical trans­
formations are given: 

z = y + z:; E5~(5\y), 
s =1 

~ 5 (5)() w = y + LIE 1/1 y, 
5=1 

(43) 

either of which eliminates the angle variable from 
the Hamiltonian. Furthermore, let 

~(5\y) = I/I(s)(y) for s = 1,2, .... (k - 1). (44) 

Then it will be shown that ~(k) differs from 1/1(1<) 

at most by a conjugate gradient of a function cI>(j) 
independent of Y n • 

Clearly such a property would allow the two methods 
discussed in this work to be matched order by 
order. If w, for instance, represents a solution of 
a given problem by the Poincare-Von Zeipel 
method and z represents a solution by the Kurskal 
method, then z can be made equal to w to any de­
Strrd order. To achieve this, one must first choose 
f1. k so as to make z canonical and then add to each 
order the appropriate VcI>(y) which makes the cor­
responding ~ (k) and 1/1 ( II ) equal to each other. 



                                                                                                                                    

2230 D. S T ERN 

Actually, one could also work in the opposite direc­
tion, since the Poincare-Von Zeipel method also 
contains a certain amount of arbitrariness in each 
order, but we shall not consider this possibility 
here. 

Let 

H*(z) = ~ E 5 H*(s)(z) 
5=0 

and 

H*\w) == ~ ESH**(s)(w) 
s=o 

be the two alternative forms of the Hamiltonian. 
Since the transformation is time independent, 

(45) 

Also, since it is a near-identity transformation, the 
0(1) parts of the above equations must be equal in 
form, which leads to 

H*(O)(-) -
z - Zv (46) 

H**(O)( )_ 
w - w1' 

We shall furthermore assume (and later justify) 

H*(s) = n**(s), s = 1,2, ... , (k - 1). (47) 

Substituting the expansions in (45) 

~EsH*(5)(y + ~Em~(m» = ~Esn**(s\y + ~Eml//m». 
(48) 

By means of expansion operators T(m) and SCm) (see 
I) this may be broken up into a series of equations, 
one for each order in E. The equation for O(E k) 
then is 
k k 
~ T(m)*H*(k-m)(y) = ~ S(m)*H**(k-m)(y), (49) 
m=O· me{) 

where * marks "operates on" and where, 

T(O) = S(O) = 1, 

T(l) == ~ (l).V, 

S(1) = 1/1 (1).v, 

and in general 

The two expressions in curly brackets depend 
only on lower orders; they are therefore equal to 
each other and may be dropped, leaving 

H*(k)(y) _H**(k)(y) = (I/I(k) - C(k».VY1' (52) 

Now by (24), scalars /k) and T (k) must exist such 
that 

~ (k) = f(k)(\) + v/k ), 

1/1 (k) = f(k)(I/1) + V T (k). 
(53) 

Since lower orders of the two expansions are 
equal, the two f(k) vectors are equal too, leaving 

(54) 

To prove our assertion we must show that cp is 
independent of Yn' Substituting in (52), we obtain 

H* (k)() _ 8** (k)() = a! = acp (55) 
Y Y aY1 aYn 

Now cp is allowed to depend on Y m only in a periodic 
manner, from which it follows that acp/aYn also 
depends periodically on Yn• However, the left-hand 
side is independent of that variable, so that cp must 
be independent of Yn' This proves the main asser­
tion. Incidentally, one also finds 

(56) 

which justifies Eq. (47). 

APPENDIX: THE INVERSE TRANSFORMATION 

Adding (5) and (24) and cancelling zeroth-order 
terms gives 

~E k1/ (k)(Z) = _ ~E k~ (k\y) 

= _~l~(k)(Z + ~Em1/(m)(z»,(A1) 

if V is in z space and * denotes the operation 

~(k)(Z + ~Emf1(m)(z» 

= exp[E1 Em(1/(m)(Z).V)}~(k)(Z) 
= ~ EmS(m)*~(k)(z), 

m=O 

where 
S(O) = 1, S(l) = ." (l>'V, 

(A2) 

(A3) 
T(m) = ~ (>;:')V + N (m)(~), 

SCm) = I/I(~V + N(m)(I/I), 
(50) S(2) == 1/(~)V + ~.,,(l).,,(l):VV, 

with N(m) an operator depending only on orders of 
its argument that are lower than the mth. Sub­
stitution and use of (46) give 

k-1 
H*(k) + ~(k).VY1 + {N(k)(~)*Y1 + ~ T(m)*H*(k-m1 

m=l 

and so forth. If this is substituted in (AI), orders of 
E may be individually equated since everything is 
now expressed in z. Separating the m = 0 term 
from the rest then brings the O(E k) relation to the 
form 

(A4) 
= n**(k)+ 1/I.{ft)VY1 + {N(k)(l/IhY1 

k-1 
+ L.; S(m).8** (k-m1. 

(m) (m) 
(51) If all lower orders of ~ are known, those of ." 

may be derived and used for constructing the SCm). 
m=l 
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Methods of classical perturbation theory developed for small perturbations are extended to slowly (or 
adiabatically) perturbed systems, with slow dependence either on time or on dynamical variables. 
Specifically, the extension is performed for the canonical perturbation theory of Poincart'i and Von Zei­
pel, for the Krylov-Bogoliubov-Kruskal method of eliminating angle variables, for the general form of 
direct near-identity canonical transformations and for two of its realizations, based on the "conventional" 
generating function and on the Lie transform. In addition, the concepts of slow (or adiabatic) perturba­
tions and of an implicit "small parameter" E are clarified, as is the distinction between two alternative 
definitions of adiabatic invariance, and as an example the solution of the slow perturbed harmonic oscil­
lator up to and including OrE 3) is derived. 

INTRODUCTION 

Perhaps the most widely studied perturbation 
problem in classical mechanics is that of perturb­
ed periodic motion. If a motion is given that is 
soluble and periodic, the problem may be concisely 
defined as the derivation of an approximate solu­
tion for a motion that is slightly different. 

This "slight change" applied to the motion is 
termed the perturbation and it usually belongs to 
one of two types:"smaZZ" perturbations and "slow" 
(or "adiabatic") ones. The difference between the 
two is best explained by assuming that the motion 
can be described by a Hamiltonian, although this 
condition is not essential. In a slightly perturbed 
motion the Hamiltonian may then be written 

( 1) 

where E « 1 is a small numerical parameter 
characterizing the magnitude of the perturbation 
and where the limit E ---7 0 corresponds to the upper­
turbed motion. A typical example would be the 
motion of a planet around the sun as perturbed by 
the planet Jupiter. In that case H(O) describes the 
planet's Keplerian motion in the sun's gravity 
field while H(l) describes the lowest order of the 
perturbation induced by Jupiter. The zero-order 
Hamiltonian is then proportional to the solar mass 
ms while EH(J) is proportional to the mass mj of 
Jupiter: the ratio of the two terms (mjlms) will be 
of the order 10- 3 and this dimensionless quantity 
provides a natural choice for E. 

To illustrate a slow perturbation, consider a 

Hamiltonian that is slowly dependent on the time 
t (slow dependence may also involve canonical 
variables) : 

H == H(P, q, t). (2) 

Then the dependence is said to be slow if the 
terms produced by the operation a/at are by an 
order in E smaller than the terms from which they 
are derived, e.g~, 

(3) 

Equation (3) is not quite preCise, since it implies 
that E has the dimension of t- 1 • In fact, one always 
requires some natural time period T against which 
the rapidity of the time variation may be gauged, 
this usually being the period of the unperturbed 
system. With this taken into account, (3) becomes 

~~ =o(~), (4) 

and E is clearly dimensionless. 

We restrict ourselves here to problems having a 
single zero-order periodicity. If several distinct 
zero-order periodicities exist, the methods pre­
sented here must be extended and furthermore, 
complications due to resonance effects may arise. 

In either type of problem there generally exists 
a steadily increasing "angle variable" appearing 
in the argument of sines and cosines, describing 
the nearly periodic part of the motion. One way of 
solving the problem then involves finding a trans­
formation to new variables, such that the angle 
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INTRODUCTION 

Perhaps the most widely studied perturbation 
problem in classical mechanics is that of perturb­
ed periodic motion. If a motion is given that is 
soluble and periodic, the problem may be concisely 
defined as the derivation of an approximate solu­
tion for a motion that is slightly different. 

This "slight change" applied to the motion is 
termed the perturbation and it usually belongs to 
one of two types:"smaZZ" perturbations and "slow" 
(or "adiabatic") ones. The difference between the 
two is best explained by assuming that the motion 
can be described by a Hamiltonian, although this 
condition is not essential. In a slightly perturbed 
motion the Hamiltonian may then be written 

( 1) 

where E « 1 is a small numerical parameter 
characterizing the magnitude of the perturbation 
and where the limit E ---7 0 corresponds to the upper­
turbed motion. A typical example would be the 
motion of a planet around the sun as perturbed by 
the planet Jupiter. In that case H(O) describes the 
planet's Keplerian motion in the sun's gravity 
field while H(l) describes the lowest order of the 
perturbation induced by Jupiter. The zero-order 
Hamiltonian is then proportional to the solar mass 
ms while EH(J) is proportional to the mass mj of 
Jupiter: the ratio of the two terms (mjlms) will be 
of the order 10- 3 and this dimensionless quantity 
provides a natural choice for E. 

To illustrate a slow perturbation, consider a 

Hamiltonian that is slowly dependent on the time 
t (slow dependence may also involve canonical 
variables) : 

H == H(P, q, t). (2) 

Then the dependence is said to be slow if the 
terms produced by the operation a/at are by an 
order in E smaller than the terms from which they 
are derived, e.g~, 

(3) 

Equation (3) is not quite preCise, since it implies 
that E has the dimension of t- 1 • In fact, one always 
requires some natural time period T against which 
the rapidity of the time variation may be gauged, 
this usually being the period of the unperturbed 
system. With this taken into account, (3) becomes 

~~ =o(~), (4) 

and E is clearly dimensionless. 

We restrict ourselves here to problems having a 
single zero-order periodicity. If several distinct 
zero-order periodicities exist, the methods pre­
sented here must be extended and furthermore, 
complications due to resonance effects may arise. 

In either type of problem there generally exists 
a steadily increasing "angle variable" appearing 
in the argument of sines and cosines, describing 
the nearly periodic part of the motion. One way of 
solving the problem then involves finding a trans­
formation to new variables, such that the angle 
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variable is eliminated from the equations of 
motion. If the system also possesses a Hamiltonian 
H, the absence of the angle variable from H implies 
that its conjugate "action variable" is a constant 
of the motion, and this eliminates an additional 
variable from consideration. In slowly perturbed 
systems, such constants are call adiabatic invari­
ants. l In slightly perturbed systems,no generally 
accepted name exists (Contopoulos, who investigated 
the relation between the two types of constants, 2 
has termed them "third integrals"), but they are 
well known in celestial mechanics and may be 
derived in a variety of ways. 

The purpose of this work is to show how two 
standard methods of celestial mechaniCs, designed 
to handle small perturbations, may be modified to 
deal with slow perturbation and lead to the deriva­
tion of adiabatic invariants. The two methods con­
sidered here are the Poincare-Von Zeipel 
method3- 7 for solving the Hamilton-Jacobi equa­
tion and the Krylov-Bogoliubov pro<;:edure7 - 12 
(or the related method of Kruskal). In addition, it 
will be shown that the direct form of near-identity 
canonical transformations can also be adapted to 
cases in which some variables are slow. 

EXPLICIT ,AND IMPLICIT E 

In the example of perturbed planetary motion the 
small parameter E can be given an explicit numeri­
cal value. In problems of slowly perturbed motion 
this is often difficult to do and one may then speak 
of an implicit E. 

As the archtype of a slowly perturbed system, con­
sider the "pulled-up pendulum"13 14: a simple pendu­
lum is suspended from a hole in the ceiling and 
its suspension string is pulled up (or released) at 
a slow, though not necessarily constant rate. Obvi­
ously, the angular frequency w of the pendulum will 
vary and, since work is being done against the 
centrifugal force of the OSCillation, so will its 
energy E. However, as long as the rate at which 
the string is withdrawn is sufficiently slow (and 
does not resonate with the oscillation of the pendu­
lum) an adiabatic invariant may be found, equaling 
E I w in the lowest order. 

Two points should be noted here. First, the per­
turbation need not be small: by the time the with­
drawal is complete, the length of the pendulum may 
well have changed by a large factor. Secondly, 
while one can devise an explicit E for the problem 
-e.g., 10 = WT, where T is the time in which the 
length of the pendulum is reduced to 1/ e of its 
value,at the given (instantaneous) rate-its value 
nowhere enters the calculation. 

A more complicated example is provided by the 
motion of a charged particle in a slightly inhomo­
geneous magnetic field B. Here "slightly" means 
that the derivatives 'iJE,Iaxj are all of order 10 

smaller than the components of the field intensity 
and its magnitude B. Thus the slowness is in the 
dependence on spatial coordinates and a scale 

length for gauging it is provided by the gyration 
radius p,giving,in analogy to Eq.(4), 

aBi = O(EB). 
aXj p (5) 

Again,the value of 10 does not explicitly enter, 
except through the requirement that for the per­
turbation approach (known as the guiding center 
theory) to be valid the problem must satisfy 
"Aliven's criterion" 

p aBo 
-'« 1 B aX

j 
• 

An implicit 10 may be "made visible" by the follow­
ing device. Consider a Hamiltonian with slow time 
dependence: One may artificially introduce 10 into 
its time derivative by writing 

aH aH 
at = 10 a{Et) • 

Since 

aH . - = 0(1), 
aEt 

(6) 

this notation clearly displays the fact that the 
term is of order 10, and for this reason the Hamil­
tonian (2) is often written 

H = H(p,q, lOt). 

A similar device may be used when there exists 
a slow dependence on dynamical variables; this 
can be quite useful in arranging the terms accord­
ing to their orders in 10, but two things must be 
remembered. First, because of the way in which 10 

is introduced, expreSSions of the kth order which 
have a factor 10 k standing in front of them will also 
have "hidden inside" a factor 10 -k. Secondly, be­
cause a definite value of 10 is never stated, such 
factors must be canceled before the final result 
is obtained. 

An example may be useful here. Suppose a one­
dimensional motion is given with a Hamiltonian 
that has a slow dependence on t, and itis also given 
that if this dependence is "frozen" (limit 10 = 0), 
the motion is periodic. The solution of such a 
motion usually begins with a canonical transforma­
tion to new variables (P,Q) which are the action­
angle variables of the unperturbed motion. If S 
is the generating function of this transformation, 
which in general is also slowly dependent on t, 
then the new Hamiltonian H' is 

H'{P,Q) = H + ~~ 
as 

= H + Ea(Et) 

= H'(O) + EH'(1). (7) 

In the transformed Hamiltonian, the first-order 
correction W(1) has a factor E preceding it, but 
this factor is artificial and is balanced by a factor 
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C 1 that is "hidden inside" the term, as is evident 
from the derivation. In practice, these factors 
must be canceled before, say, the canonical equa­
tions of motion are used. 

THE POINCARE-VON ZEIPEL METHOD FOR 
SLOW TIME DEPENDENCE 

Consider a canonical system with 2N variables 
which has a slow dependence on time. We assume 
that the Hamiltonian H may be expanded in powers 
of E: 

(8) 

We further assume that the Hamilton-Jacobi 
equation for E ~ 0 has been solved and that the 
transformation derived by it has already been 
applied, deriving as action-angle variables for the 
unperturbed motion 

and giving 

H(O) = Jw /2rr, (9) 

with w = w(t) the slowly varying angular frequency. 
In the limit E ~ 0, evidently, w is a constant and so 
are all the canonical variables, except for n which 
is then linear in time. 

To 'solve' the motion we now seek a near-identity 
canonical transformation to new variables (P, Q), 
with 

generated by 

(10) 

such that the new Hamiltonian H* does not depend 
on n*. This is somewhat similar to, but simpler 
than, an approach advocated by Gardner 15 and 
investigated by Contopoulos,2 in which the same 
result is obtained by a succession of canonical 
transformations, each of which pushes the elimina­
tion of n* from H * one order higher. 

If H* is expanded in a manner similar to (8) and 
the time derivative is expressed as in (7), one 
obtains 

(11) 

This equation contains 4N canonical variables, but 
half of them can be eliminated by means of the 
transformation equations 

" oa(m) p. = p. + L.J Em -a--' 
" q, 

(12) 

(13) 

To facilitate the elimination it is best to follow a 
method introduced by Musen 7 and use expansion 
operators 12 (* denotes operation, a/aP,etc.are 
gradient-type operators): 

H*(k)(P,Q,t) = H*(k)~,q + ~ Em aa~;) (14) 

= exp ~ IEm aaCm
) • ~\ H*(k)(P,q,t) 

m=1\' oP oq) 

= ~ EmT(m)* H*(k)(P,q,t), 
m=O 

where 

T(O) = 1, 

T(I) = ~ oaW 0 
,0Pi oqi 

T(2) = ~ au(2) _0_ + 
oPi oqi 

+ .! ~ oa W oaW ~ 
2 ',i 01', oEj oq.oq.' 

, J 

etc. Similarly 

H(k)(P, q, t) = ~ Em s(m) * H(k)(P, q, t), 
m~O 

S(O)= 1, 

(1) _ " ou(1) _o_ 
S - L.J oq. oF. ' , , 
S(2) = ~ oa(2) _o_ 

j oqj oP, 

+ .! ~ ou(1) oa(I) ~ 
2 j,j oqj aqj a.FjaEj' 

and so forth. Substituting all this in (11) and 
collecting terms associated with Ek gives 

The terms with m = 0 simply equal H*(k) and 
H(k) and will be taken outside the summation. 
The terms with m = k also have simple form, 
for in general 

s(k) = L oa(k) _0_ + N(k) 
oq, OP, 

(15) 

(16) 

(17) 

(18) 

(19) 

where N(k) contains only terms with at least two 
differentiations. Substituting (9) then gives 

" (k) 
S (k)*H(O) _ ~ _ua_ 

- 2rr an . 
(20) 

Because the transformation reduces to the identity 
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transformation in the limit of vani shing E, H* (O) 

equals H(O) and due to (9) it satisfies 

T(k)*H*(O) = ° 
since T(k) operators involve only differentiation 
by the qi' which H(O) does not contain. One then 
obtains the basic recursion relation 

~ ao(k) _ H*(k)(P q t) = A(k)(P q t) (21) 21T an ' , , , , 

with 
k-1 

A(k) = 6 (T(m) * H*(k-rri) - S (m) * H{k-rri) 
m=1 

(k) ao(k-l) 
- H - ..c:..:::a::-E-:

t
- (22) 

depending only on orders lower than the kth. If 
n enters only as an angle variable with period 
unity, any function F(P, q, t) may be resolved into 
an "average" part 

1 
(F) = f Fdn o 

(23) 

and a "purely periodic" part with zero average 

(F)per = F - (F). 

The derivative of a purely periodic function is 
also purely periodic and therefore, so is 

ao{k) a -- = - «a (k») + (0 (k») an an per 
(24) 

since the contribution of (o{lt» vanishes. On the 
other hand, H*(k) does not depend on n, so one gets 
the recursive relations 

H*U) = - (A<k», 

ao
U

) = ~ (A(k») ao w per' 

Once these are solved, the calculation may be 
advanced to the next order. 

EXAMPLE: THE HARMONIC OSCILLATOR16 

(25) 

(26) 

The Hamiltonian H" of a harmonic oscillator with 
a slowly time-dependent angular frequency w(t) is 

(27) 

If one 'freezes' the time dependence, one can solve 
the Hamilton-Jacobi equation and derive a canoni­
cal transformation to action-angle variables (J,O), 
generated by 

(28) 

Following this transformation, the new Hamiltonian 
Hbecomes 

Jw (WI) H = 27T + EJ 41TW sin (41Tn), (29) 

where the prime henceforth signifies the operation 
a/a(Et). Let 0 of (10) generate a transformation to 
(J * , " *) such that all orders H * (k) of the new 
Hamiltonian are independent of n*. This, com­
bined with the fact that in the present case the 
only differentiation performed by T(m) of (15) is 
a/an,allows all such operators to be ignored 
except for T(O). 

A further simplification is obtained by noting that 
H contains only two orders, both linear in J: Using 
the argument of (19) this gives, for the terms of 
(18) depending on H, 

6s(m)*H(k-m) = S(k)*H(O) + S(k-l)*H(l) 

w ao(k) aoU-l) (}.;' 
21T --an + ~ 41TW sin(41Tn). (30) 

In what follows, we will for conciseness write J 
instead of J *, restoring the superscript-if 
necessary-only at the end. In analogy with (21) 
we then obtain as the basic recursion relation, 
for k> 1: 

w ao(k) _ H* (k) 

2iT an 

ao(k-l) Wi = - -- -- sin(41TO) - (0 (k-l»)/. ao 41T w 
(31) 

Using (18) directly for k = 0, one simply gets the 
equality of H (O) and H* (0), while for k = 1 this 
yields 

w ao(l) w' 
- -- - H*(1)= - J -- sin(41Tn) 
21T an 41TW' 

from which we get 

H*(1) = 0, 

0(1) = J(w '/81TW 2) COS(41Tfl). 

Higher orders,derived by the use of (31),are 

H*(2) =- (J/161T){W')2/ w3, 

0(2) = - (J/641T){W'/w2 )2 sin (81T0) 

- (J/167rw)(w'/w 2 ), sin(41TO), 

H*(3) = 0, 

((}.;')3 
a(3) = - --.:L 2" 3847r (L' 

cos(121TO) 

- 12~7r(J.)[(:~rJ' COS(81TO) 

+ 1:a1T(:~) 3 COS(41TO) 

- 3;7rW[(:~)'/wJ I COS(41TO). 

(32) 

(33) 

(34) 

(35) 

(36) 
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Note that any term in an O(€k) expression con­
tains the prime operator exactly k times, correspon­
ding to the factor c k "hidden inside." 

At this stage Eqs. (12) and (13) could be used to 
express (J,n*) in terms of (J*,n),up to O(€3). 
In fact, expressing the result in this manner, in 
terms of mixed variables, is not too useful, and 
it pays to "invert" the result and express (J*, n *) 
in terms of (J,n),or vice versa. The shortest 
way to achieve this is by means of the direct 
transformation technique. 17 If 

y'" (p, q) 

are the "old" variables and 

z'" (P,Q) 

are the "new" ones, and if the relation between the 
two sets has the "direct" form 

z = y + 6 €k ~(k)(y), 
k=l 

then for this to be a canonical transformation, 
~(k) must have the form . 

~(k) = Vx(k) + f U), 

(37) 

(38) 

where V is a gradient operator in "conjugate phase 
space" 

y == (q,- p), 

the X(k) are arbitrary functions, and f(k) are pre­
scribed expressions involving lower orders. In 
particular, if (37) is the "direct" form of the trans­
formation generated by (10), one may choose 

(Le.,P is everywhere replaced by p). The cor­
responding f(k) is 

k-l 

(39) 

f(k) = - L; u(,n)*~-a(k-''')(y), (40) 
m=1 

with U(,n) expansion operators depending only on 
the momentumlike components .("') of {(m): 

11'(",) = (~lfm), .•• , ~~,,), 0, ... ,0), 

with 

u(l) = 1T (1)."" (41) 

and so on. 

Of particular interest is the derivation of the 
adiabatic invariant 

which will now be outlined. 

To obtain a(k)(y) one simply uses the expressions 
(34)-(36) without restoring the asterisk super­
script (as was originally planned). To derive 
(41), note that only one component of canonical 
momentum enters the calculation, so that 

U(I)- J*(1) _a_ 
- aJ' (43) 

U(2) = J*(2) ~ + -! (J *(1») 2 £ . 
aJ 2 aJ2 

The second-derivative terms may be safely 
ignored, since all orders of a(k) used here are 
found to be linear in J. Finally, the components 
of the conjugate gradient ~ contributing to z 1 

are simply 

For the first order, f( 1) vanishes and one obtains 

J
*(1) __ aa(1) 

- an 
= J ~ sin(4rrn). (44) 

2w2 

The next terms are 

J*(2) = !!(W')2 + ~ I-W')' cos(4rrn), 
8 (&,,2 4w \w2 

J*(3) = - - 3 sin(4rrn) J (W') 
16 w2 ' 

-8: [(:~)l(&,J sin(4rrn). 

THE "OLD" NOTION OF ADIABATIC INVARJ­
ANCE 

(45) 

In some texts of mechanics 5 and in the older 
literature, the definition of adiabatic invariance 
differs somewhat from the one given here. The 
alternative definition is usually applied to one­
dimensional systems (though generalizations for 
several dimensions exist) and is as follows: 

Given a slowly perturbed periodic motion, con­
sider the action integral 

J = cj pdq (46) 

evaluated over one period of the unperturbed 
system. As the system is perturbed, an "instan­
taneous" J may be evaluated at any time by 
"freezing" slowly varying quantities. Then J has 
the property of adiabatic invariance: If the sys­
tem undergoes a finite perturbation-e.g., a finite 
change of the Hamiltonian from HI to H 2-the 
corresponding change in J may be made arbi­
trarily small by stretching out the perturbation 
over a sufficiently long time. 

The action variable J of (46) is the same as the 
zero-order action variable with which the previ­
ously developed perturbation scheme begins, but 
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its "adiabatic invariance" differs in two respects 
from what was earlier defined as adiabatic in­
variance. First, there exists here no hierarchy 
of invariants each of which is conserved to some 
specified order and secondly, the definition con­
cerns itself with the cumulative change in J over 
a long period in time. In fact, this property does 
not follow automatically from the definition of 
adiabatic invariance used earlier. It is neverthe­
less an extremely useful property, since it allows 
one to derive, using only the unperturbed variables, 
a quantity with long-term invariance properties, 
without even specifying the perturbatiun. 

Since J is the zero-order part of J*, we may use 
(12) to obtain [compare also Eq. (44)] 

au(l) 
J* = J - £ ----an + 0(£2) 

= J + £J*(1) + 0(£2). (47) 

As in (12),U(1) means u(1)(J*,n,t);since J* is a 
constant of the motion, only n and the slow direct 
dependence on t contribute to the variation of the 
first-order correction J*(1). The basic reason 
for the long-term adiabatic invariance of J, stated 
earlier, is that by the arguments of Eq. (24) J *( 1) 

is purely periodic in n, and therefore "nearly" 
purely periodic in t. Over long time intervals, 
its variation is therefore bounded, causing the 
long term conservation of J to be better than might 
otherwise be expected. 

To demonstrate this, expand (47) to 

J= J* - £J*(l)(J*,n,t) + 0(£2) 

= J* - £J*(l)(J*, n, 0) _ £2t aJ*(l) 
a(El) 

+ ... + 0(£2). (48) 

Let a time T = 0(c1) pass. The first term on the 
right is conserved, while the second one will vary 
only through the variation of n. Since the depend­
ence of this term on n is periodic, the resulting 
contribution is bounded and due to the factor pre­
ceding it, of order £. The next term is also 0(£) 
and the same holds for higher terms in the expan­
sion of the slow direct time dependence of J*(l). 
The 0 (£2) terms may contribute to dJ / dt a term of 
form € 2 t/J , but its contribution to the total change 
of J will again be of order £: 

Hence, the long term variation of J is 0(£). 

The variation of other dynamical quantities, on the 
other hand, will be finite. For instance, for H 

(49) 

and each factor here is 0(1). Thus by making E 

arbitrarily small, but keeping T = O(cl ), the 
variation of J may be made as small as is desired 
while that of H remains finite. 

THE POINCARE-VON ZEIPEL METHOD FOR 
SLOW DEPENDENCE ON CANONICAL VARIABLES 

Let a perturbed periodic motion be given, repre­
sented by a Hamiltonian 

"" k (k)(p ) H=L.JEB ,q, (50) 

with (Pl' ql) the action-angle variables (J, n) of 
the unperturbed motion; since we have already 
derived methods dealing with slow time dependence, 
we will simplify matters by not including such a 
dependence here. The motion represented by H(O) 
alone is assumed to be periodic and soluble: we 
shall not require at this stage that H(O) has the form 
(9), but we note that it must be independent of n, 
since J is a constant of the unperturbed motion. 

Instead, we shall assume that the canonical vari­
abIes Yj fall into two groups: "normal" variables for 
which a/aYi maintains the same order in £ and 
"slow~ ones for which it raises the order by one 
level. It is useful to define parameters that dis­
tinguish between the two groups: let 1'j equal 0 or 1 
depending on whether qj is normal or slow, and let 
15j play the same role for Pj' One can then define 

so that (for example) aRia OJ and aH /a Pj are 
always of the same order as R itself. 

As before, let a generating function 

u(p, q) = 'EP;qj + 'E £kU(k)(P, q) 
kol 

(51) 

(52) 

(53) 

define a near-identity transformation to a new 
canonical set (P, Q), with the new Hamiltonian H* 
independent of the transformed angle variable n* 
(a term with k = 0 could be included, but since it 
may not depend on n*, it is not useful here). Again, 
the basic equation is 

H*(P, Q) = H(p, q) (54) 

and this again is expressed in powers of £ and ex­
pressed solely in terms of (P, q). Since p no longer 
appears, it helps to redefine :Pi as 

(55) 

this will be the definition used in the remainder of 
this section. In analogy with (14) one finds 
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H*(k)(p, Q) = expf ~Em~ aa(m) ~J *H*(k)(p, q) = expf ~ Em+o;+Yi aa(m) ~J*H*(k)(P, q) 
lm~1 ; aPi aqi Lt.m a Pi aQj 

m aa(m-Oj-Yi) a *(k) ( ) 
= exp~E ~ alP'. au:*H (P,q) == ~EmV<m)*H* k, (56) 

... I !! m=O 

with V(m) suitable operators and afm) vanishing for 
all nonpositive values of m. Expanding the ex­
ponential gives 

V(O) = 1, 

(57) 

and so forth; because these operators are expres­
sed solely in terms of lP; and 10;, their action on 
any function maintains the ordering in powers of 
E. 

Similarly, 

(58) 

with 

R(O) = 1, 

(59) 

and so forth. Substituting these operators and 
collecting terms associated with Ek then gives, in 
analogy with (18) 

Again, the terms with m = 0 and m = k are separat­
ed. For the latter terms one gets, in analogy with 
(19), 

aa(k-oi-y;) a (k) 

v(k) = ~ a JP. aQ. + M , 
, ! ! 

(61) 

with M(k) and N(k) involving only lower orders. By 
taking k = 0 in (60), one again finds 

(62) 

so that (60) becomes, for the general case 

H*(k) + ~(au(k-Oi-Y;) aH(O) _ aik-Oj-Yi) CJH(O») = G(k), 

i a lPj aQj aQj alP j 
(63) 

where 

k-1 
dk)=H(k) +L; (R(m)*H(k-m)- v(m)*H*(k-'1<») 

m=1 

(64) 

involves only given functions and lower orders. 
For every k a relation of this type is obtained, 
constituting a kth-order recursion formula for the 
derivation of H*(k) and u (k). 

Now the action-angle variables associated with the 
zero-order periodicity (and used here in mixed 
form) 

are assumed to be "normal," so that the left-hand 
side of (63) will include a term 

au(k) aH(O) 

-m aJ* . 

If u(k) appears nuwhere else, the equation assumes 
the form of (21) and is solved in the same manner. 

On the other hand, if U(k) appears anywhere in (63), 
it may not be possible to derive it, for the equation 
t~en becomes a partial differential equation for 
a k). To prevent this from happening, it is required 
that for all Cp;, qi) appearing in H(O) other than the 
action-angle pair, we have the relation 

(65) 

Hence the recursion can be carried out if: 

(i) H(O) has normal dependence on P 1 but does not 
depend on ql; 
(ii) H(O) may depend on any "slow" variable; 
(iii) H(O) may depend on any "normal" variable, 
provided its canonical conjugate is slow. 

Furthermore, it may be shown by extending the 
present calculation that 

(iv) H may include a term H(-1) of order ct, pro­
vided it depends only on slow variables having 
slow conjugates. Such terms are then transformed 
intact to the new Hamiltonian. 

As an example, the Hamiltonian of a charged par­
ticle in a time-dependent electromagnetic field, in 
the regime of guiding-center motion, may be 
brought to the form 15,18 

H == P2 2/2m + P1w/2rr + c 1 ecp(0) + O(E). (66) 

Here (PI> q1) are canonical variables associated 
with the rapid gyration, (P2' q2) represent the 
motion along field lines, and (P3, q3) describe the 
identity of the guiding field line, which changes 
slowly with time (in the references, subscripts (1) 
and (3) have reversed meanings); the variables 
(PI' QI>P2) are normal, whereas the remaining 
ones are slow. Furthermore, the ~ration fre­
quency wand the lowest order c,JO of the electric 
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potential are both functions of slow variables only. 
The last term is of order cl, since its derivatives 
are proportional to the components of the lowest 
order of the electric field E, which are of order 1. 

Evidently,H meets all the previously stated condi­
tions except for one: If </>{o> contains Q2' condition 
(iv) is violated, since P2 is not slow. One therefore 
must impose an additional requirement that a </>(0) / 
ilQ2 vanishes: This reduces to the well-known 
restriction in guiding center theory that the elec­
tric field may have no zero-order component paral­
lel to the magnetic field. 

DmECT CANONICAL TRANSFORMATIONS WITH 
SLOW VARIABLES 

The generating function U(k) gives the transforma­
tion equations as in (12) and (13), in mixed form. 
To bring them to the "direct" form (37) it is use­
ful to generalize (38) for cases in which slow 
variables are present, and this will now be done. 

Let 

y == (p, q) 

be a canonical set and 

y == (q, - p) 

be its conjugate. 1 7 One may now define an index 
r i equaling 0 or 1 depending on whether Yi is nor­
mal or slow, and an index ~i which has a similar 
relation to 51i. With t~s notation, it is possible to 
define vectors Y and Y satisfying relations similar 
to (51) and (52): 

r· 
Yi = E 'Yi' (67) 

y 6.;-; = E Yi. (68) 

As with quantities defined in (51) and (52), a/ay 
and a/aYi are always 0(1). ' 

We now seek the condition for a near-identity 
transformation (37) to be canonical. Actually, in 
what follows the recursion may still be carried 
out even if the transformation is not a near­
identity one and ~}O) terms are included (satisfying 
appropriate conditions), but we shall not develop 
this possibility here. One then finds, as a condition 
for canonical behavior 

= [Yi' Yj ] + ~ Ek{[~~), Y
J

] - [s;i4, Yi ] 

/,-1 
+ I; [~(m), (k-m)]). 

m,,1' 'J 

ExpreSSing derivatives in terms of Y and Y gives 

(70) 

In particular 

[ ] 
6.. aa 

a, Yi = E '--=-. 
ali 

(71) 

Thus 

(72) 

(73) 

It is useful at this point to redefine k for each 
term so that all powers of E become Ek and also to 
replace m by 

M == m - ~i. (74) 

Because the exponent of E differs for each term 
in (73), the new summation over k will begin at a 
different value for each term; this summation limit 
may, however, be uniformly set equal to 1 if it is 
assumed that ~~u) vanishes for nonpositive values of 
u. With these changes, (73) gives 

(

a S(ktL>i) a(~tb} 
o = ~ /-'- _--,J,--_ 

k=1 ay ay. 
J , 

k-L>i-1 a~(M+6.i) a~(k-M-rs-£:.stb}) 
+ ~ L: '_ 1 • 

M=1-6. i s a~ a~ 
(75) 

This suggests the introduction of new "staggered" 
vectors 

DO<) = ~O<tb.i), (76) 

i.e., 
A (k) = ~(k), , , if ~i = 0, 

AiO<) = ~iO<+1), if D.i == 1. 
(77) 

It is also useful (in analogy to what was done in 
Ref. 17) to introduce a curl operator in Y space. 
With this notation (75) may be rewritten as 
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TaiS equation may in principle be used to derive 
a ) recursively, but this turns out to be a rather 
inconvenient approach. It is more useful in deter­
mining the degree of arbitrariness associated with 
a near-identity canonical transformation of the 
form (37). Let two such transformations be given, 
characterized by staggered vectors a (m) and x (m) 

which are identical for orders up to and including 
the (k - 1). For the kth order one finds that the 
right-hand side of (78), which depends only on 
lower orders, is identical for both expansions, 
giving 

Vy x (ll(fr) - x(fr» = 0, (79) 

from which we get 

II (fr) = X(k) + vyl) (80) 

Thus the arbitrariness in specifying the canonical 
transformation at each level of lI(fr) is contained in 
the gradient in Y space of an arbitrary scalar x(k). 
The general form ofll(fr) for a canonical transfor­
mation may be written, in analogy with (38), 

(81) 

where F(fr) is a vector involving orders of II (m) 

lower than the kth and constitutes one particular 
solution of (78). In the following sections two such 
particular solutions will be derived, analogous to 
those found in Ref. 17 for small perturbations. 

DERIVATION BASED ON a(P, q) 

Let a near-identity transformation of n == 2N 
variables 

(j,) «(j,) (fr) ) 
1T == ~1 ,"., ~N-1' 0, ... , 0 , 
i1(~) - (0 ... 0 I'(~) ••• I'Q.» 
u - , " '':IN , , ~ n • 

From this 

P; = Pi + ~ Ek1T~)(Y), 

Qi == qi + E Eke~!i (y). 

(85) 

(86) 

(87) 

If the vectors rr(k) are known, they may also be used 
to expand any function of mixed variables (P, q) in 
terms of y, e.g., 

F(P, q) = F(y + ~Ek1T(I,» 

= exp[~ Ek( w(1,)· :y) ] * F(y) 

= exp[~Ek~(rr}Hs) oOI)J*F(Y) 

= ~EkL(j,)*F(Y), (88) 
k~O 

where, if we collectively denote all "slow" com­
ponents of tby R and all "normal" ones by rand 
if l1~k) and 1r .. ) denote vectors composed of the cor­
responding components of .. (fr) , then 

L(O) == 1, 
L(l) (1) iJ 

= rr.. • or' (89) 

L(2) - 11(2).~ + 1P),_O_ 
- .. iJr R OER 

and so forth. Note that since E is implicit,1T(l) and 
11'(2) should have factors E -1 and E -2 "hidden inside," 
since they are teamed up with the corresponding 
positive powers in (86). For the same reason i'(2) 

should contain a factor c 2 and, indeed, inspection 
y = (p, q) --7 Z == (P, Q) (82) of the last equality in (89) shows that all terms 

have such a factor. 
be given by (37), and let a generating function (53) 
be assumed to produce the same transformations 
via Eqs. (12) and (13). In what follOWS, the relation 
between (37) and (53) will be established in a way 
resembling what was done in Ref. 17 for the case 
when no slow variables are present. As before, the 
calculation may be broadened somewhat beyond 
what is done here, since the method only requires 
that canonical momenta transform in near-identical 
fashion. 

With the notation of (51) and (55) Eqs. (12) and (13) 
give 

(83) 

All functions on the right depend on mixed vari­
ables (P, q); to introduce a dependence on y, it is 
useful to define "partial vectors" adding up to ~(k) 

Substitution in (83) yields 

(90) 

where all terms of a are viewed as functions of y, 
Le., with p replacing P, wherever the latter origin­
ally appeared. This should be identical to (83), and 
therefore 

(91) 

The hi$hest order of L(m) appearing on the right is 
k - 1 la(O) only appears if )Ii :::: 1, for if it depends 
on "normal" variables, the transformation is no 
longer one of near-identity: this is the reason for 
the change in summation limit] and this is there­
fore also the highest order of w(s) appearing on the 
right. Thus, (91) is a usable recursion relation for 
deriving l1(h). 
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Expanding (84) in a similar manner gives 

(k) aa(k-Yi) k-1 a (k-m-y·) 
(J. = --- + 6 L (m). a ' 
, alP; m=1 alP; 

where the definition of lPi reverts to (52). 

Now if 

then 

and if 

then 

Inspection then shows that (91) and (92) may be 
combined to one equation: 

(

" (k-t.·) k-1 " (k-m-t. .») 
k ua' (m) va ' 

Zi=Yi-6 E + 6 L * . 
aYi m=1 aYi 

The dependence on ~i may be removed by introdu­
cing 11 (k) de:Q.ned in (76). Then, using the gradient 
operator in Y space, (93) becomes 

k-1 

1I(k) = - Vya(k) - 6 L(m)*vya(k-m>. (94) 
m=1 

Since it has already been established in (81) that 
1I(k) is arbitrary within some gradient in Y space, 
the summation term represents a particular solu­
tion of (78). 

LIE TRANSFORMS WITH SLOW VARIABLES16 

If Lw is the operator denoting Poisson bracketing 
with a function W of the canonical variables 

Lw{f) = [j, W], (95) 

If one defines [compare Ref. 17, Eq. (35)] 

then 

a (k) a 
Lw = - ~ Ek+1 ~ ~ -

says oYs 

o (k-r s-t.s) a 
=L;Ek~ x _, 

says ays 

(99) 

(100) 

where the lower limit of k in the last summation 
may be chosen as 1 if quantities with negative or 
zero index are understood to be zero. This gives 

Expanding a typical component of (96) gives 

Zi = [1 + (~ll:::) + ~(~ /L(k»2 + .•• ]*Yi 

= ~'EkM(k)*(E""'iYi) 
_"'" kM(k'T i) Y 
- wE * i' 

where the M(k) all have the form 

M(k) = L~) + N(k), 

(101) 

(102) 

(103) 

with N(k) some operator involving lower orders. 
One gets 

z{k} = )"~k+t.i) 
, '>, 

= M(kir i+t.i)*y. , 
_L(k+ri+t.i) y + N(k+ri+t.i) y 
- w • ; • i 

(104) 

which again is the sum of a gradient in Y space 
and an expression involving lower orders which 
(presumably) is a particular solution of (78). 

THE KRYLOV-BOGOLlUBOV-KRUSKAL 
then it may be shown17, 19-21 that the transforma- METHOD WITH SLOW VARIABLES 
tion from Y = (p, q) to 

(96) 

(with the exponential operator defined by its series 
expansion) is canonical. In what follows, the form 
of the Lie transform in the presence of slow vari­
ables will be derived, again following closely the 
derivation for the simpler case when all Yi vary 
on the same scale. 17 Let W be expandable in E 

and let operators Lw(k) be defined through 

"'" k (k) ELw = wE Lw • 

(97) 

(98) 

Krylov and Bogoliubov9- 11 investigated the solu­
tion of a set of n equations vectorially represented 
by 

(105) 

with 

g(O> = (0,0, ... ,0, gW» (106) 

ensuring that in the "unperturbed" limit E --? 0, Yn 
alone varies and all other components of y (to be 
collectively denoted by y) are constant. It is fur­
ther assumed that the unperturbed system is peri­
odic and that Yn is an angle variable appearing only 
in the angle argument of periodic functions. The 
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zero-order growth of Yn is then assumed to be 
linear, from which follows that g(O) may depend on _ n 

y but not on Yn • 

To eliminate the periodicity from this motion, 
Krylov and Bogoliubov used a near-identity trans­
formation to new variables z, given in a direct 
form inverse to that of (37) 

(107) 

The new variables, which can be derived by a suit­
able recursive method, have the property that the 
equations by which they evolve do not contain the 
transformed angle variable zn on the right-hand 
side, but have the form 

(108) 

The first (n - 1) equations of this set, representing 
dZ/dt, then form an independent set not involving 
zn which can be solved separately. 

If y represents a perturbed periodic canonical sys­
tem with a Hamiltonian of the form (50), then the 
canonical equations of motion have the form (105) 
and the Krylov- Bogoliubov method can be used to 
eliminate the angle variable Yn = n. Unfortunately, 
unless precautions are taken, 22, 2 3 the z variables 
will in general not be canonical, so that the trans­
formed variable corresponding to the canonical 
conjugate of Yn will in general not be a constant of 
the perturbed motion, as is automatically achieved 
by the Poincare-Von Zeipel method. 

On the other hand, the Krylov- Bogoliubov method 
has a much wider validity and can be used in non­
Hamiltonian systems. A similar elimination pro­
cedure, which derives the transformation in the 
form (37), has been devised by Kruskal, 8, 12 who 
followed it by the derivation (for canonical systems 
only) of a constant J of the motion, obtained by an 
ingenious application of integral invariants (it is 
the same constant as is obtained by the Poincare­
Von Zeipel method). 

Here the Krylov- Bogoliubov method will be 
generalized for the case when slow variables are 
present. As with the Poincare-Von Zeipel method, 
this allows the restrictions on the form of the 
zero-order equations-embodied in g(o>-to be 
eased. Specifically, some variables other than Yn 
are now allowed to have a zero-order variation 
and this variation (as in the canonical method) is 
passed intact to the "reduced" equations involving 
z. The calculation will be done for the transforma­
tion (107); the treatment of Kruskal' s method, using 
(37), follows practically identical steps and will 
therefore be omitted. 

Following the notation of (89), let Rand r denote 
the slow and normal components of z, and let .,,~k) 
and .,,~k) be corresponding components of .,,(k). Sub­
stituting (107) in the left-hand side of (105) gives, 
with the definitions (67) and (68) extended to z 
variables, 

(109) 

Expressing a typical term of the right-hand side of 
(105) in term of z gives, in a manner similar to 
(88), 

g(k)(y) = g(k)(z + 6 €m.,,(m~ 

= exp (E €"I "'s(m) 0 _a_) * g (k) (z) 
'("S az s 

= exp(L: €nl 1) (m-rs)o_a_) *g(k)(Z) 
m,S s az

s 

(110) 

The operators J({m) resemble those of (89) but with 
1/(m) everywhere replacing 7T(m), Substituting prece­
ding results in (105) gives 

where the factor preceding the last term denotes 
that it be omitted for k = 0 (in that case it is al­
ready counted as the term involving J({k») and 
where in the summation preceding this term h(O), 
has been replaced by g(O), which equals it since in 
the limit £-70, Eqs. (105) and (108) coincide. 

Comparison with (108) shows that the expression 
in the square brackets equals h(k)(z), and this 
equality forms the basis of the recursive deriva­
tion of h(k) and .,,(k). 

The situation now resembles that of (63): In order 
that the recursion be at all pOSSible, unknown com­
ponents of .,,(k) must appear in (111) only once, 
otherwise the result is a partial differential equa­
tion and cannot be easily integrated, One term 
which always contains 1/(k) is contributed by the 
last summation in (111) and equals 

since g~O) does not vanish and zn' the transformed 
angle variable, is normal. No other appearance is 
permitted; hence 

g~O) = 0 for rs = 0 (112) 
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or, stated in words, only slow variables and the 
principal angle variable are allowed to have a zero­
order variation. 

In addition, ,,(k) could enter through the term con­
taining K(k), which has the form [compare Eq. (89)] 

Kk)*g(O) = (17$;:. a + N(k»)*g(O), (113) 

with N<k) containing low~r orders. No problem 
arises here provided rl,k is derived first and TI~) 
only afterwards: Because of (112), this term is 
absent in the first part of the derivation, while in 
the second part those components of TI(k) that 
appear in it are already known. In either case one 
gets 

il (k) 

_Tl_g~O) + h(k)(z) = ~(k), (114) 
aZn 
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depends only on lower orders. The solving of (114) 
then resembles that of (21). 

CONCLUSION 

In the preceding sections, the main methods of 
classical perturbation theory have been extended 
to slowly (or adiabatically) perturbed systems with 
a single zero-order periodicity. At the same time, 
the basic concepts associated with such systems 
(e.g., adiabatic invariance and implicit E) were 
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The main purpose of this work is to find an analog of the Regge-Newton equation for the problem of 
finding tensor and spin-orbit potentials, acting among particles of spin t from the knowledge of the 5-
matrix as a function of angular momentum at a fixed energy. We first find a transformation which makes 
the SchrOdinger equation containiny a central, a spin-orbit, and a tensor potential the matrix analog of 
the Schrodinger equation for spin-" particle in a central and a spin-orbit potential. Next, guided by the 
work of Sabatier for the case of central and spin-orbit potentials, we are able to find the desired inte­
gral equation. The necessary existence and uniqueness of the solution to this integral equation is studied, 
and it is shown that indeed the wavefunctions for tensor and spin-orbit potentials can be represented in 
terms of the solution of this integral equation. A series representation of the wavefunctions, which are 
necessary for finding the potentials from the 5 matrix, is found, but the actual construction of the poten­
tials from the 5 matrix is not considered in this work. 

1. INTRODUCTION 
Information about nuclear forces is mostly obtained 
through scattering experiments, but the quantities 
which are found experimentally do not give us the 
interparticle forces directly. The problem of find­
ing the interaction from the experimental data is 
called the inverse scattering problem. Because of 
the complicated nature of this problem, it it usually 
broken up into two separate parts. The first part is 
concerned with the problem of finding the S matrix 
from the experimental results, that is, cross sec­
tions, polarizations, etc., and the second part deals 
with the determination of the forces involved from 
the knowledge of the S matrix. If we assume that the 
energy range which we are considering is such that 
nonrelativistic quantum mechanics is valid and the 
corresponding potentials are spherically symmetric, 
so that we can make use of partial wave analysis, 
then the problem of finding the interaction from the 
S matrix can be conveniently separated into two do­
mains. The first is called "inverse problem at fix­
ed angular momentum." It deals with construction 
of potentials from the knowledge of the S matrix, at 
a fixed angular momentum, as a function of energy. 
Because of the completeness and orthogonality of 
the radial wavefunctions of one angular momentum 
and all energies, and the existence of the Gel'fand­
Levitan integral equation l and its analogs, there 
exist a great many results for the inverse scatter­
ing problem at fixed angular momentum when the 
potential is independent of energy. Indeed one such 
result, specially relevant to this work, is on the 
subject of constructing the tensor force from the 
S matrix at fixed angular momentum which was 
considered in detail by Newton. 2 

The second inverse scattering problem deals with 
construction of potentials from the knowledge of the 
S matrix at one energy as a function of angular 
momentum. Because of the lack of completeness 
and orthogonality of the radial wavefunction of one 
energy and all angular momenta, the inverse scatter­
ing problem at fixed energy for the case of spinless 
particles in a central potential resisted solution for 
some time until it was finally solved by Newton3 and 
later on this solution was extended by Sabatier. 4 In 
lieu of already existing well-established results for 
constructing potentials from the S matrix at fixed 
angular momentum, one justifies the need to do 
inverse scattering analysis at fixed energy on physi­
cal grounds. That is, although the inverse scattering 

problem at fixed angular momentum is mathemati­
cally elegant, from the physical point of view, the 
assumptions made are not consistent. In other 
words, the assumption that the energies involved 
are such that nonrelativistic quantum mechanics is 
valid and the assumption that, for large values of 
distance, the nonrelativistic wavefunctions, the S 
matrix, are given even for energies as high as in­
finity are not compatible. 

The important point to be noticed is that all the 
results mentioned above were possible because one 
could at least formally deduce the analog of the 
Gel'fand-Levitan equation for the problem at hand, 
without any difficulty. But this is not the c\tse for 
the inverse scattering problem at fixed energy for 
two spin-~ particles in a tensor and a spin-orbit 
potential. This lack of existence of analog of the 
Gel'fand-Levitan, or equivalently of the Regge­
Newton,5,3 equation has been the major reason why 
this inverse problem has resisted solution. Indeed 
it is the main task of this work to find such an ana­
log. As we shall see, the key for finding such an 
analog is the remarkable fact that the Schrodinger 
equation for the tensor force6 problem can be made 
to satisfy a matrix analog of the differential equa­
tion satisfied by a particle of spin ~ in a central 
and a spin-orbit field. 7 Having found this analog, 
then the work of Sabatier8 , 9 for the inverse scatter­
ing problem for the case of spin-orbit and central 
potentials, gives us the necessary indications on how 
to go about finding the analog of the Gel'fand-Levi­
tan equation for the case of two identical spin-t 
particles in a central, spin-orbit, and tensor poten­
tial. 

In Sec. 2 we first review the relevant parts of the 
inverse scattering problems for the case of central 
potentials and for the case of central and spin­
orbit potentials. Next we introduce the transforma­
tion which makes the Schrodinger equation for cen­
tral, spin-orbit, and tensor potentials the matrix 
analog of the Schrodinger equation for central and 
spin-orbit potentials. In that section we also intro­
duce the relevant equations which we expect to be 
the formal analog of the equations found by Sabatier 
for the case of central and spin-orbit potentials. 
But since this analogy between the Schrodinger 
equation for cental, spin-orbit, and tensor poten­
tials and the Schrodinger equation for only central 
and spin-orbit potentials is purely formal, this 

2243 
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extension of the work of Sabatier for central and 
spin-orbit potentials to the case of central, spin­
orbit, and tensor potentials is not straightforward. 
Aside from matrix complication, indeed some of the 
functions needed in this formalism will not exist, 
and, therefore, the formal method must be modified 
and proofs changed. These necessary changes and 
proofs are given in the remaining sections. In 
Sec. 3 we consider analytic tensor and spin-orbit 
potentials and find analytic properties of the wave­
functions and prove that they can be used in repre­
senting other analytic functions. This fact will be 
essential in the necessary existence proofs. Sec­
tion 4 deals with the proposed integral equhtion 
which we expect to be the analog of the Gel'fand­
Levitan equation. We prove the uniqueness and 
existence of the solution to this integral equation in 
Appendices A, B, andC. In Sec. 4, we also show that 
the regular solution of the tensor and spin-orbit 
differential equation can be represented in terms 
of the solution to the mentioned integral equation. 
The generalization of Gell-Mann "nonsense 
term,,,lO which is introduced by our new transfor­
mation of the Schrodinger equation, is amusing but 
it is also a source of some difficulty in this work. 
Section 5 is concerned with a series representation 
of the wavefunction, which is needed when one tries 
to connect the S matrix to the kernel of the above 
mentioned integral equation. Of course,knowing this 
kernel, we then are able to find the corresponding 
potentials. In this work we will not be directly 
concerned with the problem of constructing the 
tensor and spin-orbit potentials from the knowledge 
of the S matrix, but in Sec. 6 we will deal with the 
problem of constructing the potentials when this 
mentioned kernel is already given. An example is 
also given to demonstrate the construction of poten­
tials from a given kernel. 

Let us again point out that the inverse problem 
which we have in mind is for the case of two identi­
cal particles of spin i whose interaction depends 
only on their positions and spins. A general form 
of such an interaction iS 6 

VCr) = ~(r) + ~(r)O"l '0"2 + ~(r)·S12' (1.1) 

where 512 = 30"1 . r0"2 . r - 0"1 . 0"2' ~0"1 and ~0"2 are 
the spin operators r is the unit vector in the direc­
tion of roUse of partial wave analysis decomposes 
the potential matrix into three blocks, 11 two of 
which correspond to the singlet state and the trip­
let state of parity (-)i. The last block corresponds 
to the triplet state of parity (-)i+1. The Schro­
dinger equation for the latter can be written as12 

- r2~ 1/.1 + L(L + 1)1/.1. + r 2V.(r)ljI. = r 2k 2lj1., 
dr2 J ) J J ) 

where 
1 

lj(r) = 2j + 1 

(1. 2) 

x 1(2j + l)Vd - 2(j - 1)~ 6[j(j + 1)]1/2 Vt ], 

L6[j(j + 1»)1/2 Vt (2j + l)Vd - 2(j + I)V 

P
O
·-l }O+OlJ Vd = Vc + Va' L = U 

and I/.Ij is a 2 x 2 matrix whose first row indicates 
the components of I/.Ij belonging to the orbital angu­
lar momentum j - 1 for each of the two possible 
boundary conditions, and likewise the second row 
of 1/.10 corresponds to orbital angular momentum 
j + 1. The boundary condition of the first column 
of 1J;j is that, at time t ---- - 0:, the orbital angular 
momentum of the particles isj -1. For the second 
column the initial orbital angular momentum is 
j + 1. 

Since no restriction on the S matrix is known which 
assures that it corresponds to the potential given 
in (1. 1), one also needs to introduce the spin-orbit 
force in the above interaction. The spin-orbit 
potential is found to make the following contribu­
tion to the potential matrix12 for the case of trip­
let state of parity (_)j+1: 

. Ij - 1 
Vis(r) =lo °l V oCr). 

-j - 2J 
(1. 3) 

The form of differential equations (1. 2) can be 
considerably simplified if we subject the solutions 
of (1. 2) to the transformation13 

E. = rj + 1)1/2 0l/2l 

) U1/2 - (j + 1~1/2J . 
(1. 4) 

Applying transformation (1. 4) to the Schrodinger 
equation (1. 2), one obtains 

- r2 ~ I/IA + r2W(r)~A + D(>")~A = r2k2~A' (1. 5) 
dr2 

>.. =j + 1 , 

- 2(>.. 2 - i) 1/2l. 

)..2 + 7/.J 
(1. 6) 

Under transformation (1. 4), the spin-orbit force 
(1. 3) takes the form 

(>..2 - t)1/2] 
Vo(r). 

-2 
(1. 7) 
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The inverse scattering problem at fixed energy then 
reduces to the question of whether it is possible to 
find the potentials Va, V"~ and V 0 given the S matrix 
for all angular momenta, and, if it is possible, what 
is the p'rocedure to be followed in order to con­
struct these three spin-independent potentials from 
the information on the S matrix? 

2. A REVIEW OF PREVIOUS RESULTS AND A 
REDUCTION OF THE PROBLEM 

The main tool in the construction of central poten­
tials from the S matrix at fixed energy is the 
Regge-Newton equation. That is, from the informa­
tion on the asymptotic behavior of the regular 
solutions one is able to define an integral equation 
whose solution is directly related to the wavefunc­
tion and the central potential of the scattering 
problem. More speCifically let us consider the 
inverse problem at fixed energy for a spinless 
particle in a central potential u(r). The wavefunc­
tion v,\(r) for this particle satisfies the following 
equation: 

where we have chosen units in which k 2 = 1, A = 
I + t a!!d V,\ (r) is assumed to be the regular wave­
function satisfying the boundary condition 

If we now let v,\(r) be the regular solution to Eq. 
(2.1) when u(r) is replaced by u(r), then,following 
the method constructed by Newton3 and its genera­
lization by Sabatier, 4 we define the following input 
function: 

(2.3) 

where the set n depends on the nature of the poten­
tials being considered and the coefficients cA are 
left arbitrary for the moment and are to be found 
later from the information on the asymptotic be­
havior of v,\(r). Next the Regge-Newton equation 
is defined: 

T 

k(r,r') =j(r,r') - Jodpp- 2k(r,p)j(p,r'). (2.4) 

Then it can be shown that vA(r) , the regular solu­
tion to (2.1), satisfies the following equation, 

A ~ 0, (2.5) 

if the coefficients c,\ are chosen in such a way that 

u(r) - u(r) = -2r-1 d~ {r-1k(r, rH. 

Since we are interested in the inverse problem, in 
other words, since u(r) is our unknown function and 
the asymptotic behavior of the VA (r) are the only 

things which are specified, therefore Eq. (2. 6) can 
be viewed as the definition of u(r) if the coeffi­
cients cA are chosen in such a way that the right­
hand side of Eq. (2. 5) has the proper asymptotic 
behavior. 

At this point we should realize that the question 
of finding the potential u(r) from the S matrix is 
now reduced to finding a set of coefficients, which 
are dependent on our choice of the comparison 
potential u(r). In other words, having chosen a 
comparison potential u(r) and a set of coefficients 
c,\ that make Eq. (2.4) have an acceptable solution, 
Eq. (2. 5) gives the regular solution to the differen­
tial equation (2.1) in which the potential u(r) is 
defined by Eq. (2. 6). The only condition which is 
then to be realized is that the set {cJ should have 
been chosen in such a way that the regular solution 
given by Eq. (2. 5) has the desired asymptotic be­
havior. In order to satisfy the asymptotic condi­
tion on the regular solution defined by Eq. (2. 5), 
one needs to note that the substitution of (2. 3) in 
(2.4) and use of (2.5) implies that 

k(r, r') = E vA(r)v,\(r')c,\' 
'\dl 

(2.7) 

Next, substitution of (2.7) in (2.5) will give us a 
representation of the regular solutions which is 
essential for relating the coefficients cA to the S 
matrix, 

It is shown in Ref. 3 that if the comparison poten­
tial is suitably chosen, in the limit as r ~ 00, Eq. 
(2.8) gives the coefficients c,\ in terms of the phase 
shifts. Clearly, the coefficients c,\ having been found 
from the asymptotic form of Eq. (2. 8), then the 
regular solutions defined by (2.5) will have the de­
sired asymptotic behavior and therefore the poten­
tial u(r) defined by (2.6) is the desired potential. 

For the sake of completeness let us also note that 
it was found by Sabatier4 , S that when the potentials 
under consideration are analytic, then the set n in 
Eq. (2. 3) can contain only the positive integers and 
half-integers and, for example, for the case when 
u(r) = 1 and u(r) = 0, the coefficients c,\ are given 
ass 

cA = - 2A/1T, for positive integers, 

= 0 otherwise. 
(2.9) 

From Ref. 8 we also note that, given the potentials 
u{r), u{r) and the coefficients cA such that Eq. (2. 6) 
holds, vA{r) can be represented in terms of vA{r) in 
a form similar to Eq. (2. 5): 

(2. 10) 

Having seen the basic approach to the inverse 
problem for spinless particles in central potentials, 
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let us now briefly review the work of Sabatier9 for 
the case of scattering of a spin-t particle by a 
central and a spin-orbit potential. 

It is shown in Ref. 9 that the differential equations 
of interest are 

where cp: and cp~ are the regular solutions to (2.11) 
and U(r) and Q(r) are related to the central and the 
spin-orbit potentials. Again one tries to reduce 
the problem of finding the potentials from the S 
matrix to the problem of finding a set of coeffi­
cients from which the potentials and the wavefunc­
tions can be easily defined. In Ref. 9, this is accom­
plished by introducing the following input functions: 

(2. 12) 

where ct are the set of coefficients which are to be 
found from the S matrix, the set S contains positive 
integers and half-integers if the potentials under 
consideration are analytic, and sA (r) is the regular 
solution to Eq. (2. 1) for the case when u(r) = 1. 
In other words 

(2. 13) 

Next the analog of the Regge-Newton equation is 
defined as 

k±(r, r') = FF(r)p(r, r') - fo" dpp -2k'f(r, p)f±(p, r') 

(2. 14) 
with 

k±(r, r') having been defined, it is again possible to 
show that the regular solutions to Eqs. (2. 11) 
satisfy the following equations: 

if the coefficients cr are chosen in such a way 
that14 

2k±(r, r) - 2r-1 [1 ± r2Q(r) ]k±(r, r) 

= {r2U(r) ± 2r2Q(r) ± r 3Q(r) + r 4Q2(r)}F±(r). 

(2. 16) 

Again we note that from the inverse scattering 
point of view, Eqs. (2.16) are to be used as the 
definition of our unknown functions U(r) and Q(r) 
and the coefficients ct are to be chosen in such a 
way that the right-hand sidesofEqs.(2.15)havethe 
desired asymptotic behavior. Although the analogs 

of Eqs. (2.4) and (2.6), that is, Eqs. (2.14) and 
(2.16), are now coupled, it is still possible9 to 
find U(r), Q(r), and rp~ if the coefficients ct are 
given, and therefore the problem is again reduced 
to finding the right set of coefficients cr which 
gives the desired asymptotic behavior of the regu­
lar solutions. 

For the inverse scattering problem of two identical 
particles of spin t in a central, a spin-orbit, and a 
tensor potential, we also would like to reduce the 
problem in the above manner. But, having seen the 
complication which arises when one tries to intro­
duce even the spin-orbit potential alone in the 
Schrodinger equation, we first would like to make 
Eqs. (1. 5) as similar to Eqs. (2.11) as possible. It 
is remarkable that the following simple transfor­
mation makes the Schrodinger equation containing a 
tensor force become the matrix analog of the Schro­
dinger equation containing only a spin-orbit force: 

(2. 17) 

Subjecting solutions of Eqs.(1.5), when the spin-orbit 
force is also present, to T A for values of ~ ;<0 i, we 
obtain 

d2 
r2 - ell + {- r2W(r) - 1 - N(l + M)[1 - r 2V(r)] 

dr 2 " . 

+ 2Ml(1 - r 2V(r) ]}ell" = (~ 2 - i) 4>", (2. 18) 

where 

W(r) = - D + W(r) - ~ Vo(r)l, 
L
- 1 

N= 
o 

Special attention is needed for the case of ~ = t, 
because for that value of the angular momentum the 
transformation matrix (2.17) is Singular and there­
fore there is no reason why Eqs. (2. 18).should be 
related to (1. 5). Of course, at ~ = t even the Eqs. 
(1. 5) deserve special consideration,15 because at 
~ = t the differential t::9uations (1. 5) are uncoupled 
and the elements16 111/11/2 and 12V/1/2 correspond 
to states with the orbital angular momentum - 1 
and 21V/1/2 and 22V/1/2 correspond to states with 
the orbital angular momentum 1. If we now remem­
ber the definition of 1/1 at time t -7 - 00, we note that 
the only term in iii 1/2 which has a physical meaning 
is the function 22ij/1I2 and, as far as the physics is 
concerned, we lose nothing by assuming the other 
elements of V/ 1/ 2 are identically zero. On the other 
hand, we can certainly take the nonphysical ele­
ments of V/1/ 2 not to be identically zero, as long as 
we accept them only as mathematical functions and 
the defined 1/1112 is a solution to (1. 5). At this point 
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let us note that at .\ = 1 the element 22~1/2 of ~1/2 
satisfies the same differential equation as the one 
satisfied by 22iji1/2' and,therefore,they are identi­
cal if we choose the same boundary condition for 
them at r = o. It follows that <P 112 and lii 112 are 
physically equivalent and the fact that they can dif­
fer in their nonphysical elements is immaterial. 
Therefore, in this work, Eqs. (2. 18) are considered 
as the Schrodinger equations for the interaction 
containing the tensor force and the spin-orbit 
force even at .\ = t. 
Inspection of (2. 18) reveals that it is the matrix 
analog of (2. 11b), where - W(r) - l/r 2 -
[N(J + M)/r2)[1 - r2 V(r)] is the matrix analog 
of U(r), (M/r2) (1 - r 2V) is the analog of Q(r), and 
<P).. is the analog of r.p~. We can make the analogy 
complete, if we introduce the matrix function cI1 
which is a solution to the differential equations 
obtained by changing the value of .\ to - .\ in Eqs. 
(2.18). At this point we would like to point out that, 
although we have found a matrix analog to differen­
tial equations (2.11), there is no reason to believe 
that the method developed by Sabatier for represen­
tation of solutions to Eqs. (2.11) should generalize 
to the case when these equations include potentials 
which are not multiples of the identity matrix, be­
cause, besides the possible commutation difficul­
ties, the proposed analogs to potentials U(r) and 
Q(r) are such that, at r = 0, the functions r 2U(r) 
and r2Q(r) need to be different from zero and this 
is exactly the opposite of the assumption made for 
the case of only central and spin-orbital potentials. 

Disregarding the mathematical questions for the 
moment, if we apply the method Sabatier developed 
for the case of central and spin-orbit potential to 
Eqs. (2.18) and modify the method in such a way 
as to circumvent some mathematical difficulties, 1 7 

we expect the analog of Sabatier's equations for 
the case of central, spin-orbit, and tensor poten­
tials to be as follows: 

K_(r,r') = R../_(r,r') - .rOT dpp-ZK_(r, p)f-(p, r'), 

(2. 19) 

K+(r, r') = R+f+(r, r') - JT

dpp-2K+(r,p)f+(p, r'), 
a 

with 

f± (r, r') = 6 (- t ± '\)y).. (rr,)A+1I2, 
A€-\ 

R± = t(rg_ 'F r- 1g+, rg_ ± r- 1g+), 

g± = exp{± faT dppV(p)}, 

51 = {I, 3/2, 2, ... }, and for now YA are a set of 
arbitrary constant 2 x 2 matrices. Next let us use 
the row vectors K_(r, r') = (llK(r, r'), 12K(r, r')) 
and K+(r,r') = (21K(r,r'), 22K(r,r')) to define the 
2 x 2 matrix 

L
K.Jr,r'J 

K(r,r') = . 
~(r,r') 

(2.20) 

Having defined K(r, r') by analogy with the work of 
Sabatier, if the YA are chosen in such a way that 

2K(r,r) - 2r-1{1 + M[l- r 2V(r)]}K(r,r) 

= {- N(l + M)[l - r 2V(r)] - r2[W(r) + 2V(r)l] 

- 2r2V(r)M - r 3 V(r)M + r 4V2(r)I}R(r), 

(2.21) 
where 

R(r) ~[~J, (2.22) 

then we expect that the regular solutions to Eqs. 
(2. 18) have the following representation: 

<P).. = TdR(r)r)..+ 1/2 -faT dr'r,2 K(r, r')r,)..+1/2}, 

(2.23) 
with 

T ~ = (- t U + AN). (2.24) 

It is our main task in the remaining sections to 
show that the functions ~A and K(r, r') introduced 
in this section are indeed well defined and that <PA 
is a solution to the differential equations (2.18) 
and, therefore, the inverse scattering problem for 
tensor and spin-orbit potentials can be completely' 
solved if one is able to find the set {YA} such that the 
functions <P).. of (2.23) have the desired asymptotic 
behavior. 

3. ANAL YTle PROPERTIES OF THE WAVE­
FUNCTIONS 

From the point of view of the inverse scattering 
problem, Eqs. (2.21) indicate that not any arbitrary 
K(r, r') defined through Eqs. (2.19) is acceptable, 
because, in derivation of the equations in Sec. 2, it 
was necessary to assume that W(r) is diagonal and 
V(r) is a multiple of the identity. In other words, 
the set {YA} must be such that not only Eqs. (2. 19) 
have a solution, but also this solution, that is, 
K(r, r), must be such that when it is substituted in 
Eqs. (2. 21) it will give us a diagonal potential 
W(r) and a potential VCr) that is a multiple of the 
identity. Indeed, it must be shown that such a set 
of {Y)..} exists. 

A step toward this proof is to assume that the 
potentials are analytic and to see whether there 
can exist a set {yJ such that Eqs. (2. 21) are satis­
fied if we replace K(r, r) by 

,,~ r)"+1/2 
LJ .... )..Y).. , 

)..€S 

where ~).. is the regular solution to (2.18), with 
W(r) a diagonal potential and VCr) a multiple of the 
identity, and 5 = g, 1, ~, ... }. In here we are not 
assuming that Yl/2 = 0, because we would like to 
find out what condition the potentials must satisfy 
so that Yl/2 can be put equal to zero. Also, under­
standing of any condition that (2.21) may put on 
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Yl/2 will be of use in extending the class of poten­
tials with which we can deal. 

To study the analytic properties of ~'" the regular 
solution to (2.:.18), we need to define a boundary 
condition on <1>" at r :;:: O. In the absence of any 
well-established boundary condition on the regular 
solution to the Schrodinger equations when a ten­
sor force Vt (r) is present and in the desire that 
the regular solution to (2. 18) be representable in 
a form given by (2. 23), we find that it is convenient 
to define the boundary condition through the follow­
ing function for the case when Vt :;:: r2Va :;:: r2Vo :;:: 
Oat r :;:: 0: 

On :;:: W n + M)z-l + (I - M)z}z- V1+1)/2 

X [(2 + 2nN)/{n2 - 1)]~n/2 for n > 1. (3.1) 

o (z) satisfies the differential equation n 

d 2 - d - -
Z2 -Q,,{z) + (2M + n + l)zd-Q,,{z) :;:: Wn{z)Q", 

dz 2 z 
(3.2) 

where Wn{z) :;:: z2{w+{z)n - nV{z)M} + ~W_{z) x 
(I + M)N + z2{1 - z2V{Z) + (z2/2)W_{z)}N{l + M), 
W{z) :;:: W+{z)1 + W_{z)N and W+ and W_ are mul­
tiples of the identity. 

If we assume the potentials are analytic in a circle 
of radius Ro > 0, I z I < Ro, then we can represent 
them as 

00 

z2 V{z) :;:: L; 1"f-m, 
m~1 

00 

W_{z) :;:: L; bmzm, and 
m~1 

- -
Now the boundary condition on <1>" in terms of ~" 
can be represented by the following conditions: 

On{O) :;:: Cn.O == 1 - [(I + M)/(n + 2)] 

.{I + ·Ha2 - a~)N} for n> 1. (3.4) 

The exact value of On at z :;:: 0 given by (3. 4) was 
motivated by (2. 23). 

Having defined the boundary condition for the solu­
tion to differential equations (3.2), we now would 
like to show that it can be represented by the 
following relations 18: 

(3.5) 

where 

'm-l 
C - m+n-2M L;A C 

n.m - m{m + 2 + n)(m - 2 + n)p~ n.m-p n.p' 

n> 1, 

and Cn •O is given by (3.4). 

To prove that the above representation is valid, 
let us definellAl1 :;:: max ijo1 211ijAII, Clearly there 
exists a number b{R) such that II(d/dz)Wn{z)11< 
(1 + n)b{R) for I z k R < Ro' Consequently, 
IlAn.m+llk (I + n)b(R)/ Rm and an upper bound for 
Cn ,m can be defined through the equation 

_ 2{1 + n)b{R) J -1 
dn.m+1 - (In + l)(m + n _ 1) ldn.m + dn.m - 1R 

+ ... dn .oR-m}, with dn •o :;:: 11<"''',..0 II. (3.6) 

The so-defined numbers are clearly larger than 
the corresponding IICn •m II, and they can be rewrit­
ten as 

d - (Prt 2{n + l)b(R) + R-1p{p + n - 2)\d 
n.m+l - V~o (1 + p)(n + P - 1) / n.O· 

(3.7) 

Following the method used in Ref. 9, we find that 

- _ (P=C 2Rb{R») 
en - max II ~P dn •O' 

t~.· ... Po P=O\.l 'PI 
(3.8) 

where Po :;:: max {PiP < 2Rb(R) and P is an inte­
ger}. 

Therefore On' n > 1, is analytic in a circle of 
radius R/2. 

Calling 01 = <1>1/2' we find it is also analytic in the 
circle of radius R/2, if a1 + /1 :;:: O. In this case 
the differential equations satisfied by elements of 
0 1 are given as 

Z2~ 22Q - z2{W+{z) + W_{z) - V{z)}2201 dz 2 1 

:;:: 2 22(21' (3.9b) 

z2 d
2

2 
1201 - Z2{W+(Z) - W_{z) + V{Z)}12~ 

dz 

= - 2{1 - z2V{z)}22n1 , (3.9c) 

where we have assumed 21n1, which satisfies the 
differential equation (3. 9b), is identically zero, The 
values of 11(21, 1201 and of their derivatives at 
z :;:: 0 are assumed to be llC1 0' 12C1 0' llC1 1 and 
12C1, l' which at present, except for tlie assumP1!on 
that llC1 0 '" 0, are arbitrary numbers. z-2 2201(Z) 

is assumed to have the value of ~ at z :;:: O. Need­
less to say, these boundary conditions on ~ are 
again motivated by (2. 23). The solutions to (3.9) 
will have the following representations: 
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00 

llQ (Z) = :6 llC Zm with llC 
1 m-2 

= :6 A- llC for m ~ 2, 1 1, m 
m=O 

. 10m m(m - 1) m=O m-p lop 

00 

22ii
1

(z) = :6 22C zm 10m 
moO 

with 22C 
1,m 

m-1 
1 :6 A+ 22C 

(m - 2)(m + 1) p=o m-p l,p for m? 3, (3. 10) 

00 

12 0 (z) = :6 12C zm with 1 1, m 
m cO 

12C - 1 ~mi A- 12C - 2 t F 22C ~ 
1,m - m(m _ 1) _ m-p 1.p m-p l,p 

p-o moO 
m ? 2, for 

where 

22C - 22C - 0 22(; _ 2 
1.0 - 1,1 -, 1.2 - 3' FO = 1, 

Fn = - fn for n? 1, 

Ai=a1'ff1, A~=a2'ff2 and A;=an 'ffn±bn- 2 

for n? 3. 

We would like to point out that 22U1 is usually re­
ferred to as the "sense" solution and that it is 
customary to give the name "nonsense" solution 
to llUl . By analogy, l2Ul is a generalization of a 
"nonsense" solution. Of course, in order to define 
!lUI and 12Ul uniquely, Eqs. (3.10) inform us that 
we must specify llCl •O' 12Cl •O' llC1.l and 12Cl •1 • 

Equation (3.10) enables us to give a power series 
solution for fi1 : 

00 

~(z) = L; Cl,mzm where 
m:{) 

[

llC 12C1 ] 1.m .m 
Cl m= . 

• 12C 22C
l I,m ,m 

(3.11) 

Having seen the analyticity properties of the solu­
tion to (2.18), let us see whether the desired ex­
pansion is possible, that is, find the set {YiJ 
which satisfies the following equations: 

M(I + M)z-2 + (I - MH 6 ~AYAzA+1/2 
A€S 

? 00 z 
=L;Bnzn =g_Bo + ig_{I + M)l dz'z,-l 

-a ° 
x \- z'2(W+ + 2V)J - z'M!!:... (z'2V) + z'4V2j dz 
- ~g~N} + ig+(1 - M)f dz'z,-l 

o 

x(- z'2(W+ + 2V)1 - z'M d~/(z'2V) 

+ z'4V2) - 2(1- Z'2V + i2W_)z'2g~N). 
(3. 12) 

Equations (3.12) are nothing but Eqs. (2. 21) written 
in integral form. In this equation Bo is not given, 
but is to be found. Since we would like K(O, 0) = 0, 
we have,however,assumed that it is of the form 
B 0 = (I + M)B'. The other Bn can, of course, be 
foun~ usin~ the values of an' bn,/n, andBo' Replac­
ing <l>A by ~ and using the representations given 
in (3.5) and h. 11) in the left side of (3.12), one 
finds 

00 n 
i:6zn~ {N(l - M)(m + 2) - 2z 2J 

n;() m;() 

+ N(I + M)(m + 2)z4}cm+2.n-mYm+2 
00 

+ nO - M)z + (1 + M)z-l} :6 Cl.nYlzn 
n=() 

(3.13) 

Comparing coefficients in (3.13), we are led to the 
following relations: 

Bo = (1 + M)Un + i(a 2 - a~)N +(h + N)Cl,lY1}' 

1'1 = - Ma 3 - f3 - 2a2al + 2al + 2aJ"2 + b l ) 

x {(1 + (i)n + (1 - (i)N}O - M), 

- - 12C jllC 
O! - 1,0 1,0' 

n-3 
Cn.or.. = Bn + E Cm+2,n-mYm+2' for 

m=O 

where 

Bn = (I + M) (n2n_ 1) ~NBn+2 + n ~ 2 

n ? 3, 

(3. 14) 

[ a1B n - l J [f 1 \ x Bn - n + 1 + PnB n-2 - (' + n + 2JCI.n+l 

a l Cl ,n + Cl.n-l]- 1 
- (n + 1)(n + 2) Pn n + 2 1'1\ 

+ (I - M)N(Bn_2 - C1 ,n-lY1) 

n 

[ -1 m+2 J' - n + 2 + m + 2 +n+T NPn Cm + 2 ,n-2-m 

a~Cm+2,n-3--m + Pn,m, I 
- (n + l)(n + 2) n + 2 PnCm+2,n-4-m\ 

+ (I - M)[Pn,~Cm+2,n-4-m- (m + 2)Cm+2,n-2-m] 

2n ' 

with 2 

[ 
a2 a l ] I 

Pn = 11 + f2 - n(n + 1) ;n 
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and 
_{1 if m<n-3 

Pn •m - • 
o if m==n-3 

Since the inverse of Cn •O' which is given by 

G~-.~:::: (1 + 2/n) 1 - (l/n){t - ~(a2 - a~)N}(I - M), 

(3.15) 

exists for the relevant values of n, (3. 14) will give 
us the desired values of '}'A. To see whether this 
defined set of Yk will indeed make the left side of 
(3. 13) analytic in a circle of nonvanishing radius, 
so that relations (3. 13) can be satisfied, let us find 
some bounds on Ym' Because of the bounds on B' s 
and C's, clearly in a circle of radius 17 < R/2, we 
can+ find a finite E.onstant q(17~ such that IIBn II < 
17-n 2. q(17) and iiCn,m il < 1J m+ ·~CIJ). Calling 

q'(1J) == 2q(1J) [supIICn-6 il ], 
n~2 • 

we can define rn ~ llYn II with r2 == II Y2 II by the 
following relations, 

from which it follows that 

or 
rn :::: 1J-n+

2{1 + q'{1JW-2r2 

llYn II s {q'{1J)}-niJ. 

Since 
_ 00 00 Izl m 

lin,. II == L; IICn.mllolzlms {j(1J)L; -m-' 
m~ m~ 1J 

(3. 16) 

(3. 17) 

it follows that L't:;:c2fimYmzm is absolutely bounded, 
uniformly in z, by the convergent series 

(3. 18) 

This implies that the left-hand side of Eqs. (3.13) 
is analytic, the necessary interchange of summa­
tions is justified, and therefore we can conclude 
that given the set of potentials analytic in a circle 
of radius R, we can find an acceptable set of Yk' 
which makes the relations (3.13) true in a circle 
of nonvanishing radius less than R. 

4. INTEGRAL EQUATIONS 

In this section our aim is to show that there exist 
many sets of {y)J such that the corresponding 
W(r) is diagonal and V(r) is a multiple of the iden­
tity. In other words we can find sets of {yJ such 
that the function K(r, r') defined through Eqs. 
(2.19) and (2.20) exists and the corresponding 
potentials defined through Eqs. (2. 21) are such 
that the potential W(r) is diagonal and V(r) is a 
multiple of the identity. We will also show that 
the regular solution to Eqs. (2. 18) is given by Eq. 
(2.23). But, in order to state the above purpose 

in a more preCise way, we find it convenient to 
break up the problem into two cases. 

Case 1: The diagonal analytic matrix function 
W(r) and the analytiC function V(r), which is not a 
matrix, are such that, at r == 0, the functions 
r 2W+(r) ::::: r2~T(r) == W_(r) == rWJr) + rVer) :::: 0 
and the defined numbers an' bn ,and /. are such that 
a3 - 13 - 2a2a1 + 2ai + 2a:/2 + b 1 == O. In this 
case, there exists a set of constant matrices 'YA' 
Yl/2 == 0, such that the following is true: Let us 
define 

1 (r, r') == "E (- ~ ± A)(rr')A+1/2'l\, 

± ACS
j [R_{r

J Sl == {I, 3/2, 2, 5/2, ... }, R(r) == , 
R+(r) 

R±(r) :::: {{rg_(r) 'f r~lg+(r), rg_(r) ± (r)-lg+(r)} 
and g±(r) == exp{ ± Jo dr'r'V(r')}, and suppose ~ 
are the unique row-vector solutions of the integral 
equations 

I4(r,r'):::: R±(r)1±(r,r') - JoY
dpp-2K±(r,p)1±(p,r'). 

(4.1) 
Form the square matrix K(r, r'): 

[

K_(r,r')J 
K(r,r') == • 

l4{r, r'} 

Then 

K(r,O) == 0 
and 

{- N(t + M)ll - r 2V(r)) - r2lW(r) + 2V(r)J] 

- 2r2V(r)M -r3V(r)M + r 4V2(r)I}R(r) 

== 2K(r, r) - 2r-1K(r, r) - 2r-1 

x ll-r2V(r)]MK(r,r) (4.2) 

and K(r, r') solves the partial differential equations 

\ r2 d
2 

_ r 2W(r)t .K(r, r') 
(dr2 I 

== ~ r'2 ~ - 2r'[1 - r2V(;)]M.if. + 
( &'2 dr' 

+ (N + M + NM) [1 - r2v(r)]iK(r, r'). (4.3) 

The proof of the above statement is given in Appen­
dices A and B. 

Application of the differential operator defined in 
the left-hand side of Eqs. (2.18) to 

4>>.. == (- ~t + AN){R(r)r k +1/2 
- f; dr'r,-2K(r, r') 

x r,k~1/2} , (4.4) 

together with two integrations by parts and use of 
(4. 3) and (4. 2) and noting that (4. 4) satisfies the 
boundary conditions given in (3.4), verifies that 
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(4.4) is the regular solution of Eqs. (2.18) for the 
case of A > ~. Although, from the point of view of 
the inverse problem, we do not need the form of 
cI> 1/2 for Case 1, since 1'1/2 = 0 in this case and 
cI> 1/2 is not needed when one tries to find 'Y)... from 
scattering information, for the sake of compieteness 
and possible physical use let us mention that the 
"sense" solution and a "nonsense" solution can be 
given as follows: 

1'1/2 = - (1'0/ 2)(1 + N)(I - M),and Yo ;r. 0, a number. 
Let cp satisfy the differential equation r2cp - r2 x 
(W+ - W_ + V)cp = 0 and the boundary conditions 
cp(O) = ~ and cP(O) = - tal' let ~(r) be defined as 
before, let p' = 1( J - N)( 1- M), let the row-vector 
cp = (cp, cp), and define 

22c1>112 = r 2g_(r) - f; dr'r'-1{21K(r, r') 

+ 22K(r, r'n, 
then there exist K±(r, r'), the row-vector compo­
nents of a 2 x 2 matrix K(r, r'), which solve the 

(4.5a) equations 

11c1>1/2 = ~g+(r) - ~ foT dr'r'-l{l1K{r,r') 

- 12K(r, r')}. (4.5b) 

The proof is the same as that of (4. 4), except that 
for proof of the fact that (4. 5a) is the "sense" solu­
tion, one needs to observe that the function 

11o{r) = r 2g_{r) - J T dr'r'-l{l1K(r, r') + 12K(r, r'n 
o 

(4.5c) 

satisfies the same differential equation as the one 
satisfied by a "nonsense" solution, that is Eq. 
(3.9a). But since 110(0) = ~0(0) = 0, this implies 
that 11o{r) is identically zero. For this case we are 
unable to give a form of 12c1>l/2(r) in terms of 
K{r, r'). Again from the point of view of the scatter­
ing problem we do not need to know the form of 
12c1> 1/2{r) in this case, but as we shall see for the 
general case, when 'Y1/2 ;r. 0, the lack of having a 
simple relation between 12c1> 1 2 and K{r, r') will 
unfortunately complicate the ~orm of the integral 
equations defining K{r, r'). 

We conclude this case by noting that we can find 
the analog of equation (2. 7) for the case when the 
Schrodinger equation contains a central, a spin­
orbit, and a tensor potential if we again substitute 
the representations of f±{r, r') in terms of 1')... in 
Eqs. (4. 1) and then simplify by making use of Eqs. 
(4.4): 

K(r,r') = .6 cI>)...(r)1')...r,)"'+1/2. 
)...(0\ 

(4.6) 

Having found the desired relations for the case 
when 1'1/2 = 0, or equivalently when a3 - f3 - 2a2a1 
+ 2ar + 2a:J2 + b 1 = 0, let us now consider the case 
when 1'1/2 ;r. O. 

Case 2: The diagonal analytiC matrix function 
W(r) and the analytiC function V(r), which is not a 
matrix, are such that r2W+ = r2V = W_ = rW+ + 
rV = 0, when r = 0, and ths'defined numbers an' bn , 
and!" are such that a3 - h ~'2a2ai + 2ar + 
2a1f2 + b 1 ;r. O. In this case, again! there exists a 
set of constant matrices ')').,., with 1'1/2 ;r. 0, with the 
following properties. Let 

51 = {1,~, 2, ... }, f(x) = .0 x)"'+1/2')').,., 
)"'(SI 

f_(x) = - xj(x),ir(x) = (I + M)Yl/zX - f(x) - f-(x) , 

K_(r,r') = R_{r){j_{rr') + (r'/r)j{r2n + f 1{r,r') 

- fo
T 

dpp-2K_{r, p){f-{pr') + (r'/r)j(prn, 

K+(r, r') = ~(r).4(rr') - fo
T 

dpp-2 ~(r, p)ft.{pr'). 

(4.7) 

Furthermore, 

K(r,O) = 0, 

2K(r, r) - 2r-1 {I + [1 - r 2V(r))M}K(r, r) 

= {- NO + M)[1 - r 2V(r)] - r2[W(r) + 2V(r)I] 

- 2r2V(r)M - r 3V(r)M + r 4V2(r)I}R(r) (4.8) 

and K(r, r') is a solution to the partial differential 
equations I 

r2 ~ d
2 

_ W(r)(K(r, r') = ~r'2 ~ 
Idr2 \ I dr,2 

d 
- 2r' [1 - r 2V(r))M dr' + 1 

+ (N + M + NM)[l -'- r 2V(r)]}K(r, r'). (4.9) 

Proof of existence of the set {y)...} with 1'1/2 ;r. 0, 
)...'S 

such that the defined function K(r, r') exists and 
satisfies Eqs. (4. 8) and (4.9), is similar to that of 
the case when l' 1/~ = 0 and is given in Appendix C. 
By using K(r,r'),theregularsolutionto Eqs.(2.18), 
for values of A> t, the "sense" solution for A = ~, 
and a solution to (3. 9c) can be written in the form 

cI>)... = (- it + AN){R(r)r)"'+1/2 - fo
T 
dr'r'-2 

)...+1/21 
x K(r, r')r' J' 

22c1>1/2 = r 2g_(r) - fo
T 
dr'r'-1 {22K(r,r') 

+ 21K(r, r'n, (4.10) 

r- 1 {I I 
12c1>1/2 = - 2r2g_(r) + 2g+(r) - cp(r) 

'Yo 

- f~ dr'r'-l llK(r, r')}, 

with 
-( "() )",+1/2 K r, r') =.0 cI>)... r ')').,.r' • 

AES 1 

Proofs of above statements are the same as those 
of Case 1, and need not be carried through. Follow­
ing the same procedure used for Case 1, we find 
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K(r, r') = ~ <I!,\.(r)h.r,,\.+1/2, 
At'S 

(4.11) r2(W+ + W_) = r 3 V + r 4 V2 

where 

S ~ g, 1,3/2, ••• } and ~'/' ~ [: 

From the point of view of the inverse scattering 
problem, Eqs. (4. 7) as written down are not in a 
desirable form, because given the set {yJ, in order 
to solve for K(r, r'), we have to know both V(r) and 
(W+ - W_), and we must solve for cp(r). A possible 
way out is to note that, given the set {YAJ and V(r),. 
one is able to find K+(r, r') from Eq. (4.7) without 
having to know the function (W+ - W_). Havingfound 
K+(r, r'), one then forms 

T(r) = - "Hg+(r) + JT dr'r'-l 
o 

x [21K(r,r') - 22K(r,r')]}. 

It is shown in Appendix C that the so-defined T 

satisfies the differential equations 

jr2 d
2 

_ r2(W+ + W_ - V) - 2~T(r) 
I dr 2 \ 

= 2(1 - r 2V)cp(r). (4. 13) 

In general, Eqs. (4.12) and (4.13) enable us to find 
cp(r), if we know W+ + W_, without having to solve a 
differential equation. W+ + W_ can be defined in 
terms of K(r, r) if we consider the elements of 
Eqs.(4.8): 

r2(W+ - W_) + 3r2V - r 4 V2 - 1 

= r- 2g+(K1 + EK2) + g_(K1- + EK2_) - r-1g +](1 

- rg_KH (4. 14a) 

r2V + r 3V + 1 = r- 2g+(EK1 + K 2) + g_ 

x (EK 1_ + K 2_) - r- 1g-rK2 - rgj(2_' (4. 14c) 

r2(W+ + W_) + r2V - r 4V2 + 1 = r- 2g+(EK1 + K2) 

- g_(EK1_ + K 2_) - r-lg~2 + rgj(2_' 

where 

and 

K1(r) = llK(r,r) + 12K(r,r), 

K l_(r) = llK(r, r) - 12K(r, r), 

K2(r) = 21K(r, r) + 22K(r, r), 

K 2_(r) = 21K(r,r) - 22K(r,r), 

.b:(r) = 1 - r2V(r). 

From (4.14) we find that 

(4. 14d) 

- 2g_(EK1_ + K 2_) + 2rgj1..2_' (4. 15) 

Substituting (4.15) in (4.13) gives us the desired 
representation for the row-vector cp: 

cp = 8 (r)K_(r ,r)(1 - M)N + [e(r), 8(r)], (4. 16) 

with 

8(r) = - g_(r)T(r) , 

e =(~r2 ~ - r2[rV - V + r 2V2 I dr 2 

- 2r- 2g_(K2_ - r~_)] - 2fT)/2E. 

Substituting (4.16) in (4.7), we find that K_(r, r') 
satisfies the following integral equations: 

where 

f(p, r, r') = f_(pr') + (r'/r)f(pr), 

f 2(r, r') = R_(r)r' - (ii, e)r-1r'p', 

P = r- 1r'8(1 - M)P'. 

(4.17) 

Inspection of (4. 17) indicates that we no longer 
need to know the function (W+ - W_) in order to 
find lC(r, r'). 

We conclude this section by pointing out that the 
above analysis proves that if the set {yJ indeed 
corresponds to a tensor and a spin-orbit potential, 
then the integral equations (4. 17) have at least one 
solution and that this solution, together with 
K+(r, r'), satisfies the differential equations (4.9) 
with the boundary conditions defined by (4.8). 

In this section we intend to derive a series re­
presentation of the wavefunctions of the central, 
spin-orbit, and tensor potentials, similar to Eq. 
(2.8), in terms of the wavefunctions of spinless 
particles. We assume the central, spin-orbit, and 
tensor potentials satisfy the conditions stated in 
Case 1, or Case 2, and the comparison potential 
u(r), which is associated with vA(r)-the wave­
function of the spinless particle-is such that the 
coefficients c,\. corresponding to this potential 
u(r) and the potential u(r) = 1 are such that 
C 1/2 = C 3/2 = O. In other words u(r) is chosen 
in such a way that the set n,appearing in Eq. (2. 3) 
for the case when u(r) = 1, is identical with the 
set {t, 2, 5/2, 3, 7/2 .. ··}. We should note that in­
deed such potentials exist and u(r) = 0 is an 
exam~le of such potentials, because from Eq. (2. 9) 
we note that cA corresponding to potentials u(r) = 0 
and u(r) = 1 are such that C 1/2 = c 3 /2 = O. 

Before conSidering the representation of the 
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wavefunctions corresponding to two spin-t partic­
les interacting via a central, a tensor, and a spin­
orbit force in terms of the wavefunctions vA (r) of 
a spinless particle in a central field, let us con­
form with notations used in Sec. 2 and renormalize 
the wavefunctions of the two spin-t particles, 
which are given by Eq. (4. 4) or (4.10) in the follow­
ing way: 

(5. 1) 

where EA = eA+1(t + M) + eA- I ( I - M) for AESl 
and E1/2 = e3l2' with eA = (IT/2)112(i)A[r(1 + A}-I. 
Since the results hold true for potentials Wand 
V satisfying either conditions of Case 1 or of Case 
2, we do not need to distinguish between the wave­
functions related to potentials of Case 1 or of Case 
2 in this section. Therefore, unless specifically 
stated otherwise, what follows is applicable to 
either case. 

Multiplication of (4.4) or (4.10) by EA on the right, 
and use of (2. 13), implies that,for A? 1, 

~A(r):=: T;x.{g_(r)sA+l(r)(ll + M) +g+(r)sA_l(r)(I-M) 

- 1 r dr'r'-2K(r, r')[r'-lsA+l (r')( I + M) 
o 

+ r'sA_l(r')(ll - M)D, (5.2) 

where T~ is given by (2.24) and sA(r) by (2.13). 
Substituting Eq. (2. 5), for the case when u(r) = 1, as 
a definition of sA(r) in (5.2), and performing the 
necessary change of order of integrations in the 
resulting equations, we get 

- JOT dr'r'-2j(-(r, r')v A+l (r') 

- JOT dr'r' -2 j{+(r, r')vA_1 (r)j (5.3) 

where 

i(±(r, r') = {g±(r)k(r, r')1 + K(r, r')r±l 

- JT dpp-2k(p, r')K(r, p)p±l}(J 'f M) (5.4) 
T' 

and k(r, r') is given by (2.7), with u(r) :=: 1. 

In order to give an expression relating W(r), V(r), 
u(r), and j(±(r, r), we first find K(r, r) in terms of 
j{±(r, r) and k(r, r) from Eqs. (5. 4). Next sub­
stitute this expression of K(r, r) in Eqs. (4.2) or 
(4.8) and note that u(r) and k(r, r) obey Eq. (2. 6), 
with u(r) :=: 1. The resulting equations will have 
the following form: 

{- NO + M)[l - r2 V(r)1- r2[W(r) + I - u(r)1 + 2 V(r)n ] - 2r2 V(r)M - r3 V(r)M + r 4 "V2(r)n }R(r) 

:=: d~ {r-1j(+(r, r) + rk-(r, r)} - r-1{n + [1- r2 V(r)]MHr-1j{+(r, r) + rj{-(r, r)}. (5.5) 

Having seen the relations between W(r), V(r), and 
u(r), and also between their corresponding wave­
functions ~A(r) and vA(r) in terms of R±(r, r'), let 
us next try to eliminate these auxiliary functions, 
i(±(r, r'), in the mentioned relations. A step 
toward this purpose is to find i(± in terms of 
4?A (r) and v A (r), which can be accomplished by first 

T T J T' rewriting the integrals 1 in (5.4) as J - 0 
T' 0 

and then substituting the definition of k(r, r'), (2.7), 
and that of K(r, r'), (4. 6) or (4. 11), in the resulting 
equations. Next perform the necessary change of 
order of summations and integrations and make 
use of the existing relations between the wave­
functions corresponding to a central, a spin-orbit, 
and a tensor potential and K(r, r'), (4. 4) or (4.10), 
and between vA(r) and k(r, r'), (2.10). The result­
ing equations give us the desired representations 
of R±(r, r'), which are 

where 5 :=: H, 1, ~, 2, ... }, 52 = {I, 2, ~,3, ~, ... }, 
C A :=: ic A' with C A corresponding to coefficients 
associated with potentials u(r) and ii(r) :=: 1. 

We have, also, 

YA :=: E;l yA l(1/2eA- 1)(1 + M) + (1/2eA+ 1)(1 - M)], 

TA = (A 2 - ;~rl(h + AN). 

""¥o(r) :=: - Mg_(r)sl (r) - JOT dr'r'-3K(r, r') 

x S 1 (r')}( II + M). (5. 7) 

In above derivations use was made of the fact that 
Yl/2 must always be of the form Yl/2 = yO - M). 
Therefore we never needed to consider the function 
vA(r) with negative values of A, which we have not 
defined in this work. The function v-1 /2 (r) which 
appears in (5.6) is a symbol introduced only for 
the sake of Simplicity of the form of Eqs. (5. 6); it 
may be assumed to be identically zero. The neces­
sary interchange of order of integrations and 
summations, in the above derivations, is justified 
if YA satisfies Eq. (3. 17) and C A is like (2.9). 

~epresentation (5. 7) of ~ 0 can be_ changed so that 
<1>0 is given directly in terms of K-(r, r'). The 
procedure to be followed is exactly the same as 
the one used in deriving (5.3): 

""¥o(r) =- Mg_(r)vl(r)(i~M) - J
o

Y

dr'r'-2j(-(r,r') 

x v 1(r'»). (5.8) 
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Substituting (5.6) in (5. 3) and (5. 8) and doing the 
necessary change of the order of summations and 
integrations, we obtain the desired series repre­
sentation for ~ A: 

~A(r) == T~(g_(r)VA'l(r)(J +M) +g+(r)v,,_l(r)(I-M 

- 6 ~ex(r)Yex[L~~i(r)(J + M) + L~:~(r)(J - M)] 
exES 

- 6 Tex_1~ex_1(r)cexL~>1(r)(J + M) 
exES2 

6 Text 1 ¥" ex t 1 (r)cexL~-l(r)(J - M») 
exES2 

i"o(r) == 1{g_(r)v1 (r) - 6 ~ex(r)YexL&-l (r) 
aESl 

(5.10) 

A 11" -2 where Lex(r) == 0 dr'r' vA(r')va(r'). 

Let us apply the procedures used for deriving (5. 9) 
and (5.10) to the" sense" solution of the wave­
function at A == ~; we find that 

where 

[0 OJ [0 OJ iii 11Z == and Po == ° 2Z<P1IZ(r)e3IZ ° 1 
(5.11) 

In the above derivations, as before, use was made 
of the fact that 1'1/2 must always be of the form 
'Yllz == 1'( - M). So, for the sake of simplicity of 
the form of Eq. (5.9), we introduced the symbol 
L~~/2(r) which may be taken to be identically zero. 

We should note that Eqs. (5. 9), (5. 10), and (5.11) 
are the analogs of Eq. (2. 8) and, in principle, one 
should be able to use Eqs. (5. 9), (5.10), and (5.11), 
in a manner similar to the method used in Ref. 3, 
for finding the set {I' J from the scattering in­
formation. In other words, by considering the 
asymptotic behavior of Eqs. (5. 9), (5. 10), and (5. 11), 
as r --) 00, we should be able to find the set {YA} in 
terms of eigenphase shifts and mixture para­
meters19 of the wavefunctions corresponding to a 
central, a spin-orbit, and a tensor potential. How­
ever, in this work we will not consider the pro­
blem of finding the coefficients YA from eigenphase 
shifts and mixture parameters. 

We would like to point out that since 1'1/2 used in 
(4.7) is such that 111'1/2 == 121'1/2 == 0, one does 
not need to know the form of the "nonsense" solu­
tion in the problem of finding the constants I' A 

from eigenphase shifts and mixture parameters. 
Therefore,we have not given a representation for 
it either. For the case Yl/2 == 0, of course, we do 

not need to know the forql of 12<p1/2 in order to 
find {I' A} from the S matrix. For the case 1'1/2 ;>! 0, 
it appears that we need a representation for 
12<p1/2 similar to (5.9) in order to be able to find 
{y J from the S matrix. But since it seems there 
is no such simple representation of 12<p1/2' and, 
since any other representation of 12<P1/Z should 
be in a form which is convenient for the method to 
be used for finding {y J from the S matrix, in this 
work we have not tried to give a representation of 
l2<p1/2 in terms of vA(r). 

6. CONSTRUCTION OF POTENTIALS FROM 
THE INTEGRAL EQUATIONS 

Up to now we have always assumed that the cen­
tral, the spin-orbit, and the tensor potentials are 
given, and have proved that if they satisfy certain 
conditions, then we can find a set {y A} ,such that 
solution to (4. 1) or (4. 7) exists and satisfies (4. 2) 
or (4.8). Bounds on {y A} are given by (3. 17). In 
this section we would like to answer the reverse 
question for Case 1: If a set {}~} ,\ES obeying the 
bounds (3. 17) is given, then how arJ we going to 
find out whether this set {Y)"cs indeed corres­
ponds to a central, a spin-orbit,! and a tensor poten­
tial, that is, to potentials W(r) and V(r) where the 
former is diagonal and the latter is a multiple of 
the identity. We will also find the functions W(r) 
and V(r) corresponding to the given set {YA}AE~' if 
the set corresponds to a central, a spin-orbit, and 
a tensor potential. 

A possible way to answer the above question is to 
define the following integral equations: 

14(r, r') == W] + M)r + (I - M)r- 1]} /±(r, r') 

- t dpp-2H±(r, p)f±(p, r'), (6.1) 
o 

where the f±(r, r') are the same as those given in 
(4. 1). In order to relate H± to the function K de­
fined by Eqs. (4. 1), let us choose an arbitrary func­
tion V(r), which is a multiple of the identity and is 
to be defined later, in Eqs. (4. 1), and define G(r) to 
be 

G(r) == [G_(r)] = t(1 + Mk_(r) + W - M)g+(r), 
G+(r) ~ (6.2) 

where ff±(r) are defined in (4. 1). Then multiplying 
(6. 1) by G±(r), respectively, we find 

Gir)Hir , r') = Rir)j±(r, r') - f dpp-2Gir )H±(r, p) 

X!±(p, y'). (6.3) 

The observation that Eqs. (6. 3) are nothing but 
Eqs. (4. 1) leads us to the conclusion that 

(6.4) 

Since the functions H± are independent of V(r) and 
are known for the given set {'YJAE~' the problem of 
finding K± is then equivalent to the problem of find­
ing G(r). To find the potential VCr), or the function 
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G(r) , we add and subtract the analog of Eqs. (4. 14b) 
and (4. 14c) for case Y1I2 = O. Noting that one of 
the two resulting equations is a perfect differential 
integration of that equation and finding from the 
analysis of Sec. 3 that, at r = 0, r- 2{K 1 (r, r) 
+ K

2
(r, r>} = 2, we conclude that the analogs of Eqs. 

(4. 14b) and (4. 14c), for the case Y1I2 = 0, are 
equivalent to the following equations: 

2r2 VCr} - 2 = - r- 2R"+(r){K I (r, r) + K 2(r, r)} 

+ g_(r){K I-(r, r) - K 2_(r, r)}, 

2r2 V(Y) - 2 = - r-Ig~(r} !£ g_(r)[K I (r, r) 
dr 

- K 2(r, r)] + g~(r)3 d~ g+(r}r- 2 

x [KI_(r,r) + K 2_(r,r)]. (6. 5) 

Now it is only a matter of finding Kl'K2,KI -, and 
K 2- in terms of G and H±, substituting them in 
Eqs. (6.5), and then multiplying Eqs. (6.5) by g~(r) 
and using the facts that i± = ± rVg±, to arrive at 
the following equations: 

OH(r)l2(r) + IH(r)l(r) + ri(r) = 2H(r) , 

3H(r)l2(r) + 4H(r)t(r) + sH(r)i(r) = aH(r),(6. 6) 

where 

oH(r) = H±-(r) - Ht-(r), 

lH(r) = 2 + H:-(r) + H:;-(r)-r-2[H±+(r)+Ht+(r)], 

2H(r) = r-2[H:+ (r) - H:;+(r)], 

3H(r) = - 2[H±-(r) + Hr(r)] + r[H:!:-(r) + H;-(r)], 

4H(r) = - 2[H:-(r) - H:;-(r)]- r-I[il:!:+(r) 

- Ht+(r)] + r[H:-(r) - H:;-(r)] + 2, 

sH(r) = r - r-I[H±+(r) - Ht+(r)] 

- r[H:-(r) - H:;+(r)], 

aH = r-l{.ti:+(r) + Ii:+(r)}, 

with 

l(r) = g~(r) and H~8(r) = t{lll4:(r, r)a 2lH±(r, r)} 

x t3Hl2H±(r, r)a 22H±(r, r)} 

for a = +, - and f3 = +, - . 

So we conclude that a set {Y~)AES corresponds to 
a diagonal potential W and a pot~ntial V which is a 
multiple of the identity if there exists a nonnega­
tive function l(r), with 1(0) ;:;::: 1, which is a common 
solution to both of the nonlinear equations given by 
(6. 6). 

For the cases when oH, 3H, or (and) sH is (are) 
zero, it is easy to check whether such a common 
solution exists directly from (6. 6). For the general 
case, we can reduce the nonlinear differential equa­
tions (6. 6) in an obvious way to a first order dif­
ferential equation and an algebraic equation: 

[r3H(r) - sH(r)oH(r)]t2(r) + [r4H(r) - sH(r)lH(r)] 

x t(r) = r aH(r) - SH(r}2H(r) , (6.7a) 

[r3H(r) - sH(r)oH(r)]t(r) + [lH(r)3H(r) 

- 4H(r)oH(r)]t(r) = 2H(r)3H(r) - sH(r)oH(r). 

(6. 7b) 

So in order to answer the question whether a given 
set {YA}AE~ corresponds to a tensor and a spin­
orbit potential, we can, at present, only calculate 
14 for the given set {YA}AES and then see if there 
exists a nonnegative functiob fer), with teo) = 1, 
satisfying both of the equations given in (6. 7). Of 
course, the analysis of Sec.3 and 4 indicates that 
there exist many different sets {YJAE such that 
the corresponding l(r) satisfies both ~ the equa­
tions in (6. 7), but this knowledge is of little com­
fort when we are faced with a specific set of YA; 

we still have to go through all the steps mentioned 
in this section and at the end we may still find out 
that the set in question does not correspond to a 
tensor and spin-orbit potential. Indeed it is unfor­
tunate that, for the case of the inverse scattering 
problem at fixed energy when a tensor force is pre­
sent we are not able to find a simple test for the 
set {yJAES which can inform us whether it c'orres­
ponds to te1nsor and spin-orbit potentials or not. 
The only simple test that we have on the set 
{YA}AES is obtained from Eq. (4. 5c). Power series 
analysi1s of Eq. (4. 5c) indicates that, for potentials 
Wand V satisfying conditions of case 1, Yl must 
have the following property: 

So, given a set {yAh.ES , if it does not satisfy (6.8), 
then we can be sure tfiat it does not correspond to 
a tensor and a spin-orbit force. 

If a set {YA}AES is such that Eqs. (6. 7) have an 
acceptable corrimon solution, then the solution l(r) 
will define G(r) and VCr). Substitution of this G(r) 
in (6.4) will give us K(r, r/). Then, using the analog 
of Eqs. (4. 14a) and (4. 14d), for the case when Yl/2 ;:;::: 
0, we arrive at the functions W+(r) and Wjr), in 
other words, the diagonal potential W(r). Thus we 
have completed the procedure of obtaining V and W 
from the set {yJ A.ES

1
• 

To give an example of the above procedure, let us 
assume that we are given the following set of coef­
ficients l7 

YI = 1N() + M), and YA = 0 for all A > 1, (6.9) 

and we would like to find out if this set, {YA}AES , 
corresponds to a diagonal potential W(r) and a1muI­
tiple of the identity potential VCr). In this case, 
Eqs. (6. 1) reduce to 

H _(r, r') = - ~H(I + M)rS/2 + HI - M)r1!2 

- lY dpp-1I2H _(r, p)}Ylr'3/2, 
o 
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H+(r, r') = MW + M)r5/2 + t(n - M)r 1l2 

- { dpp-lIZH+(r, P)}Y1r'3iz. 

Writing H±(r, r') as H±(r, r') = X±(r)Y1r'3/2, we find 
that 

X_(r) = - fW + M)r 5/2 + (n - M)r1/Z - xjr)rZY1} 

and 

X+(r) = WI + M)r5/Z + (n - M)r1/z - X + (r)r2y 1}' 

Solving for X± from above equations and substitu­
ting them in the definitions of H±, we find 

H+(r, r') = :}r1/2r'3/2N( I + M), 

Hjr, r') = tr1/2r'3/2N(I + M). (6. 10) 

Next, we evaluate the functions iH defined by Eqs. 
(6.6) and, substituting them in Eqs. (6. 7), we find 
that in this case the two equations (6. 7a) and (6. 7b) 
are identical and are given as 

2t(r) + ri(r) = 2. 

It is easy to note that t(r) = 1 is the solution to the 
above equ,ation. It is acceptable and it corresponds 
to V(r) = 0 or G(r) = 1. (6. 4) and (6. 10) imply 

K(r, r') = t(1 - 1M(1 + M)r 1/2r'3/2. 

From (4. 14a) and (4. 14d) it follows that W +(r) = 
W_(Y) = 0 Next we find <PI>. from Eq. (4.4): 

<PI>. = t( - tl + AN)[(n - M)r-1 + [rl(A + 1)] 

x (Al- ~N)(n + M)]rJ...+1/2. 

And, as expected, one can show directly that the 
above function is indeed the solution to (2.18) for 
the case V(r) = 0 and W(r) = 0, and it also satis­
fies the boundary conditions (3.4). 

At this point we would like to point out that, as in 
the work of Sabatier 9 , the method constructed 
here can be easily generalized to potentials which 
are analytic functions of a rational power of z. Of 
course, the set 51 will now contain certain posi­
tive rational numbers greater than ~. But the 
more important point to be noticed is that in this 
work the analyticity of potentials was extensively 
used only for the proof that there exist many sets 
of {yJ I>.ES which make the corresponding K.{r, r') 
such as t6 define a diagonal potential Wand a V 
that is a multiple of the identity and which satisfy 
a certain condition. In other words, we can find 
many functions t(r) satisfying the necessary con­
ditions. We can generalize the class of potentials 
which we can deal with if we require that f±(r, r') 
be such that the corresponding t(r) satisfies the 
necessary conditions, that, at r or r' = 0, r-1r'-1 
f±(r, r') be finite, and that f±(r, r') should satisfy 
Eqs. (A3). The last condition is needed for the 
proof that K satisfies (4. 3) and that CPA is a solu­
tion of (2.18). Clearly the class of f± defined by 

the above conditions is not empty, but it would be 
very interesting if one could prove that the above 
class defining f ± is larger than the class of J± 
corresponding to the class of potentials which are 
analytic func tions of z, or analytic func Hon of a 
rational power of z. 

We will not consider here the general case of con­
struction of potentials from a given set h01>.E"s for 
the case when y 1/2 7' O. Of course, if both lyJ I>.ES 
and V(r) are given and if indeed they correspond 
to a diagonal potential W(r), the tensor force, then 
we can find a function K(r, r), from Eqs. (4. 7) and 
(4.17), such that Eqs. (4. 14b) and (4. 14c) are 
satisfied and K(r, r') is a solution to (4.9) with 
W(r) defined through (4. 14a) and (4. 14d). The so­
defined W(r) is the tensor potential corresponding 
to the set {yJJ...ES and V(r). Extension of the 
method to a larger class of potentials, similar to 
Case 1, is again possible. 
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APPENDIX A 

For the case when 'Y liZ = 0, the proof of the state­
ment that if there exists a K{r, r') satisfying 
relations (4.1) and (4.2), then it is a solution to 
differential Eqs. (4. 3) is substantially the same 
as the one given in Refs. 3 and 4. That is, the pro­
blem of showing that K(r, r') is a solution to the 
differential Eqs. (4. 3) is reduced to the question 
of existence of a nontrivial solution to the homo­
geneous version of Eqs. (4.1). So, to prove 
K(r,r') satisfies Eqs.(4.3),one first writes (4.3) 
for the two vector components of K(r, r'): 

(r2 ::2 -r2(W+ - W_ + V»)K_(r,r') 

= r'2 ~ ~(r r') - 2{1- r 2V)r'.!!:....- Tl" (r r~ dr,2 ' dr' £"+ , , 

( r2 ~ - r2(W+ + W_ - V)\ K+ (r,r') 
drz ~ 

=(r'2~ + 2)K (r r') - 2{1- r2V) 
dr'z +, 

x (r' d~' - ~K_(r,r')' (AI) 

Next define the following auxiliary functions: 

l d2 
~_ (r,r') = r2 -2- - r2(W+ - W_ + V) - r'Z 

dr 

dZI d x-- K (r r') + 2(1- r 2V)r'-
dr'z - , dr' 

x K+ (r,r'). 
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x K_(r, r'). 
(A2) 

Our purpose is to show that the ~± are identically 
zero, in other words, K± indeed satisfy Eqs. (AI), 
which is equivalent to the statement that K(r, r') 
is a solution to Eqs. (4. 3). Application of the 
operations defined on the right-hand side of (A2) 
to the integral equation (4. 1), defining ~, integrat­
ing by parts, and using the follOwing identities, 

f~(r,O) =f~(O,r') = 0, 

r :irf~ (r,r') = r' d~,j~(r,r')' 
d 2 d 2 

r2 -f (r r') = r,2 --f (r r') (A3) dr 2 ~ , dr,2 ~ , , 

r d~ [t_(r,r') + f+ (r,r')] =f- (r,r'), 

r2 d~ [r-lf_ (r,r') + r-1f+ (r,r')] = - f+(r,r'), 

shows that ~± are solutions of integral equations 
of the form 

00 (- l)m 2 1"" 
~±(r) = 1 + L: -- L: ... J Y± 

m~l m! a ,"',a =1 0 0 
1 m 

where the symbol Y± stands for the determinant 

In other words, proof of K(r, r') being the solution 
of (4.3) reduces to the uniqueness question about 
the solutions of (4.1). In order to consider the 
uniqueness question, let us rewrite (4.1) in the 
follOwing form 20: 

K;(r') = Z;,(r') + J; dpK;(p)S±(p,r') (A5) 

where 

K;(r') = (rr')-I~(r,r'), 
Z;(r') = (rr')-lR±(r)f±(r,r'), 

S±(r,r') = (rr')-Y±(r ,r'). 

Applying the generalization of the Fredholm 
method for coupled equations21 to our matrix 
integral equations (A5), we find 

1 1" K± (r') = Z ± (r') + -- dpZ ± (p) Y± (p r') 
r r ~±(r) 0 r r' 

if ~±(r) '" O. The Fredholm determinant and 
minor have the following representations 16: 

(A6) 

(A7) 

[ a, {3, x, Y ]± [ G', {3 1> x, Y 1]± . . . [ G', {3 n ' x, Y n J± 
[G'1' {3:x 1 ,y]± [aI' {31,.X1,Yd± •.. [()Il,J\,X1Yn]± . . 
[G'n ' {3: x n ,y]± [an' {3 I:X n ' Y 1]±'" [()In' (3 n', X n ,Y n ]± 

with [a,{3,x,y]± = aBS±(x,y), G',{3 = 1,2. 

If each element of S±(p, r') is bounded in the 
region 0 "'" p, r' "'" r by a number S(r), then con­
vergence of the series in (A 7) follows from the 
Hadamard's theorem, 22 Le., 

00 

I ~±(r) I "'" 1 + L: (m!)-1{2rS(r)}mmml2 
m= 1 (A9) 

00 

IIY; (p, r') II "'" L: (m! )-1 {2rS(r)} mS(r)(m + 1)(m+ 1)1 2 
m=o 

Now it is only a matter of repeating the argument 
gi ven in Ref. 4, to come to the conclusion that if we 

(A8) 

let rand r' take complex values z and z', then 
Eqs.(A6) can be analytically continued in the domain 
where f±(z, z') are analytic. The so-defined 
K; (z') are merom orphic functions of z, with poles 
corresponding to zeroes of ~±(z) and independent 
of z'. Furthermore, since the Neumann series for 
(4.1) converges inside a nonvanishing circle 
centered at the origin, none of these mentioned 
poles can be at the origin. Therefore, in the domain 
of analyticity of K±(z, z'), ~±(z) '" 0, Eqs. (4. 1) have 
unique solutions and the homogeneous version of 
Eqs. (4.1) have only the trivial solutions. It follows 
that {±(z,z'), defined by (A4),are zero and from 
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(A2) we can conclude that K(z, z') is a solution of 
(4.3) in its domain of analyticity. 

APPENDIX B 

To prove that there indeed exists a set {Y'}\ES , 
with Yl/2 = 0, corresponding to the analytic pOl_ 
tentials W(r) and V(r), such that the integral equa­
tions (4.1) have a solution which satisfies the con­
ditions (4.2), we recall the functions .$A and n2 ,v 
which are solutions of (2.18) and (3.2), respectively. 
By assuming that n2A satisfies the boundary con­
ditions (3.4), then (3.14) will give us a set of 
h A hES with bounds given by Eqs. (3.17). Next 
define trle following function from the above set of 
{"JAES1: 

C(r, r') = ~ .$Jr)YA r,Hl/2. (B1) 
AES 1 

By construction G(r, r') satisfies the conditions 
(4.2) and the differential equations (4.3). There­
fore, iii A (r) defined by the equations 

iii (r) = (-11 + AN){R(r)rA+l/2 - j r dpp -2G(r, p) 
A 0 

X P A+1/2 } (B2) 

is a solution to the differential equations (2.18), 
and the corresponding n 2 A satisfies the b~undary 
.£onditions (3.4). By uniqueness, we have lh = 
<I>A' It is now only a matter of multiplying the Eqs. 

) 
1\+1/2 . 

(B2 by YA r' and summmg over the ...sets S1 
in order to arrive at the conclusion that G(r, r') 
not only satisfies relations (4.2), but it is also a 
solution to the integral equations (4.1). Because 
of the existence of absolute and uniform bounds on 
the functions involved, if the bounds on Y A are given 
by (3.17), the necessary exchange of summation 
and integration, and taking the derivatives inside 
the summation and integration, are all justified. 

APPENDIX C 

For the case when Yl/2 '" 0, the proof that if 
K(r, r') satisfies Eqs. (4. 7) and (4.8), then it must 

1 1. M. Gel'fand and B. M. Levitan, Isv. Akad. Nauk USSR 15,309 
(1951) [Am. Math. Soc. Transl.l, 253 (1955)]. 

2 R.G. Newton, Phys. Rev. 100, 412 (1955). 
3 R.G.Newton, J.Math. Phys.3, 75 (1962). 
4 P. C. Sabatier, J. Math. Phys. 8,905 (1967). 
5 T. Regge, Nuovo Cimento 14,951 (1959). 
6 J. M. Blatt and V. G. Weisskopf, Theoretical Nuclear Physics 

(Wiley, New York, 1963), p. 97. 
7 E. U. Condon and G. H. Shortley, The Theory of Atomic SPectra 

(Cambridge U. P., Cambridge, 1967), p.122. 
8 P. C. Sabatier, J. Math. Phys. 8,1957 (1967). 
9 P.C.Sabatier,J.Math.Phys.9,1241 (1968). 
10 M. Gell-Mann, Proceedings of the 1962 International High 

Energy PhYSics Conference at CERN, Geneva, 533 (1962). 
11 R. G. Newton, Scattering Theory of Waves and Particles 

(McGraw-Hill, New York, 1966). We have closely followed the 
notation used in this reference. 

12 See Ref. II,p 462. 

be a solution to the differential equation (4.9) is 
exactly similar to the procedure of Appendix A. 
But the algebra in the demonstration that I; (r, r'), 
the analog of ~± (r, r') of Case 1, satisfies tlie integ­
ral equations 

C(r, r') == - Jor dpp -2C (r, plV_(pr') + (~)r(pr} 
and 

becomes more tedious. Again, using the same 
argument as before, we find that ~±(r, r') = O. 
Therefore, K(r, r') is a solution to (4.9). 

The existence of proof in Case 2 is also Similar 
to that given in Appendix B. In this case the 
boundary condition for the solution to Eqs. (2. 18) 
when A > ~ is given by (3.4) and for A == 1 is 

To prove Eq. (4. 13), one first subjects Eq. (4. 12) 
to the differential operator defined by the left-hand 
side of Eq. (4. 13). Integration by parts and use of 
the fact that K+ (r, 0) == 0 leads us to the following 
equation: 

{ 
2 d

2 
2 r -:--2' - 2 - r (W+ + 

dr 
( 

2-== 2 1 - r V)r(r), 

where 

r(r) == ~g+(r) - ~for dr'r,-l{ llK(r, r') - 12K (r,r')}. 

Next one subjects r(r) to the differential operator 
defined by the left-hand side of (3. 9a). Again, 
integration by parts and use of the fact that 
K_(r,O) == 0 implies that r(r) is indeed a "nonsense" 
solution, satisfying the boundary conditions ;:(0) == 
1 and +(0) = - ~al' Therefore, by uniqueness we 
conclude that r(r) = cp(r) and Eq. (4.13) follows. 

13 This transformation first appeared in a paper by 13. P. Desai 
and R. G. Newton, Phys. Rev. 129, 1437 (1963). 

14 A dot on top of a function, of a single variable, indicates the 
derivative of that function. We are also presenting a dif­
ferentiated version of Eq. (2. 49) of Ref. 9. 

15 R. G. Newton, The Complex J-Plane (Benjamin, New York, 
1964), Chap. 16. 

16 We represent the element (ij) of a matrix A, by writing the 
number (ij) on the upper left-hand side of A, that is 'lA, in­
stead of the customary notion in which (ij) is written on the 
lower right-hand side. 

17 For more detail, see M. A. Hooshyar, thesis (Indiana Univer-
sity, 1970). 

18 We are giving a proof similar to that of Ref. 9. 
19 See p. 457 of Ref. 11. 
20 The proof given here is similar tothat of Ref. 4. 
21 R. G. Newton,J. Math. Phys.2, 188 (1961). 
22 F.Riesz and B.Sz.-Nagy, Functional Analysis (Ungar,New 

York, 1965), p.176. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12,NUMBER 10 OCTOBER 1971 

Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters* 
Franz J. Wegner t 

Departlllellt vf Physics, Broll'lI Ullil'ersil.\', Prul'idellce, RllOde is/alld 02912 
(Received 29 March 1971) 

It is shown that any Ising model with positive coupling constants is related to another Ising model by a 
duality transformation, We define a class of Ising models Mdn on d-dimensionallattices characterized 
by a number n = 1,2, ... , d (n = 1 corresponds to the Ising model with two-spin interaction). These 
models are related by two duality transformations. The models with 1 < n < d exhibit a phase transi­
tion without local order parameter. A nonanalyticity in the specific heat and a different qualitative 
behavior of certain spin correlation functions in the low and the high temperature phases indicate the 
existence of a phase transition. The Hamiltonian of the simple cubic dual model contains products of 
four Ising spin operators. Applying a star square transformation, one obtains an Ising model with com­
peting interactions exhibiting a Singularity in the specific heat but no long-range order of the spins in 
the low temperature phase. 

1. INTRODUCTION 

This paper deals with a general concept of duality 
and with phase transitions without a local order 
parameter. 

Dualityl-5 is an inherent symmetry of the two­
dimensional Ising model without crossing interac­
tion bonds. This symmetry relates the partition 
function and the correlation functions 6- S of a two­
dimensional ISing model at temperature T to the 
partition function and the correlation functions of 
its dnal Ising model at temperature T*, where T* 
is a decreasing function of T. In this paper the 
duality transformation is generalized to arbitrary 
Ising models with positive interaction constants 
(Sec.2). This concept of duality is applied to a 
class of Ising models Mdn on d-dimensional 
lattices (Sec. 3). To obtain the Hamiltonian of the 
model M dn , one takes the product of all spins 
located at the two ends of lines (n = 1), at the 
perimeter of surfaces (n = 2), and so on. There­
fore, n = 1 describes the usual ISing model with 
two-spin interactions. The systems M dn and 
M dd - n on dual lattices without external magnetic 
field are connected by a duality relation (Sec. 3A). 
For even dimensions d = 2n, one obtains self-dual 
models (models which are identical with their dual 
models). If there is only one singularity in the 
partition function of a self-dual model, then it must 
occur at T = T*. Self-duality implies a symmet­
ric singularity of the specific heat around the 
critical temperature (Sec. 3C). If an external 
magnetic field is present, the systems M dn and 
M dd-n+1 on dual lattices are connected by duality 
relations (Sec. 3A, 3C). 

Most known phase transitions can be described 
by a local order parameter. 9-14 The models 
M dn with 1 < n < d exhibit a phase transition 
without a local order parameter (Sec.3B). The 
existence of a phase transition is indicated by a 
singularity in the specific heat (at least for 
n = d - 1) and by a qualitatively different asymp­
totic behavior of certain correlation functions at 
high and at low temperatures (Sec.3B). For 
n > 1 the Hamiltonian consists of products of 
more than two spins. Applying the decoration,15,16 
the star triangle 3 - 5,17 and/or the star square18 

transformations, one reduces these models to 
Ising models with two-spin interactions (Sec.2D). 
Thus the simple cubic dual model can be trans­
formed to an ISing model with competing two-spin 

interactions. This model exhibits a singularity in 
the specific heat, but below the critical tempera­
ture there is no long range ordering of the spins 
(Sec. 4). 

2. THE DUALITY TRANSFORMATION 

The duality transformation for general ISing 
models is derived in this section. First (Sec.2A) 
the Ising models with general interactions are 
defined, and some properties, like the degeneracy 
of the ground state and the spin correlation func­
tions which vanish for all temperatures, are dis­
cussed. In Sec. 2B the duality relation for the 
partition function is stated and proved. The dis­
location correlation functions are expreslled both 
in terms of spin correlation functions of the ori­
ginal model and of the dual model in Sec. 2C. We 
show that a dual model exists for any ISing model 
(with positive interactions) and that this model 
can be reduced to an Ising model with only two­
spin interactions and an external magnetic field 
(Sec.2D). 

A. The Model 

The most general interaction of a system of N s 

Ising spins 5(1') = ± 1, located at sites Yof a 
lattice, is 

H = - 6b I(b)R(b), (2.1) 

in which I(b) is the coupling constant of the inter­
action bond labeled by the index band 

R(b) = II r 5(y)6(r,b), e(y, b) E{O,l}. (2.2) 

We express all quantities which may assume two 
values by the two elements of the set {O, I}, 

5(1') = (- 1)° (r), a (1') E {O, I}, (2.3) 

R(b) = (_l)P(b), p(b) E{O, I}. (2.4) 

We define the field operations of addition (modulo 
2) 

OttO = 1(171 = 0, 0(171=1(170=1 

and multiplication (modulo 2) 

0'0 = 0'1 = 1'0 = 0, 

for the set {O, I}. 

1'1 = 1 

(2.5) 

(2.6) 

2259 
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Then Eq.(2.2) can be written 

p(b) = EIlr 8(1',b)a(1'). (2.7) 

The operation symbol Ell with an index denotes 
summation (2. 5) over this index. Let No be the 
rank of the matrix 8(1', b). Then there are 2N o 
different configurations 19 {p(b)}. We now restrict 
ourselves to systems with positive interaction 
constants, I(b) > O. The ground states of the sys­
tem (2. 1) are defined by R(b) = 1 for all b. 
Therefore, the ground states are determined by 
the solutions {uo(1')} of the homogeneous equations 

(2.8) 

This system of equations has 2Ng solutions with 

Ng =Ns -No. (2.9) 

Therefore, the ground state is 2
Ng

-fold degenerate. 
We associate the unitary operators 

(2.10) 

with all ground states {ao(1')}. The operator Sx(1') 
flips the spin at site 1', 

(2.11) 

The operators U commute with all operators R: 

U{a
o
} R(b) U{a o} -1 = R(b)(- 1)EIlr0 (r.b)oo(r) = R(b). 

(2.12) 

Therefore, all the operators U commute with the 
Hamiltonian: 

(2.13) 

• 1/1 (r) {} A product of spms TIr S(1') ,1/1(1') E 0,1 ,is 
transformed by U { a o} into 

U{u
o
} TIrS(1')I/I(r)U{ao} -1 = TIr S(1')I/I(r\_1)EIlr 1/!(r)oo(r) 

(2.14) 

This product of spins commutes with all operators 
U if and only if 

(2.15) 

} 
N -N 

for all configurations {ao (1') • There are 2 s g = 
2N o solutions {1/I(1')}, since the configurations 
{a o( 1')} form an N g -dimensional linear manifold. 

The product of operators TIbR(b)",(b), cJ>(b) E {O, 1}, 
can be expressed as a product of spin operators, 

different products of spin operators characterized 
by the sets {tP(1')} of Eq. (2.17). The products of 
Eq. (2.16) commute with all operators U. Since 
there are only 2N e different spin products which 
commute with all U, it follows that a product of 
spin operators commutes with all operators U 
if and only if it is a product of operators R. A 
product of spin operators which does not commute 
with all operators U{ ao} vanishes, since from 

UTIrS(r)",(r) U- 1 = - TIrS(1')",(r) (2.18) 

and from Eq. (2.13) it follows that 

(TIrS(1')1/!(r» = (TIr S(1')"'(r)u- 1 U) = (UTIrS(1')",(r)u- 1) 

=_(TIyS(r)",(r» =0. (2.19) 

Therefore, the expectation value of a product of 
spin operators vanishes if this product cannot be 
represented by a product of operators R. 

It follows from Eqs. (2.16) and (2.17) that those 
products of operators R which are unity for each 
spin configuration {S( r}} are determined by the 
2N b-Ne solutions {cJ>o(b)} of the system of homo­
geneous equations 

(2.20) 

Hereafter we will call any product of operators 
which is unity for each spin configuration the unit 
element. 

B. The Duality Relation for the Partition Functions 

We call two Ising models which are characterized 
by matrices 8(1',b), 8*~r*,b) and coupling para­
meters K(b) = (3I(b),K (b) = (3*I*(b) «(3 and (3* ate 
the inverse temperatures of these systems) dual 
to each other if they fulfill these three conditions: 

(a) the closure condition 

(2.21) 

for all pairs of 1', r*, 

(b) the completeness relation 

(2.22) 

in which ]v e and N~ are the ranks of the matrices 
8 and 8* and N b is the number of bonds b, and 

(c) 
tanh K(b) = e -2K*(b) 

for all bonds b. 

(2.23) 

with 
(2.16) The symmetriC partition functions Y{K} and 

Y*{K*} , 

Since the rank of the matrix 8(1', b) is No, the 
products of R(b) in Eq. (2.16) represent 2

N e 

(2.17) Y{K} = Z{K}2-(Ns+Ng)/2TI b[cosh2K(b)fl/2, (2.24) 

{} 
'" -IlH{S} 

Z K = LJ{S(r)} e , (2.25) 



                                                                                                                                    

DUALITY IN GENERALIZED ISING MODELS 2261 

(and similarly for Y*{K*}) of two duallsing models 
obey 

Y{K} == Y*{K*}. (2.26) 

For the particular case of a planar Ising model 
without crossing bonds, this relation was proved 
by Wannier.3 We prove now Eq.(2.26) for the 
general case, comparing the high-temperature 
expansion for Z with the low -temperature expan­
sion for Z*. From 

Z{K} - ~ -BfI{S} - ~ II K(b)R(b) (2.27) 
- L..J{S (r)} e - L..J{S(r)} be 

one obtains 

{ } "" ¢(b) Z K = IIb coshK(b)L..J{¢(b)}IIb tanhK(b) 

N -N N* { } There are 2 b e = 2 e sets epo(b) [we used the 
completeness relation (2.22)]. Therefore all N 
obey N{epo} = 2Ns *-Ne*. From Eq. (2. 33) one 
obtains 

Z*{K*} = 2N; II b eK*(b) 6{<po(b)} II be -2 K*(b)'Po(b). (2.36) 

From Eqs. (2. 30) and (2.36) one obtains Y{K} = 
Y*{K*} , Eq. (2. 26), using Eq. (2. 23). 

If the completeness relation (2.22) is not fulfilled, 
but 

(2.37) 

and if all K(b) and K*(b) are positive, then it fol­
lows from Eq.(2.33) that 

"" ¢ (b) x L..J{S(rJ} IIbR(b) , (2.28) Z*{K*}:s 2N:IIbeK*(b)~{<po(b)}IIbe-2K*(b)¢o(b). (2.38) 

since 

eK(bJR(b) = coshK(b)[1 + R(b) tanhK(b)] 
Using the analogous inequality for Z{K} , one 
obtains the inequality 

"" b <p(bJ b <p(b) = coshK(b)L..J{¢(b)}tanhK() R() (2.29) 2-Nn/2 Y{K} :s Y*{K*} :s 2N",/2 Y{K}. (2.39) 

follows from R(b) = ± 1. 

If the product of the operators R in Eq. (2. 28) is 
the unit element, then the sum over all spin con­
figurations yields 2N s; otherwise the sum vanishes. 
The product of the operators R is the unit element 
for all sets {epo(b)} of Eq. (2. 20) and only these 
sets. Therefore, it follows that 

Z{K} = 2NsIIbcoshK(b)6{</:()(b)}II b tanhK(b)<7Jo(b). 

(2.30) 

The partition function Z*{K*} can be written 

*{ *} '>' -BH*{S} "" K*(b)R*(b) 
Z K =L..J{S(r*)}e =L..J{S(r*)}IIbe 

II K*(b) "" II -2K"(b)p*(b) 
== b e L..J{S(r*)} be, (2.31) 

since R*(b) = 1 - 2p*(b). From the closure con­
dition (2.21), one obtains 

EBb8(r,b) p*(b) == EBbEflr*e(r, b)e*(r*, b)a(r*) = O. 
(2.32) 

Therefore, each set {p*(b)} obeys Eq. (2. 20) with 
p*(b) == epo(b). It follows that 

Z*{K*} - II e K*(b~ N{rl-. } II e -2K *(b)<7Jo (b) 
- b U{¢o(b)} 'Vo b • 

(2.33) 

Here N{epo} denotes the number of configurations 
{S(r*)} which obey 

epo(b) = Efly*e(r*, b)a(r*) for all b. (2.34) 

If for a given set {epo(b)} Eq. (2. 34) has no solu- * 
tions, then N{ epo} == 0; otherwise N{ epo} = 2Ns *-Ne • 
In particular, for f3* = 0 it follows that 

Z* = 2N
: = ~ {¢ (b)}N{epJ. (2.35) 

o 

C. Dislocations 

We now consider systems with magnetic disloca­
tions. Let the operator M(b) change the sign of 
the interaction constant I(b) in the Hamiltonian. 
Then one obtains 

(IIbM(b)¢*(b»{K} = (llb e-2¢*(b)K(b)R(b») 

( . <7J*(bJ) = IIb[cosh2K(b) - R(b) smh2K(b)] 

and 

(IIbM(b)¢*(b»){K} == Z{(-1)¢*K}jZ{K} 

= Y{(-1)<P*K}/Y{K} 

with ep*(b) do, 1}. From tanhK = e- 2K*, Eq. 
(2.23), it follows that 

tanh(- 1)'1'* K == e -2K*-i1T<p*. 

(2.40) 

(2.41) 

(2.42) 

Substituting Eq.(2.26) into (2.41) and using (2.42), 
one obtains 

(lIbM(b)¢*(bJ){K} = Y*{K* + 1 i1Tep*}/Y*{K*} 

= i-"£b<P*(b\ IIbei1T<P*(bJR*(b)f2) {K*} 

== (II bR* (b) ¢*(bJ) {K*}. (2.43) 

Therefore, the expectation value of a product of 
dislocation operators equals the expectation value 
of the corresponding product of operators R* in 
the dual lattice. Since R* is a product of spin 
operators S(r*), one may introduce corresponding 
operators J.J.( l' *) in the original model and repre­
sent M(b) by 

* e *(r*,b) 2 * M(b) = [ir*J.J.(r ) ,J.J. (r ) = 1. (2.44) 



                                                                                                                                    

2262 F RAN Z J. W E G N E R 

Then one obtains 

(IIr*J..L(r*),,(r*) {K} = (II ... *5(r*) I' (r*) {K*}. 

(2.45) 

For the particular case of the two-dimensional 
ISing model without crossing interactions this was 
derived by Kadanoff and Ceva. 7 

D. Construction of a Dual Ising Model: 
Reduction to Two-Spin Interactions 

A dual ISing model exists for any given ISing 
model (with positive interactions) of Eq. (2.1). To 
obtain this dual model one has to find a complete 
set of solutions {<1>o(b)} of Eq. (2. 20). This set is 
complete if each solution {<1>o(b)} of Eq. (2. 20) is 
a linear combination of the solutions of that set. 
Associate with each solution of the set a point 
r*{<1>o}. Then the lattice which is defined by the 
matrix 

(2.46) 

is dual to the original lattice. 

The Hamiltonian of the dual lattice may contain 
products of a large number of spins 5(1' *). We 
list three transformations2o which reduce these 
systems with many-spin interactions to ISing 
models with two-spin interactions and possibly 
a magnetic field. 

The Decoration Transformation 15, 16 

The interaction -IR 1R 2, in which Rl and R2 are 
products of spins, can be reduced to an interaction 
- I 1R 15 - 12R 2 5, in which 5 is a new spin or a 
product of new spins 

(2.47) 

with 

j2 = [cosh(K I + K 2 ) cosh(K I -li2)J-1, (2.48) 

tanhK = tanhK 1 tanhK2 • (2.49) 

This transformation reduces products of more 
than three spins in the Hamiltonian to products of 
three spins. 

A Generalized Triangle Transformation3
-

5
,17 

An interaction - 15 15 2 5 3 can be reduced to two­
spin interactions and an interaction with a mag­
netic field by the transformation 

exp(K515 2 53 ) = i 16s exp[K0 5 + (K 15 + K 2 ) 

with 

x (51 + 52 + 53) + K 3 (5 15 2 + 5 153 + 5253)] 

(2. 50) 

8 -1 -3 -3 -1 
1 =10 11 /2 /3 , 

8K -1 3 -3 
e =10 1112 /3' 

(2.51) 

For the particular choice K 1 = - Kothe equations 
simplify to 

(2.53) 

A 5tar Square Transformalion 18 

If the Hamiltonian is invariant under flipping of all 
spins, then one may prefer to conserve this in­
variance. Products of more than four spins in the 
interaction can be reduced to four-spin inter­
actions by the decoration transformation (2.47). 
The four-spin interactions are reduced to two­
spin interactions by a star square transformation 

exp(K5 1525354) = i f6 s exp[K05(5 1 + 52 + 53 

+ 54) + K 1 (5 152 + 515 3 + 5154 + 5253 
+ 5254 + 5354)] (2.54) 

with 
8K 

e = cosh(4Ko)/cosh4(2K o)' 

-8K e 1 = cosh(4Ko), 

8 1 = 1/[cosh(4Ko) cosh4 (2Ko)]' 

(2.55a) 

(2. 55b) 

(2.55c) 

For real Ko the right-hand side of Eq. (2. 55a) is 
less than or equal to 1. Therefore, K must be 
negative or zero. To obtain negative K's, one may 
apply the decoration transformation with negative 
Kl andK2,Eq.(2.49). 

Therefore, we have shown that there exists a 
dual Ising model (2.46) to any Ising model and 
that this can be reduced to an Ising model with 
only two-spin interactions and possibly an inter­
action with a magnetic field. 

3. THE MODELS M dn AND THEm. PROPERTIES 

In this section we consider the models /)Iidn' In 
Sec. 3A we define the models and derive the duality 
relations which relate the systems M dn and 
M d d-n +1 in an external magnetic field and the 
duality relation between the systems M dn and 
M d d-n without an external magnetic field. The 
behavior of the spin correlation functions at high 
and low temperatures is discussed in Sec. 3B. We 
prove that there is no local order parameter in 
the systems with n > 1. In Sec. 3C we discuss the 
thermodynamic properties of the systems. 

A. The Models, Duality 

We consider ad-dimensional hypervolume divided 
into Cd hypercells B (d). These are bounded by 
(d - l)-dimensional hypercells B (d-l) (total number 
Cd-I)' these again by (d - 2)-dimensional hypercells 
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B (d-2) (total number C d-Z)' and so on, until we 
arrive at O-dimensional hypercells which are 
simply the Co corners B(O) of the d-dimensional 
hypercells. For this original lattice L, one may 
construct a dual lattice L * by placing one dual 
corner B(O) * in each original hypercell B(d), then 
connecting the dual corners by dual edges B(I)*, 
each of which intersects one hypercell B(d-I), then 
connecting these dual edges by dual faces B(Z)*, 
each of which intersects one hypercell B(d-2), and 
so on, until we obtain the d-dimensional dual 
hypercells B(d)*J each of which contains one ori­
ginal corner B{O. Denoting the number of the m­
dimensional hyper cells by C;" we obtain 

* C m = C d - m , (3.1) 

since by construction there is a one-to-one cor­
respondence of the m -dimensional dual hypercells 
to the (d - m)-dimensional original hypercells. 
Let us denote the intersection point of B(m) and its 
dual hypercell B(d-m) * by rem) = r(d-mJ*. Then a 
hypercell B(r (m» and a dual hypercell B*(y(m» 
is assoCiated with each point rem). 

Let us consider some examples. A linear chain 
(d = 1, Fig. 1) of points Y (0) = i (black circles) (we 
denote integers by i, j, k) divides the line into one­
dimensional cells (segments). The dual lattice 
consists of the segments between the points l' (1) == 
i + ~ (open circles). The square lattice (d == 2, 
Fig. 2) consists of the squares bounded by the con­
tinuous lines; its dual lattice consists of the 
squares bounded by the broken lines. The corners 
Y (0) = (i, j) of the original lattice are denoted by 
black circles, the corners l' (2) = (i + ~ ,j + ~) of 
the dual lattice are denoted by open circles and 
the edges of the original lattice intersect the 
edges of the dual lattice at the points y (1) (triangles). 
In Fig. 3 a cube of the original cubic lattice 
(d = 3) and a cube of the dual lattice are drawn. 
The corners 1'(0) = (i,j, k) of the original lattice 
are denoted by black circles and the corners 
1'(3) = (i + 1 ,j + 1, k + ~) by open circles. The 
edges (continuous lines) of the original lattice 
and the faces of the dual lattice intersect at pOints 
1'(1) (open squares), whereas the faces of the origi­
nal lattice and the edges (broken lines) of the dual 
lattice intersect at points l' (2) (black squares). We 
have considered only self-dual lattices, that is, 
lattices which are topologically equivalent to their 
dual lattice. Not all lattices are self-dual. 

Now let us return to the general case and introduce 
the functions 6 and 6*. Let 6(1,(m-1), rem») =: 1, if 
y(m-lJ lies on the boundary of B(y(m»; otherwise, 
6(1'('''-1), rem»~ = O. Let 6*(1' (m), l' (m-l) = 1 if rem) 
lies on the boundary of B*(r(m-l»; otherwise 

6*(r (m), r (m-1) = 6(r(m-I), r (m», (3.2) 

that is, if l' (nd) lies on the boundary of B(r(m», then 
rem) lies on the boundary of B*(y(nd». 

Since the m-dimensional boundaries of B (m'l) form 
a closed m-dimensional hyper surface, two m-

dimensional boundaries B (m) of B (m>I) meet in each 
(m - I)-dimensional hyper cell at the boundary of 
B (m+1). Therefore, one obtains 

Ell
r

(m)6(r(m-l),r(m»6(r(m),r(m+l) == O. (3.3) 

The Ising model M dn on the lattice L with n dimen­
sional bonds consists of ISing spins S(r) ::: ± 1 at 
all sites y = r (n-1) interacting via 

'\' e (Y, y (n» " , 
- f3Hd/Z = KLJr(n) llyS(r) + hLJr S(1). (3.4) 

The product in the first term of the Hamiltonian 
runs over all spins S(1') lying on the boundary of 
the n-dimensional hypercell B(r(n). For n = 1, the 
model (3.4) describes the ISing model with two­
spin interactions between spins lying at the two 
ends of an edge and an external magnetic field 

(3.5) 

-o~~~.~~~O~----~.~--~Or~---. __ 
FIG.1. The linear chain. 

.I.. A 
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---< 10-- +--< lo--+--< r-

I I 
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FIG. 2. The square lattice and its dual. 

FIG. 3. The simple cubic lattice and its dual. 
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For the lattices considered above we obtain the 
Hamiltonians 

- (3Hll = K~iS(i)S(i + 1) + h~iS(i), (3.6) 

- (3H21 = K,,£ ij S(i,j)[S(i + l,j) + S(i, j + 1)1 

+ h~ijS(i,j), (3.7) 

- f3H31 = K~jjk S(i,j, k)[S(i + l,j, k)+S(i,j + 1, k) 

+S(i,j,k + 1)] +h2..'.jjkS(i,j,k). (3.8) 

For n = 2 the Hamiltonian contains the products 
of spins lying at the boundary of the faces B (2), 

- (3H22 = K~ijS(i,j + ~)S(i + 1,j + ~) 
x S(i + t,j)S(i + t,j + 1) 

+ h~ij[S(i,j + i) + S(i + Lj)J, (3.9) 

- f3H32 = K~jjk(S(i,j + L k) S(i + 1,j + i, k) 

x S(i + Lj,k)S(i + Lj + 1,k) 

+ S(i,j,k + i)S(i + l,j,k + i)S(i + t,j,k) 

x S(i + t,j,k + 1) + S(i,j,k+ i) 
x S(i,j + 1,k + !)S(i,j + tk)S(i,j + i,k +1)] 

+ h~ijk[S(i,j,k + i) + S(i,j + Lk) 

+S(i+i,j,k)]. (3.10) 

For n = 3 the Hamiltonian contains the products 
of spins lying at the boundary of the volumes B (3): 

- (3H33 = K"£jjkS(i,j + i, k + !)S(i + 1,) + L k +!) 
x S( i + t j, k +~) S( i + i, j + 1, k + t) 
x S(i + !,j + i,k)S(i + Lj + ~,k + 1) 

+ h~ijk(S(i,j + i,k + i) 
+S(i + tj,k +!) +S(i + !,j+ !,k)]. (3.11) 

In general, the model M dn on a hypercuhic lattice 
consists of N s = (n ~ l)N Ising spins located at 
the centers of the (n - I)-dimensional hypercubes. 
(N is the number of the d-dimensional hypercubes). 
The Hamiltonian consists of the sum of the pro­
ducts of the 2n spins at the (n-l)-dimension~) 
hypersurfaces of the N b = (:)N hypercubes B • 
Let us denote a subset of n unit vectors ej along 
the main axes by En; then the model M dn for the 
d-dimensional hypercubic lattice is defined by 

'" (0) - (3H dn = KLJr(O),En R(1' ,En) 

+ h6 r(O),En_
1 

S(y(O) + v (En-I» (3. 12) 

with 

v(E ) = -! 6 e 
n 2 eEE"n' 

(3.13) 

(3.14) 

Similarly one defines the ISing model M;n on the 
dual lattice L *. The Ising spins S(1' *) = ± 1 are 
located at the sites r* = y(n-lJ* = r(d-n+l) and 
interact via 

*( * (n)*) 
_ (3*H* - K* '" n S(1' *)0 r ,r dn - LJ r(n) * r~ 

+ h*6 r*S(1'*). (3.15) 

We now show that the models M dn and M/d-n+1 are 
related by the duality relation 

Ydn(K.,h) = Y; d-n+l(K*,h*) 

with 
-2h* 

tanhK = e , 
-2K* 

tanhh = e . 

(3.16) 

(3. 17) 

If we label the interaction of the spin S(1,(n-lJ ) 

with the external magnetic field by b(r(n-l» and 
the interaction of the spins on the boundary of 
B(1'(n» by b(r(nJ), then we have 

(3. 18a) 

(3. 18b) 

(3. 19a) 

(3. 19b) 

Substituting Eqs. (3.18) and (3.19) into Eq. (2. 21) 
and using Eq.(3.2),we find that the closure condi­
tion is fulfilled. From Eqs. (3. 18b) and (3. 19a) it 
follows that N e = Ns and.N~ = N:. Since No = 
Ns + N: , the completeness relation is fulfilled. 

We now compare the models M dn and M;d-n with­
out external magnetic fields. Then the bonds are 
connected with the sites y(n) by Eq. (3. 18a) and 

e*(r(n+l), b(y(n») = e*(1' (n+l), y(n» == e(y(n), r(n+l». 

(3.20) 

From Eq. (3. 3) it follows that the closure condi­
tion is fulfilled. We now discuss the completeness 
relation (2.22). In the Appendix we derive rela­
tions between the N's, C's, and the topology of the 
lattice. Here we summarize the results: The ex­
p~nents N,I" and N; of the orders of the degeneracy 
2 g and 2 g* of the models (3.4) and (3.15) are 

(3.21) 

(3.22) 

in which tg and t; depend only on the boundary 
conditions and on rI. From a generalization of 
Euler's theorem 21 

d 

6 (-1)mCm = t, (3.23) 
m~O 
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in which t depends only on the topology (boundary 
conditions), from 

(3.24) 

and from 

(3.25) 

which is derived from Eqs. (2. 9) and (2.37), it 
follows that 

(3.26) 

Therefore,Nm depends only on the topology of the 
system and on n. For ad-dimensional hypersur­
face wrapped on a (d + I)-dimensional hypersphere, 
one obtains Nm = 0 for 1 ::s n ::s d - 1. Therefore, 
the duality relation 

(3.27) 

with 
-2&* 

tanhK = e , (3.28) 

holds for this boundary condition. For the two­
dimensional ISing model (d = 2, n = 1) this was 
shown in Ref. 3. For systems with periodic boun­
dary conditions one obtains Nm == (:{). In the ther­
modynamic limit the factors 2Nml2 in Eq. (2. 39) 
can be neglected, and, using Eqs. (2.24), (2. 25), and 

- f3F(K) = In Z(K), (3.29) 

we obtain for the free energy 

f3* F; d-n (I<*) == {3F dn (Ii) - ~ (~ + N; - Ng - Ns ) 

x In 2 + ~ N b In sinh2K. (3.30) 

B. Correlation Functions 

In this section we discuss the behavior of the spin 
correlation functions of the systems M dn without 
an external magnetic field. We showed in Sec. 2 
that an operator 

(To (r) 
U{ao }== firSx(r) (2.10) 

commutes with the Hamiltonian H and all opera­
tors R if 

The only solution for n = 1 besides the trivial 
solution a o( r) = 0 is 

(2.8) 

(3.31) 

For n > 1 we obtain solutions 

ao(r) == 6(y(n-2i, y), (3.32) 

which can be verified using Eqs. (3. 3) and (3. I8a). 
Therefore, each operator R is invariant under 

flipping of all spins lying on the (n - I)-dimen­
sional hypercells B(Y), which meet in the hyper­
cell B(r (n-2». This leads to the high degeneracy 
2Ng

, where Ng is given by Eq. (3.21). Since, for 
r '" r', there exists a neighbor r (n-2) of r with 
S(r (n-2), r) == 1 and S(r (n-2), r') == 0, we obtain 
from Eq. (2.19) 

(S(1')S(1"» == Orr" (3.33) 

Therefore, there is no long-range spin autocorre­
lation at any temperature. The only products of 
spins whose expectation values do not vanish can 
be represented by a product of operators R. These 
products are the products of all spins lying on the 
(n - 1 )-dimensional boundary of an n-dimensional 
hyper volume which consists of n-dimensional 
hypercells. 

We now consider the long-range behavior of 
(firS(1'» of the model M dn ,Eq.(3.12),where the 
spins of the product lie on the boundary of an n­
dimensional hypercube. From the high tempera­
ture expansion it follows that 

(firS(r» == [tanhK + 2(d _n)(tanhK)1+2n + ···r 
for n > 1. (3.34) 

and 

(firS(y» == HtanhK +[2(d_I)]1/2 

x (tanhK)2 + ... } v + HtanhK 

- [2(d - 1»)1/2 (tanhK)2 + ... } v for n == 1, 

(3.35) 

where v is the volume of the hypercube (for n == 1, 
v is the distance between the two spins; for n == 2, 
v is the area of the square spanned by the spins). 
From the low temperature expansion one obtains 

(fir Sty»~ == (1 - e -4(d-n+l)K + ... / for n < d, 

(3.36) 

( 
-2K v 

firS(r» == (1- 2e + ... ) for n == d, 
(3.37) 

where J is the hyper area of the hypercube (for 
n == 1, J is the number of the ends of the line, 
that is, J == 2; for n = 2,j is the perimeter of the 
square). Therefore, we deduce that the behavior 
of these correlation functions in the limit of large 
hypercubes is different in the low and the high 
temperature phases, and we expect 

(exp[- v/vd T )] 

( fi r S( 1'» exJ 
(exp[- JIJO(T)] 

for T > T c' n < d, 
(3.38) 

for T< Tc,n <d. 
(3.39) 

We attribute the qualitatively different assympto­
tic behavior in both temperature regions to 
different states of the system above and below a 
critical temperature T c' 
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For n = d - 1 the different behavior in both tem­
perature regions becomes more evident if one 
makes use of the duality relation for dislocations 
Eq. (2.43). One obtains ' 

(TIT S(r» {K} = (TI b R(b» {K} = (TI b M*(b»{K}, 

(3.40) 

~here t.he product runs over all b's in the (d - 1)­
dimenslOnal hypercube. The expectation value on 
the right-hand side of Eq. (3. 40) is to be taken in 
the model M~1' The logarithm of this expectation 
value is proportional to the change in free energy 
due to the dislocations. This free energy is pro­
portional to the (d - 2)-dimensional hyperarea of 
the b.oundary in the disordered state (T* > r:, 
that IS, for T < Te),and it is proportional to the 
(d - I)-dimensional hypervolume in the ordered 
state of the dual system (T* < 1':, that is, for 
T> Te). This is in agreement with Eqs. (3. 38) 
and (3.39). 

We now compare the systems Mdn and Md+1 n on 
a hypercubic lattice. From the theorem of' 
Griffiths generalized by Kelly and Sherman22 it 
follows that any expectation value < TI y S( 1'» in 
the system Mdn is less or equal to the expectation 
value in the system Md+ 1.11' 

(3.41) 

since the (d + I)-dimensional system consists of 
layers of the system Mdn plus an additional inter­
action between the layers. Therefore, if this ex­
pectation value shows the long-range behavior, 
Eq. (3. 39), for Mdn , then this long-range behavior 
is also apparent in Md+1, n' and we obtain 
T c• dn :s T c •d+1. n , that is, 

(3.42) 

The systems Mdn with n > 1 exhibit an unusually 
high ground-state entropy So ex: N. Taking 

(3.43) 

in the hypercubic models (3.12), we may eliminate 
all spins with half-valued 1'd-component. These 
systems (we denote them by Mdn ) consist of 
Ns = N(~:D spins and have a much smaller degene­
racy, 

N N (d - 2) + (d- 2) 
g == Nd n - 2 n - 1 ' 

Nd denoting the length of the periodicity in the 1'd 

direction. 

For n = d the system diSintegrates into linear 
chains. For n = 1 the system is unchanged. For 
d = 3, n = 2 one obtains the Hamiltonian 

- (3H'32 = KL;ijk[S(i,j + i,k)S(i + l,j + i,k) 

x SCi + i,j,k)S(i + t,j + l,k) 

+ S(i + t,j,k)S(i + i,j,k + 1) 

+ S(i,j + ~,k)S(i,j + Lk + 1)]. (3.44) 

These systems obey the closure condition (2.21) 
if one chooses the model Mdd-n on the hypercubic 
lattice as the dual model. One obtains 

N - /Ii" (d - 2) (d - 1) (d - 2) 
... - Nd n - 2 + n + n _ 1 . (3.45) 

Therefore, in the thermodynamic limit N -7 00, 

Nd --) 00, the duality relation (3.30) holds, and the 
free energies of Mdn and MJn show the same non­
analyticities. In the systems M~nthe spins sepa­
rated by a vector pointing in the e d direction are 
correlated. At high temperatures one obtains 

(S(r)S(r + l' de d» == [tanhK + 2(d - n) 

x (tanhK)1+2n + ... ]Ird I for n > 1, (3.46) 

and for low temperatures it follows that 

(S(r)S(1' + 1'ded» = (1 - e -4(d-n+l)K 

+ ... )2+2(n-1)/Yd I for n < d. (3.47) 

Therefore, we expect an exponential decay of the 
correlation function for large 1'd at all tempera­
tures if n > 1. Here again we find no long range 
order. 

Absence of a Local Order Parameter 

A second-order phase transition with local order 
parameter is characterized as follows: Let us add 
local operators 1/1 i (1') to the Hamiltonian H 0' 

- f3H == KHo + "L;iY hil/l i (1'). 

Then there is a discontinuity of the first-order 
derivatives with respect to h of the free energy 
F(K, {It}) along a v'-dimensional hypervolume 
known as a first-order transition line in the v­
dimensional (K, h;) space. This hypervolume is 
bounded by a (v' - I)-dimensional A-hypersurface 
commonly known as A-point or A-line, where the 
second-order phase transition takes place. Any 
local operator 1/1(1') = "L;hi!J;i(1') with a disconti­
nuityof "L;r(l/I(1'» = - /3'£.h.aF/ah. alon ... the • t t t r;:, 

hrst-order transition can be considered as an 
order parameter. In the homogeneous phase the 
limit 

)~[(~(O)l/I(1'» - (~(O»(l/I(r»] (3.48) 

vanishes. If the expectation values in expression 
(3.48) are averaged over all states along a first­
order tranSition, then the limit (3.48) does not 
vanish. In the ISing model (n == 1) with ferromag­
netic interactions ~(1') == S(1') is such a local 
operator. For T = 0 we have (S(O)S(1'» = 1, 
whereas (S( 1'» == O. In the models Mdn with 
n > 1 there is no first-order transition for 
T < Tc,dn, hi =: 0 associated with a local order 
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parameter (1J;(r» if we confine ourselves to 
operators which are polynomials of spin operators 
located in a finite region about 1'. We can see this 
as follows: Any product of spins S(1') which do not 
lie on a closed (n - l)-dimensional hypersurface 
of hypercells B(n-l) gives vanishing contributions 
for a sufficiently large distance r. Therefore, we 
lbay confine ourselves to expressions for 1J;, 
which are polynomials of R(b), 

1J;(r) = P(r;R(b)). (3.49) 

Applying Eqs.(2.40) and (2.43),one obtains 

[(1J;(O)1J;(r» - (1J;(0» (1J;(1'») (K) 

== [(1J;*(O)1J;*(r» - (1J;*(0» <1J;*(r»HK*) 

(3.50) 
with 

1J;*(1') == P(1'; cosh2K* - R*(b) sinh2K*). 

(3.51) 

Therefqre, the correlation of the 1J;'s in the model 
M dn below Tc is related to the correlation of the 
1J;*'s in the dual model Mdd-n above T/. According 
to the cluster property of the Ising model, proved 
rigorously by Ruelle2 3 for Ising models with 
11 == 1, the right-hand side of Eq. (3. 49) vanishes 
for r ~ co. Therefore, there is no first-order 
transition characterized by a local order para­
meter in the models M dn with n > 1 along the K 
axis.24 

C. Thermodynamic Properties 

In this section we consider the thermodynamic 
properties of the systems M dn • 

The Linear Chain M 11 

The partition function of the linear chain (3.6) of 
N Ising spins with nearest neighbor interaction 
and the periodic boundary condition SeN + 1) == 
S(l) can be calculated5 explicitly: 

(
e K

+
h e-K )N 

Z(K, h) = tr -K K-h e e (3.52) 

With Eq. (2.24), 

Y(K, h) = IN Z(K, h), I == (2 cosh2K cosh2h)-1/2, 

one obtains 

(
f eK+

k Ie -K) 
Y(K, h) == tr Ie -K fe K- h 

K 2 2K -2K = F N(fe coshh,/ (e - e )). 

~3. 53) 

(3.54) 

The first argument of F N is half the trace of the 
2 x 2 matrix; the second argument is its determi­
nant. It follows that 

(3.55) 

with 

t == [2(1 + e-4K )(1 + tanh2 he/2
, 

d == ~(1- e-4K)(1-tanh2 h)(1 + e-4K
)-l 

x (1 + tanh2 hrl. 

(3.56) 

(3. 57) 

Since the linear chain is a self-dual lattice, one 
obtains from Eq. (3.16) that 

(3.58) 

with Eq. (3.17), which is fulfilled since t and d, 
Eqs. (3.56) and (3.57), are invariant under this 
transformation. 

The Models Mdd 

The partition functions Zdd(K,O) of the models 
Mdd without external magnetic field can be cal­
culated from the duality relation (3.16), (3.17): 

Ydd(K,O) = Y;h(oc,h*), tanhh* = e-2K
• 

(3.59) 

Since in the model M11 all spins are coupled by 
a two-spin interaction with infinite K*, only the 
two configurations {S(r*) == 1} and {S(1'*) == -1} 
contribute 

Z~l(K*,h*) 

~ exp(Nb K* + Nih*) + exp(NbK* - ~h*). 

(3.60) 
It follows that 

N N b . Nb Z diK, 0) == 2 S[(coshK) + (slllhK) ). (3.61) 

The partition functions of the models M d dare 
analytic in K for all finite K and h == O. Since the 
ISing model M~l' d > 1, shows a phase transition 
for h* = 0 at K* = K~ dl' a nonanalyticity is appa­
rent in the partition function Y dd (K, h) for K--) 
co at h == - ~ In [tanh(K~,dl)]' 

The Models M <in with n < d without External 
Magnetic Field 

The nonanalyticity which is apparent in the free 
energy F dl at the critical Kc,d) = (3i«(3c is the 
inverse critical temperature) also occurs in the 
free energy FJd-l [Eq. (3. 30)]. Since the correla­
tion functions, Eqs. (3. 38) and (3.39), show a quali­
tati vely different assymptotic behavior at low and 
high temperatures, we expect a phase transition 
for all infinite systems M dn with 1 :::; 11 , d at 
some K == Kc dn accompanied by a nonanalyticity 
of the free energy. The critical K's of the model 
and its dual model are related by Eq. (3. 28), which 
can be cast in the symmetric form 

sinh2KC.dnsinh2K~,dd_" = 1. (3.62) 

In particular, for self -dual lattices like the hyper­
cubic lattice, one obtains 

sinh 2Kc,dnsinh 2K~.dd-n = 1. (3.63) 
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TABLE I. Critical parameters of some three-dimensional Ising models and their dual models. 

original lattice diamond simple cubic body-centered cubic face ·centered cubic 

Kc 0.3698 0.2217 

K* c 0.5195 0.7613 
E,/Eo 0.432 0.3284 

E~/E6 0.937 0.9495 

Sc/S"" 0.737 0.808 

(5: - 5~)/(S:' - 5~) 0.100 0.092 

For a self-dual model (d = 2, self-duallattic~) it 
follows that 

K c,d.d/2 = t In(.J2 + 1). (3. 64) 

We derived the inequality K c.d+1 .n :::S Kc,dn for 
hypercubic lattices, Eq. (3. 42). From Eq. (3. 63) 
one obtains 

(3.65) 

and from Eq. (3. 42) and (3.65) it follows that 

(3.66) 

The critical temperature of the hypercubic sys­
tems is a decreaSing function of n. 

Since the duality relation (3.30) relates the free 
energy Fdn at high temperatures to the free energy 
F;d-n of its dual model at low temperatures, we 
deduce that the critical exponent Q'd d-n of the 
specific heat of the model M;d-n above Tc* is 
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O. 1575 

0.9284 
0.270 

0.964 

0.845 

0.072 

0.1021 

1. 1426 
0.245 

0.971 

0.853 

0.063 

given by the critical exponent Q'dn of the model 
M dn below T c and vice versa: 

(3.67) 

Therefore, any asymetry in the specific heat of 
the model M dn near Tc is also apparent in the 
specific heat of the dual model, but the high tem­
perature and the low temperature regions are 
interchanged. Self -dual systems exhibit a sym­
metric singularity of the specific heat around the 
critical temperature. 

From the thermodynamic relation 

E _ o(J3F) _ o (KF) 
- o{:J - oK ' (3.68) 

it follows that 

E*(K*)/E'6 = cosh(2K) - sinh(2K)E(K)/Eo, (3.69) 

in which Eo denotes the ground state energy 
Eo = - INb • Therefore, using Eqs. (3.30), (3. 68), 
and 

F = E - TS, (3.70) 

one is able to calculate the energy E* and the 
entropy S* of the dual model from E and S. From 
the critical parameters 13 of the Ising model on 
the diamond, the simple cubic, the body-centered 
cubic, and the face-centered cubic lattice, we have 
calculated the critical parameters of their dual 
models. The results are listed in Table 1. The 
binding energies of the dual models at critical 
temperature are unusually large [for example, 
95% of the ground state energy for the model 
(3.10)]. This is in agreement with the unusually 
low critical entropy, For the model (3.10) we 
obtain S:/kBN = 0.82 which is to be compared 
with the zero temperature entropy S'b/kBN = In 2 = 
0.69 and the entropy at infinite temperature 
S!/kBN = 3 In 2 = 2.08. 

The Systems M dn with 1 < n < d in an External 
Magnetic Field 

Near the critical temperature the Ising models 
M j 1 are very sensitive to an external magnetic 
field, since the spins exhibit a long range corre­
lation. This does not apply to systems Mdn with 
n > 1. Therefore, a phase transition line K =Kc(h) 
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is expected. This function Kc(h) can be calculated 
for small h if one assumes that the nonanalytic 
part of the free energy depends on K - Ke(h) 
only2S,26: 

(3.71) 

From KF = - I In Z, one obtains Eq. (3.68). The 
mth derivative of KF with respect to h can be ex­
pressed as spin correlation functions involving up 
to m spins. Only products of spins which can be 
expressed as products of R(b) yield nonvanishing 
expectation values. Since R(b) is a product of 2n 
spins for the hypercubic systems, one obtains for 
m < 2n only constant contributions of the type 
(S2(1') S2(r') •• '). For m = 2n expectation values 
(R(b» also occur yielding (2n)!E: 

am(KF) I _ lconst 
ahm hcQ - {const + (2n)!E 

for m < 2n 
for m = 2n. 

(3.72) 

From Eq. (3. 71) and (3. 72) it follows for the hyper­
cubic systems that 

K (It) = K (0) _ h 2n + .... 
c.Jn c.Jn 

(3.73) 

From the duality relation, Eqs. (3.16), (3.17), one 
obtains for large K the phase transition line 

. -4nK 
he.dn(I{) = Kc,dd-n(O) -smh 2Ke.dd-,,(0)e + .... 

(3.74) 

The reduced critical temperature K~1 = kB Tell 
is plotted as a function of the reduced magnetic 
field hiKe = MBll in Fig. 4 for the cubic model 
M32 , Eq. (3.10). 

In an external magnetic field the systems Md.n 

with d = 2n - 1 on self -dual lattices are self -dual 
[Eq. (3.16) J. 

4. PHASE TRANSITION IN AN ISING MODEL 
WITII COMPETING INTERACTIONS 

In this section we describe an Ising model with 
competing two-spin interactions. For special 
values of temperature and interaction parameters 
this model is related to the model (3.10) by the 
star square transformation (2.54). This system 
shows a singularity in the specific heat, but it 
shows no long range order below the critical 
temperature. 

As in model (3.10) spins are located at the centers 
1,(1) of the edges of the cubes (open squares in 
Fig. 3). Moreover, spins are located at the centers 
1,(2) of the faces of these cubes (black squares in 
Fig.3). We assume an interaction strength 11 for 
nearest neighbor pairs S(r 0» and S(r (2», an in­
terction strength 12 for next nearest neighbor 
pairs of spins S(1'(1) and S(r(1)'), and an interac­
tion strength 13 for pairs of spins S(1' (1») lying 
opposite a spin S(r(2»)(Fig. 5). Denoting the 
central spin S( r (2» of a face by S 5 and its four 

nearest neighbor spins by S1' S2' S3' S4' then 
the Hamiltonian H' of our model is the sum 
over all faces 

H' =-E[11SS(Sl +S2 +S3 +S4) 

+ 12(S1 S2 + S2 S3 + S3S 4 + S4S1) 

+ 13(Sl S 3 + S2S4)]' (4.1) 

We discuss the ground state of this model. The 
system is invariant under simultaneous reversal 
of 11 and S5' We assume 11 to be positive. The 
ground state depends on the ratios 12/11 and 131/1, 
In Fig. 6 we plot the phase diagram at zero tem­
perature. In region 0 the system is ferromagnetic, 
that is, all spins S( r (I) point in the same direction, 
In region 1 one of the four spins 8(r(1» of a face 
points in one direction, all three other spins of the 
face point in the OPPOSite direction. In region 2 a 

------- II 

----- 12 

-------- 13 

FIG. 5. The inte ractions in a face of the ISing 
model (4.1). 

-I o 

REGION 2' 

REGION 2 

FIG. 6. Phase diagram for the model (4.1) at 
zero temperature. 
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pair of neighbored spins S(r(1» points in one 
direction, the other pair of spins S(r(1) of this 
face points in the other direction. In region 2' 
two opposite spins S( r (1» at a face should point 
in one direction, the other pair in the other direc­
tion, but such an ordering is not possible in three 
dimensions. Therefore, in this region the ground 
state cannot be determined by looking merely for 
the ground state of one face. 

Here we are interested in region 1. The ground 
states of system (4.1) and (3.10) for negative I 
are the same. The spins S5 are determined by 
the surrounding spins S1' S2' S3' S4' Since the 
partition function of system (3.10) is invariant 
under change of sign of I, we obtain the ground 
state entropy of the system (4.1) in region 1, 

So = NkB In 2. (4.2) 

From the star square transformation (2.54) we 
find that the partition function Z' of system (4.1) 
and the partition function Z of the Hamiltonian 

H = - E [i1 S1 S2S3S4 + 12 (SIS2 + S2S3 + S3S4 

+ S4S1) + /3(SlS3 + S2S4)] (4.3) 

are related by 

I 
I 
I 
I 
I 
I 
I 

PARAMAGNETIC 
I 
I 
J 
J 
I 
I 
I 
J 
J 
I 
I 
I 
I 
I 
I 
I 
I 
I 

,-g 
I 
I 
I 
I 
I 
I 
I 

(4.4) 

(4.5) 

• 
1.5 

1.0 

0.5 

PHASE 2.2' PHASE I 
I 
I 
I 
I 

PHASE 0 
(FERROMAGNETIC) 

I I I 
-I o 

FIG. 7. Phase diagram for the model (4.1) for 
12 = I J' Along the broken line the free energy can 
be calculated from that of the simple cubic ISing 
model. The heavy line denotes the phase transi­
tion line from Eq. (4. 14). 

+8X 2](-2]( 
cosh 4Kl = e , cosh2K1 = e 1. (4.6) 

Along the line K2 = K3 = 0 (broken line in Fig. 7) 
the partition function can be expressed in terms 
of that of the simple cubic Ising model. In particu­
lar from the critical singularity of the partition 
function of the simple cubic Ising modeI13 at 
II k B T e = 0.2217 we obtain a singularity of the 
partition function Z' at K 1e = 2.039,K2e = K3e = 
-0.9344, that is, for [/[1 =: [i[ 1 =: -0.4582, 
kB Tel I 1 = 0.4904 (point P of Figs. 6 and 7). 

~ow let~s expand Z(K1,f?2,K3 ) into powers of 
K2 and K3: 

In Z(K1,K2,i?3) = In Z32(KJ + EijaijK~K~. 
(4.7) 

The coefficients a ij can be expressed in terms of 
the spin correlation functions of system (3.10): 

a10 = a01 = 0, (4.8) 

1 2 ~I ~2 a20 = "2 a In Z aK2 

= i E «S1S2 + S2 S3 + S3S4 + S4S 1)2) 

= 2 E (1 + (SlS2S3S4» = 6N - 2EII, 

a02 =: 3N - Ell, (4.9) 

In general a 2nth or (2n + 1)th derivative of In Z 
can be expressed in terms of cumulants of at most 
n operators R(b) or products of R(b)'s. We expect 
that such a cumulant shows a singularity at the 
critical temperature of the form E2-a-n [with E = 
(T - Tc)/Tc],since such cumulants occur in the 
nth derivative of the free energy with respect to 
the interaction constants in a system with Hamil­
tonian - f'BR(b) -12 ~ RR - •. '. The nth deri­
vative with respect to I is proportional to the nth 
temperature derivative of the free energy and is 
thus proportional to E2-a-n. We assume that the 
cumulants of products of R's show no stronger 
singular behavior. Since K2 and K3 are regular 
functions of T for fixed I 21 II' 13/11, we obtain 
for /2/11 = [3/[1 = -0.4582 

~ 3-a 
In Z' =: In Z32(K 1 ) + regular terms 1- O(E ). 

(4.10) 

Therefore, we obtain for the singular part of the 
specific heat c~ng(T), 

C~i ng(Tc(1 + E» 

=Q-2csing,31(Te,31(1-QE» 

0[1 + O(E)] 

= 2.088 csing ,31 (T c•31(1 - O. 6924E» 

0[1 + O(E», q = (alnK/iHnK)Te . (4.11) 

If we assume that the singu lar part of the free 
energy depends only on T-Tc (1 1 ,12 ,13) (compare 
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Eq. (3. 71)], then from Eqs. (4. 8) and (4.9) 
and from 

we obtain 

E 

I 

F si ng(Kl' K2 , K3 ) 

= F Sing ,32 (K1 + 2K~ + K~ + ... ). 

(4.12) 

(4.13) 

Therefore, we may expand the critical tempera­
ture in powers of 12/11 + 0.4582 and 13/11 + O. 4582 
(Fig.7): 

kBTcU1,12,13)/11 = 0.4904 -4.00(12/1 1+0.4582)2 

- 2. 00(/3/11 + 0.4582)2 _.... (4.14) 

Since the ground state of this system is the same 
as for the model (3.10), the two-spin correlations 
at T = 0 vanish and no long range order is ex­
pected below T c' 

5. CONCLUSION 

In 1966 Mermin and Wagner27 proved that there 
is no spontaneous magnetization in the two­
dimensional isotropic Heisenberg model. On the 
other hand, there is evidence from high tempera­
ture expansions of the magnetic susceptibility28 
that this system undergoes a phase transition. 
This raises the question of whether or not it is 
possible to have a phase transition without a local 
order parameter. In this paper we have exhibited 
systems which undergo phase transitions but which 
do not have a local order parameter. The specific 
systems were certain classes of Ising models. It 
would be of some interest to generalize this con­
cept to other types of systems. 
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APPENDIX 

In this appendix we derive the Eqs. (3. 21)-(3. 23). 
Any lattice can be created from another lattice 
with the same boundary conditions by applying one 
of the following steps (see Fig. 8) as many times 
as needed. 

Step 1: Divide an m-dimensional hypercell into 
two parts by creating an (m + 1)-dimensional 
hypercell. 

Step 2: Collapse an (m + 1)-dimensional hyper­
cell by merging two m -dimensional hypercells 
with the same boundary together into one. 

By applying any of these steps, the left-hand side 
of 

d 

~ (- 1) d- m C m = t (3.23) 
mdJ' 

remains unchanged. Therefore, t depends only on 
the boundary conditions. This is a generalization 
of Euler'S theorem. 

Next we consider the change of N g resulting from 
the application of Step 1. If m > n, then the Hamil­
tonian does not change. For m = n one interaction 
is effectively duplicated, since one boundary B (n) 

is duplicated. For m = n - 1 one spin is replaced 
by two spins, but for the ground state both must be 
equal. For m = n - 2 there is also one additional 
spin. Taking this spin aligned upwards, one obtains 
a one-to-one correspondence with the ground state 
of the original system. But changing the sign.s of 
all spins lying on bonds adjacent to one (n - 1)­
dimensional hypercell at the boundary of the new 
bond, we obtain another ground state. Therefore, 
the new system has twice the degeneracy of the 
original system. For m < n - 2 the Hamiltonian 
does not change. Therefore, we obtain (Step 2 is 
just the inverse of Step 1) 

(3.21) 

Since this expression changes only by + 1 after 
application of Step 1 and by - 1 after application 
of Step 2 for m = n - 2, t g depends only on the 
boundary conditions and on n. Similarly, we obtain 

d 

N; = t; + ~ (_1)m-n Cm' 
m=n+2 

(3.22) 

Therefore, N m' Eq. (3.16), depends only on the 
topology of the system and on n. 

We 'consider two topologies: first, a lattice which 
is topologically equivalent to ad-dimensional 
hypersurface wrapped on a (d + 1)-dimensional 
hypersphere. As a representative we choose the 
(d + 1)-dimensional simplex, which is the general­
ization of the triangle and the tetrahedron. It has 

(0 ) (b) (c) 

(d) (e) (f) 
FIG. 8. Example for changing a lattice by apply­
ing the Steps 1 and 2. From the lattice (a) the 
lattice (f) is created by applying once the Step 1 
with m = 1 (b), twice Step 1 with In = 0 (c), (d), 
twice the Step 2 with In = 0 (e), (f). The number 
C 2 - C1 + Co remains unchanged. 
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Co = d + 2 corners. Any two corners are con­
nected by an edge. Any three edges span a face 
and so on. It follows that C m = (~,:2l)' Using Eq. 
(3.13), one obtains 

t = 1 + (- l)d. (A1) 

We may number the spins of the model M dn on 
this lattice by n indices 1 ::::: i 1 < i2 ••. < in ::::: 
d + 2. For the ground state all spins with in = 
d +. 2 can be chosen arbitrarily. Then all other 
spins are given by S(il" ·in ) = S(i 2 ' "in,d + 2)' 
S(ili3" 'in,d + 2)" ,S(il" ·in-l,d + 2). Therefore 
it follows that Ng = (1:i). From the Eqs.(3.21), 
(3.22), (3.26), and (A1) one obtains 

tg =(_l)n+\ t;=(_l)d+n+l forn:::::d-1, (A2) 

N m = 0 for n ::::: d - 1. (A3) 
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